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ABSTRACT

Equilibrium and stability properties of an intense electron ring

located at the midplane of an externally applied mirror field are inves-

tigated within the framework of the linearized Vlasov-Maxwell equations,

including the important influence of equilibrium self fields and an ap-

plied field B in the toroidal direction. It is assumed that the ringOe 2
is thin and that v/yb << 1, where V is Budker's parameter and ybmc is

the characteristic electron energy. Equilibrium and stability properties

are calculated for the choice of equilibrium distribution function in

which all electrons have the same value of energy in a frame of reference ro-

tating with angular velocity wb in the minor cross section of the ring, and a

Lorentzian distribution in canonical angular momentum P0 . Negative-mass

and resistive-wall stability properties are calculated, and a closed dis-

persion relation is obtained for the case where the ring is located inside

a toroidal conductor with finite resistivity and minor radius ac much less

than the major radius R . One of the most important features of the stabi-

lity analysis is that the negative-mass instability in a high-current ring

can be stabilized by equlibrium self-field effects in circumstances where

the self fields are sufficiently intense. Moreover, a modest spread A

in canonical angular momentum can stabilize the resistive-wall instability.
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I. INTRODUCTION

There is considerable recent interest in the equilibrium and sta-

bility properties of intense relativistic electron rings with applications

that include high-current betatron accelerators.1-4 In a conventional

betatron accelerator, a toroidal electron ring is confined in a mirror

or betatron magnetic field. Moreover, the beam density and current is

limited by the strength of the betatron magnetic field. In the modified

1,2
betatron accelerator, however, an additional confining magnetic field

Bext is applied in the toroidal direction, thereby considerably increasing00

the limiting beam current and density. In the present article, we make

use of the Vlasov-Maxwell equations to investigate the equlibrium and sta-

bility properties5-10 of an intense relativistic electron ring confined in

a modified betatron field configuration,1,2 including the important influ-

ext
ence of equilibrium self-field effects and the toroidal magnetic field B00

The analysis is carried out for an electron ring located at the midplane of

an externally applied mirror field. The positive ions form an immobile

(m. + o) background that provides partial charge neutralization. In addi-

tion, it is assumed that the electron ring has minor dimensions much smaller

than the major radius R0 (Fig. 1). It is also assumed that v/Yb < 1,

where v is Budker's parameter and ybmc2 is the characteristic electron

energy associated with the toroidal motion.

Equilibriumand stability properties are calculated for the specific

choice of the equilibrium electron distribution function [Eq. (13)]

S2

,0 bHP ) fib R 0A 6(H - b PD - mc )

b ( ,) 2 2 2
2rr Ybm [(P0 - PO )A ]
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where H is the energy, P is the canonical angular momentum in the azimuthal

2
direction, P = pp - eB p /2c is the canonical angular momentum in the

small cross section of the torus, R is the major radius of the ring, and

nbpA, P' l ' b and y are constants. Although H and P are exact single-par-

tical invariants for the equilibrium configuration illustrated in Fig. 1,

P is an approximate invariant whenever the toroidal field is sufficiently

strong [Eq. (8)) and the electron ring has circular cross section (Appendix

A) with

n = and a = b
2

Here n = -[re/3r)tnBxt (rz)] is the external field index. Equili-

8,9 O R00

brium properties of the electron ring are calculated in Section II. One

of the most important features of the equilibrium analysis is that the max-

imum electron density trapped in the ring can be greatly enhanced by the

toroidal magnetic field [Eqs. (43) and (44)]. Moreover, the rotation fre-

quency wb in the minor cross section of the ring plays an important role in

determining detailed equilibrium properties.

The formal electromagnetic stability analysis is carried out in Section

III within the framework of the linearized Vlasov-Maxwell equations. Neg-

ative-mass and resistive-wall stability properties5-7,10 are calculated

for eigenfrequency w near harmonics of the cyclotron frequency w = eB ext(R ,0)
cz Oz .0

/Ybmc associated with the axial magnetic field, i.e., w = Zw . The

resulting dispersion relation in Eq. (77) is obtained analytically for a

relativistic electron ring located inside a toroidal conductor with finite

resistivity and minor radius a . Equation (77) is one of the main resultsc

of this paper and can be used to investigate stability properties for a

broad range of physical parameters.
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Negative-mass stability properties5-7,10 are investigated in Section

IV, assuming a perfectly conducting wall but including the important influ-

ence of equilibrium self fields. Introducing the parameter [Eq. (64)]

2 2 2
y cz b

we find that [Eq. (88)]

0 < P < m- (op)2g
Yb _

is a necessary and sufficient condition for instability. Here, g is a geo-

2
metric factor with g = (1 + 22na /a) for a >> a and g 4/X for a ~ a,

c c On c
2 22 2

where J (X ) = 0. Moreover, w = W 2/2 + (wpb/2)[6b - (1 - f)] is the
0 On $ cz p

radial betatron frequency-squared for a circular beam with a = b and n = 1/2,

22

Wpb = 4 eb /ybm is the relativistic plasma frequency-squared, 
and f is the

fractional charge neutralization. Evidently, from Eqs. (64) and (88),

equilibrium self fields can have a large influence on stability behavior.

