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ABSTRACT

Neoclassical transport theory is developed in a Lagrangian

rather than the usual Eulerian formulation. We show that an

underlying asymmetry exists in the neoclassical pinch and bootstrap

effects and demonstrate the physical basis of the Onsage- symmetry

relationship in the pinch-bootstrap duality. It is suggested that

low frequency turbulence can destroy the bootstrap current at

levels too low to effect the Ware Pinch.



Neoclassical transport theory has long predicted the exis-

tence of a "bootstrap current" driven by the radial density gradient

and a pinch effect driven by the toroidal electrical field. Both

effects have substantial practical implications for tokamak reactors.

Neither, however, has been confirmed by experiment. Inward plasma

flow has been clearly, if indirectly, observed although not

(3)quantitatively explained by the neoclassical pinch. The boot-

strap current (6) has not been seen even in experiments where it

should have been easily detected. (4) The pinch effect is often ex-

plained as a purely kinematic, collisionless inward flow of trapped

particles. The underlying mechanism of the bootstrap current is

somewhat obscure, although it clearly is a collision driven phen-

omenon involving circulating particles. These two phenomena

display an Onsager symmetry relation and have equal coefficients.

Why effects involving different classes of particles should be On-

sager conjugate has never been satisfactorily explained.

This letter considers the questions of Onsager symmetry and

the non-observance of the bootstrap current in light of a recently

developed.Lagrangian formulation of neoclassical theory.(8) This

formulation has the virtue of being a direct expression of the

elementary kinematics and collision processes, allowing the various

flows to be identified at the microscopic level. We show the net

kinematic contributions to both pinch and bootstrap current to

be small and symmetric. However, the individual kinematic processes

involved in the pinch are large and there is an underlying asymmetry of
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collisionless Processes. Collisional processes involving circulating

Particles drive both the pinch. (contrary to the accepted models) and

bootstrap effects. These collisional processes are microscopically in-

verse and clearly Onsager conjugate. However, the bootstrap cur-

rent is a result of scattering by particles in a very narrow layer

near the trapped particle boundary. We argue that the nature of

this layer is such that the 'bootstrap current, but not the Ware

pinch, is easily destroyed by low level turbulent scattering.

The physical basis of the Lagrangian formulation is that in

the lowest collisionality (banana) regime, the distribution func-

tion; f, relaxes in a sequence of well-ordered time scales. The

fastest is the orbital time scale, on which f relaxes to a func-

tion of constants of motion (or actions) alone. The actions J ,

J 2' 3 are chosen to be respectively the magnetic moment, parallel

invariant and bounce averaged poloidal flux. These actions then

scatter under the influence of collisions to relax f to a local

Maxwellian on the collisional time scale. The radial action

action gradients relax to produce transport on the (longer) dif-

fusion time scale.

The Lagrangian formulation follows this hierarchy of relaxa-

tion processes, first expressing the kinetic equation in action

angle variables, and averaging over the orbital time scale (or

equivalently, the angle variables). The result is a kinetic

equation in terms of the actions alone,
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at + - q a(J)VTf = C (f), (1)

where VT is the toroidal voltage, with coefficient, a(J) =

d3 Oe~ -V J, and the collision operator is (for the Lorentz

model)

C (f) D - = fd3 v(V J)T (v2- vv J)
a_ = j 31 _v- v- D'

(2)

For evaluating neoclassical fluxes in an axisymmetric system,

the angle averages are operationally bounce averages, d3 0w 2 ds/u.

Equation (2) gives the bounce averaged effect of collisions, (ie,,

velocity scattering at fixed spatial position) on the actions.

The three actions, J , J2 ' J 3 have well ordered associated fre-

quencies, w1 >>2 >w 3 , so that the energy is principally a func-

tion of J and J2, the "velocity" variables, while J3 is a "radial"

parameter. More precisely, J = $+AJ3, where 2 3 0.
3 c tpA 3, 02 f u 3=

Note that CJ contains terms of the form -a D f, which give,
a 3 33

explicitly, radial diffusion due to action scattering under col-

lisions. There are also collisional cross processes of the form,

D - and D f, which are ultimately responsible
ai23 ai3 3 23

for the pinch and bootstrap effects. Transport equations are ob-

tained directly by the reduced moments over J and J 2. One can,
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in fact, show that the density per unit J3 , n3 = dJdJ2 f, is

equal to the flu.x surface average spatial density times the

specific volume, dV/dJ3 = dV/d$. In Equation (1), the J

derivatives are smaller than the J , J2 derivatives by a factor

p P/a, the small parameter that, for tokamaks, measures the rela-

tive slowness of radial scattering to velocity scattering. The

transport coefficients can be obtained by a straight forward ex-

pansion of (1) in powers of p /a, using a maximal ordering where

V p /a, (p/a)2

The leading order consequence of Equation (1) is C 0(f) = 0,

where C is the "velocity" scattering part of the full operator.