Moreover, the negative-mass instability can be completely stabilized by a

sufficiently large spread A in canonical angular momentum P .

It is also important to note that p < 0 is a sufficient condition for sta-

bility (Section IV) even with zero spread in canonical angular momentum

(A = 0). The condition p < 0 can be satisfied provided the equilibrium

self fields are sufficiently strong in absolute intensity. For example, if

f = 0, then the sufficient condition for stability (V <0) and existence of

a confined equilibrium [Eq. (44)] can be expressed as 1 < wb/ 2  < 1 +
pb b cz

2
oc6 cz'

Althougha perfect conducting wall is a reasonable assumption in many

experiments, we expect a significant modification of stability behavior

when a small amount of resistivity is introduced into the wall, e.g., to

stabilize the transverse precession in the minor cross section of the ring.
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In this regard, in Section V, we investigate the resistive-wall instability
5

assuming that V < 0 and the negative-mass instability is absent. It is

shown that the resistive-wall instability can also be stabilized by a modest

spread A in the canonical angular momentum.
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II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

A. Basic Assumptions

The equilibrium configuration is illustrated in Fig. 1. It consists

of a relativistic electron ring located at the midplane of an applied

ext ext
focussing (mirror) field Br (r,z)r + B~t (rz)& . In addition,Or z kr Oz 'U

the electron ring is located inside a toroidal conductor with minor

ext
radius ac. The applied toroidal magnetic field B0 e , where

R
1ext 0
B = , (1)Oe e r

together with the mirror field act to confine the ring both axially

and radially. Here, er' , and are unit vectors in the r-, -,

and z-directions, respectively. The equilibrium radius of the ring is

denoted by RO, and the minor dimensions of the ring are denoted

by 2a (radial dimension) and 2b (axial dimension). In addition to the

cylindrical polar coordinates (r,0,z), we also introduce the toroidal

polar coordinate system (p,D,e) illustrated in Fig. 1 and defined by

r - R r' = pcos ,

(2)

z = psinD ,

where p is measured from the equilibrium radius R . The electrons

composing the ring undergo a large orbit gyration in the external

0
mirror field with characteristic mean azimuthal velocity V0 = bc in

the positive 0-direction. The associated ring current, which is in the

negative 0-direction, produces a self-magnetic field B (x) that

threads the ring in the sense indicated in Fig. 1. This self-magnetic

field acts as a focussing field which tends to confine the ring electrons
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both axially and radially. The electron ring is assumed to be

partially charge neutralized by a positive ion background. The excess

electrons form a potential well for the ions. For the electrons,

however, the self-electric field is defocussing, i.e., in the direction

of increasing the minor dimensions of the ring.

To make the theoretical analysis tractable, we make the following

simplifying assumptions in describing the electron ring equilibrium by

the steady-state Vlasov-Maxwell equations. 8 ,9

(a) The positive ions form an immobile (m -+ CO) partially neutralizing

0
background. The equilibrium ion density ni(r,z) and electron density

n 0 (r,z) are assumed to be related by
e

0 0n.(r,z) = fn (r,z) , (3)i e

where f = const. is the fractional charge neutralization.

(b) The minor dimensions of the ring are much smaller than its

major radius, i.e.,

a,b << R 0 (4)

To further simplify the analysis we also assume that the minor cross

section of the ring is circular with

a = b , (5)

which is consistent (strictly speaking) provided the external field

index n satisfies

n = 1/2, (6)

where n = -[r3knBext (r,z)/ar] .
Oz (RO)
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(d) Consistent with Eq. (4), it is also assumed that the

transverse (r,z) kinetic energy of an electron is small in comparison

with the characteristic azimuthal energy ybmc 2

1 2 2 2
2ybm r +p ) « (7)

where p0 " Yb mbc is the characteristic azimuthal momentum.

(e) The maximum spread in canonical angular momentum 6P is

assumed to be small with 16P1 a Ybmb cRO and

<<Pf , -- -(8)
Ybmb cR0 Bz Pe
2 2 1/2

Here, p, = (pr + p2) is the characteristic transverse (r,z)

momentum, p Yb~bc is the characteristic azimuthal momentum,

and B B (RO, and z= B (RO,0). Moreover, 6P = P - P whereB0  ( 0 0) B Oz 0e

P is the canonical angular momentum, and P0 = const. is the average

canonical angular momentum of the electrons composing the ring. As

shown in Appendix A, the inequality in Eq. (8) (which is satisfied

provided the spread in canonical angular momentum 6P is sufficiently

small and/or the toroidal field Be is sufficiently strong), together

with Eqs. (5) and (6) are sufficient to assure that the canonical

angular momentum P, = pp - (eB/2c)p defined in the small cross-

section of the torus is a good approximate invariant.

(f) It is further assumed that

N 2
- 1 (9)
Yb 27rR0 mc

2 Yb

where v = (N /27rR)(e 2/mc 2) is Budker's parameter, N is the total

number of electrons in the ring, and e 2/mc2 is the classical electron

radius. While Eq. (9) assures that the equilibrium self fields

Er, E , Bs z, and Bsr are weak in absolute intensity (in comparison
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with B0 xt), depending on the beam density we will find that the

self-field gradients can be large and have a correspondingly

large influence on particle orbits in the equilibrium field

configuration. 8,9

B. Self-Consistent Vlasov Equilibrium

For azimuthally symmetric equilibria ( / e = 0) with both r and

z dependence, there are two exact single-particle constants of the motion.

These are the total energy H,

H = (m2 c + c 2 2 ) - e$0 (r,z) , (10)

and the canonical angular momentum P,

Pe = r[p - e A0 (r,z)] , (11)

where = ymv is the mechanical momentum, $0 (r,z) is the

equilibrium electrostatic potential, -e is the electron charge, c is

0
the speed of light in vacuo, m is the electron rest mass, and A (r,z) =

A ext (r,z) + As (r,z) is the 0-component of the vector potential
Oe 0

for the total (external plus self) equilibrium magnetic field. Without

loss of generality, we assume $0 (RO,0) = As (RO0) = 0 in Eqs. (10)0'

and (11). Within the context of Eqs. (3) - (9), it is shown in

Appendix A that the canonical angular momentum P

e j 2  (12)
N = pp D - 2cBep

ext
in the plane perpendicular to the toroidal magnetic field B is an

approximate single-particle invariant for a thin circular beam with a = b

and n = 1/2. Here, p is the mechanical momentum in the P-direction

[Fig. 1], and p2 (r - 0)2 + z2 is defined in Eq. (2). In obtaining
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Eq. (12), the toroidal magnetic field B = B /r has been

approximated as uniform over the minor cross section of the ring.

Any distribution function f that is a function only of the single-b

particle constants of the motion in the equilibrium field configuration

satisfies the steady-state (a/t = 0) Vlasov equation. For present

purposes, we consider the electron distribution function specified by

2
0 (fbR0A 6(H - wb - mc2 )

fb(H,P,,Pg = 2 2 2 , (13)
2 Ybm (P - P0 ) + A

0
where n b = nb(R0,0) is the electron density at the equilibrium

radius (r,z) = (R0 '0), wb = const. is the angular velocity of mean

rotation in the O-direction, A is the characteristic spread in the canonical

angular momentum P , and j is a constant.

The equilibrium Poisson equation can be expressed as

r + 2 ) Or,z)
z2

(14)

4e(1-f) d3 p f 0(HP P

Furthermore, the 0-component of the V x B (x) Maxwell equation can be

expressed as

2
9 r + L As (r,z)

ar r r az2) 0

(15)

T d 3 p v f 0(HP , '

2 2 2 -1/2
where v, = (p /m)(1 + /m c ) is the azimuthal electron velocity.

Consistent with the thin ring approximation [Eq. (4)] is the

requirement that the r-z kinetic energy be small in comparison with

the effective azimuthal energy [Eq. (7)]
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- 2 1/2
2 2 (16)

y (r,z)mc { m24 + c2 + A (r,z) (16)

defined for p2 = p2 + p = 0 and P = PO, and that the spread in

canonical angular momentum be small with I6Pel = IP ' Po YbmbcRO.