This operator has a local H-theorem (when like-particle collisions

are included) so that f is a local Maxwellian of the form

f 0 = N(J 3 ) exp(-H(J)/T(J3 )).

The first order equation is

af

Co (f q Va a e f -- 0-3 (3)c0 f1) 217T T-.j. 3J -B ( 3) aw
-.L 3

where - e-- + e -- is effectively a velocity gradient.
aJ 1l3 -2 BiJ2-. i. 1

It is thus the electric field and the collisional cross processes

that drive perturbations fE. Only the circulating particles are

effected and f1 = 0 in trapped space.

With f1 known, the particle and energy moments of Eq. (1)
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are determined to second order (since C (f 2) is annihilated) and

provide the transport equations. These are formalized by defin-

ing generalized forces, A = dinn/dJ 3, A 2 = dInT/dJ3 , A3 = VT/T

and their respective fluxes of particles, heat and charge,

F = r, F2 = q,F3 T, related by F.= T .A , with the trans-

port matrix, T , exhibiting Qnsager symmetry, T.. = T . De-

fining coefficients, ai, in (3) such that C (f) = af A ,

can be expressed as a sum over the thermodynamic forces,

f, gi Ai, with individual responses determined by Co (g ) = aifo-

These relations are useful for writing the transport equations in a

compact form and for proving Onsager symmetry.

For example, the particle moment of Eq. (1), can be written,

to second order, as

an3  a 2 af
0 =2 3 o T -a 1Jf D(33 3 0

43

The particle flux transport coefficients, T j, can be inferred

from (4). Specifically, the pinch coefficient, T1 3 ' (g,h)

d2 gh, is T ( a - (a, q3 ) Te + T'L13 2ff 3' fo)-3 13 13'

The decomposition into explicit (superscript e) and implicit

(superscript i) is a key feature of this formulation. The fluxes

that do not require the calculation of f are termed explicit,
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and represent processes depicted in explicit form in the

original kinetic equation (1). Thus the first flux term in

(4), proportional to VT is an explicit, purely kinematic,

radial flow, independent of collisions. The Ware effect appears

in this term. The implicit or indirect fluxes result from f .

To calculate the toroidal current, one starts from.

J = f d3 Jd 3 e (x-x(J,e)) qe -v(J,B) f(J).

This contains the Pfirsch-Schluter current in addition to the

parts, constant on a flux surface, determined from transport

theory. We now weight JT by 1/2frR, flux surface average and

multiply by dV/dJ3, to give an angular current per unit J3'

I fd 3 JW*f~ s* - c (J3-AJ) q

-f (5)
=d2 d .Lfi ,Tq + A3 0 +..

This expression is correct to order p /a. Here again we have

implicit and explicit parts. The explicit piece is a toroidal

current associated with the departure of the orbits from the

average flux surfaces analogous to the perpendicular diamagnetic
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flow associated with the departure of gyro-orbits from the guid-

ing center. Transport coefficients may be inferred from Eq.

(6), the bootstrap coefficients being Te and T 1  3'(
31 31 V91

Constructing the rest of the transport matrix, one gets re-

sults for the net coefficients, T , identical to the conventional

(8)
Eulerian theory, and having Onsager symmetry. In the Lagran-

gian formulation, however, there are two symmetry theorems, one

for the implicit and another for the explicit piece. The former

follows immediately from the self-adjointness of C viz. Ti. =
0 1]

(ai, g.) = (C (g.),g.) = (gi,Co(g.)) = (a.,g.) = T1 .. Explicit

(8)
symmetry can be demonstrated term by term. Recall that only

the circulating particles contribute to the implicit fluxes.

Trapped particle contributions are all explicit.

We now come to describing the elementary processes -involved

in producing the pinch and bootstrap effects. It is useful to

define the dimensionless transport coefficients 113 and 131 accord-

in3oT3ing to T13 qTn3 3 , T31 = qTn3 I. In the limit of small

(1)e = a/R, the overall coefficients are I and I31 1.38 rZ,.

In the conventional explanation, the pinch is associated pre-

dominantly with the kinematic flow of trapped particles, I etr (the
13

Ware effect).
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Indeed, one finds, 11tr - 826, which is 62% of the full co-

efficient. The circulating particle contributions I ecir and13

I ,cir are of opposite sign and tend to cancel. The difficulty13

with this interpretation is that the process conjugate to the Ware

effect, the trapped particle banana current, I etr is negligible31 isngiil

(of order e 3/2) in the small E limit. Also, I cir = 3/2

so that I 3 is negligible. The bootstrap current is all im-

plicit. It is a result of the collisional cross process, and

entirely a consequence of circulating particles. This picture

does not give the physical basis of Onsager symmetry.

To clarify the symmetry first note that the explicit sym-

metry I e= I 3 implies that to order e3/2 e 0, and,mery31 1 ~3' im e 13 =0

therefore, that the explicit circulating particle flow is actually

radially out, at a rate which cancels entirely the Ware pinch!

Thus, one does not have symmetry of the elementary processes

represented by Ietr and I etr (or Iecir and ecir) but13 31 (o 1 3  ad31 )u

only of the net coefficients I3 and I1  Nonetheless,

13 0, and this leads to an alternate interpretation

of the pinch as a collisional process involving circulating particles.

The question is now reduced to understanding the implicit

flows. Recall that these arise from the cross processes in the

collision operator, reflecting correlations in the scattering pro-

cess between jumps in radius and jumps in velocity.
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Figure (la) compares representative orbits for different

types of particles. Consider two particles, initially well circulat-

ing, moving in opposite directions along the magnetic field. Both

have orbits lying very nearly on the flux surface 4. As these

particles scatter toward trapped space, under the influence

of collisions, the a = -l particle scatters to an orbit whose

average surface is shifted inward relative to 4) while the a = +1

particle scatters out. This is the origin of the correlation

between velocity and radial scattering. A radial flow will result

whenever the perturbed distribution has unequal fractions of

a= -1 and a= +1 particles, or in other words, carries a current.

The current driven by the toroidal electric field has an excess

of a= -l particles and drives an inward radial flow. This

process, due entirely to circulating particles, causes the pinch

effect.

Now invert the process just described. That is, take two

marginally circulating particles, oppositely directed along the

magnetic field and scatter them back toward the well circulating

state. The a= -1(+l) particles start on an inner (outer) average

surface and end up on $. With a normal density gradient the re-

sult will be more a= -l than a= + 1 particles on the final 4

surface, and thus an electric current. This is the mechanism be-

hind the bootstrap current. It is the precise microscopic inverse

to the process accounting for the pinch effect. The true Onsager

symmetry is obvious.
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A detailed calculation shows that all the circulating

particle contributions, T ecir Ticir, and Ti cir arise from a
T13  '13 31

very narrow layer near the trapped particle boundary. In terms of

the pitch angle variable A (such that O<A<l-c is circulating,

1-E<A<l+e is trapped) the layer is much thinner than e. A layer

width, P, on the order of several percent of E, accounts for

80% of the effect. In contrast, the Ware effect Tetr has equal13 haeqa

contributions from all the trapped particles. Since the explicit

bootstrap T is uniformly small for all A, the underlying asym-

metry in the explicit processes can be brought out by small mod-

ifications of the boundary layer particle dynamics. This can cause

a breakdown of the symmetry when turbulence is present.

Whereas neoclassical theory can be viewed as a collisional

scattering from one global collisionless orbit to another, in

a turbulent medium the collisionless orbits are quite different.

In particular, the orbit projections for the boundary layer particles

look like the turbulent smear of Fig. lb. The displacement of

the orbit relative to $ depends not on the VB drifts (and parallel

velocity sign) but on the turbulent radial flows which are often

larger. Within the layer a particle cannot retain its memory of

a trapped or circulating status, but only the mixture of these

properties. The turbulent orbit has an average surface, i, and

this does not jump in a correlated way depending on a.

Therefore, collisional scattering of these orbits

will not generate the cross processes and



- 11 -

T 3 and T are eliminated. By a related argument, T ecir i1l3 31 13

eliminated. The Ware effect, T etr, is more robust. It13

arises from a secular accumulation of VB drifts due to poloidal

rotation of the banana tips, is independent of radial memory

along the orbit, and survives the turbulence. We end up with

T13 Ttr ' 31 0. In short, the circulating particle

effects are sensitive to the detailed structure of the boundary

layer. At realistic turbulence levels they will be eliminated,

leaving the Ware effect and broken symmetry.
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Fig. la. Representative orbit projections for circulating part-

icles in quiescant tokamak. Well circulating particle

orbits follow the $ surface very closely. Marginally

circulating particles have very distorted orbits,

resembling the inner (outer) half of a trapped particle banana

orbit for the o = -l direction of parallel velocity.

Average surfaces, <$>, for marginally circulating part-

icles are displaced inward from $ for a= - 1, and out-

ward for a= + 1.

Fig. lb. Boundary layer circulating particle orbits in the

presence of turbulence. The orbits are not well

defined, but correspond to a mixture of properties in a

local region of phase space.
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