Taylor expanding for small values of p + p and 6PP P

find that the total energy H defined in Eq. (10) can be approximated by 7 1 0

2 2
P 2 + pz 2

H= 2r ~z~ + Y (rz)mc - e#0 (r,z)

02
V2(r,z) (6P )

+ r 6 + 3 2 '2y 3 (r, z)mr

e0
where the mean azimuthal velocity of an electron fluid element V (rz)

is defined by

V 0 (r,z) = (fd3pv f )/(fd3 pf0e
(18)

[(P0 /r) + (e/c)A 0 (r,z)]/[y (r,z)m]

For future reference, we define the characteristic azimuthal energy ybmc2

of a beam electron by

2bmc (RO,0)mc 2 (19)

and choose

eB 2
P0 =2c ZR

(20)

A 0 (R0 0) BR0

where Bz . B t (R0,0).
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The mean equilibrium radius R of the ring is effectively

determined from the condition '9

I c 2 a , (r, z) - e (r,z 0. (21)

8 9
Making use of Eqs. (16) and (21), we obtain 8

2 2 0 0
Ybm bc /Ro = e[E (RO,0) + abB0(RO,O)] (22)

where Vb V (ROM,)/c, E (r,z) = -3 0 /@r is the radial self electric
b 0 r0

field and B (r,z) = (l/r)(@/3r)(rA ) is the axial magnetic field.z e

Equation (22) is simply a statement of radial force balance on an

electron fluid element at (r,z) = (RO,O). Due to the symmetry of the

equilibrium configuration (Fig. 1), it is clear that at the midplane

(z = 0), the axial electric field and the radial magnetic field are

identically zero. We therefore note that

Y r,(r,z) = 0=) ](ROr0) (23)

rz (r,z) j = 0 = r O(rz) . (24)
(RO,0) (RO'

Making use of Eqs. (20) - (24), the expression for the total energy H

in Eq. (17) can be further simplified by Taylor expanding the expressions

for y (r, z), $ 0 (r,z), etc., about (r,z) = (RO,0). Introducing the

radial betatron frequency w r defined by

_12
r = 1 _ 0 j (R0, ) , (25)

and the axial betatron frequency wz'

2 1 22 2
= (y mc2 -e (26)

b , Z
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we Taylor expand Eq. (17) about (r,z) = (RO,0) for a thin ring,

retaining terms to quadratic order in r' = ,r - R and z. This gives 7 -1 0

2 2

H 2 Pr + Pz ( r PHYbmc + + z R 
b 2ybm CZ R- 0

(27)

+ r2 1 2 ,2 22
S 3 2 + 2 Ybm(Wrr + z )
2YbRO

where w cz is the relativistic electron cyclotron frequency in the

axial magnetic field

eB
z 

(8
cz Ybmc (28)

ext
and Bz B (RO0). Making use of Eqs. (16), (25), and (26), and the

expressions for the equilibrium potentials given in Eqs. (A.6) and

2 2
(A.9), we find that u2 and wz can be expressed as

2 2 2 b 2
r =-cz (1 - n) + p a b [ b - (1-f)] (29)r cz pb a+b b

and

*2 _ 2 + w2 a ,2 - 1-f)] ,30)
z cz pb a+b b

whr =V 0 ,0/ 2  
= 2where b pb 4b /Ybm is the relativistic plasma

0
frequency-squared, nb = nb(RO,0) is the beam density at (r,z) = (R0 ,0),

and

n =- Bxt (r,z) , (31)
Bez(r,z) ;rR0)

is the external field index.

In the remainder of this article, the equilibrium and stability

analysis is restricted to circumstances where the characteristic

spread A in canonical angular momentum P6 is sufficiently small that
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2 Wr 2
A wbe r a - y bm raR 0 (32)

cz

Within the context of Eq. (32), the 6P contributions in Eq. (27)

are negligibly small in comparison with the final term, and the

total energy H can be approximated by

2 2
2 +r + + 1 2 ,2 22 (33)H =ybmc + 2ym + 2 Ybm0rr +w zz ) .(3
b 2ybm 2Ybm wr z

Referring to Eqs. (12), (13), and (33), and making use of the toroidal

polar coordinate system (p,4D,O) defined in Eq. (2) and Fig. 1, the

combination H - b P can then be expressed as

2
2 ___

H - ob = ybmc + 2y7 + *(r',z) , (34)

2 =2 2
where p. = p + (p - ybmWbp) is the transverse momentum-squared

in a frame of reference rotating with angular velocity wb = const.

about the toroidal axis, the envelope function *(r',z) is defined by

1 S2 r2 + 2z 235ip(r',z) = 1 ymr' 2+ 2 zz ) , (35)

2 Y 2
where r' = r - Ro, and 2r and fz are defined by

2 w2 2
1 r b ce W b r'

(36)

2 wW2 2
z ce b z'

where w 2 and w 2 are defined in Eqs. (29) and (30), and2 2

eB6
W = , (37)ce ybm c

is the relativistic cyclotron frequency in the applied toroidal magnetic
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field i = B (RO,0). Substituting Eqs. (34) and (35) into Eq. (13)

and evaluating the electron density profile n (r,z) = d3pf 0

we find

n (r, z) = nU-
b b~ a 2  b 2

where a = [2(y - Yb)c 1/2 and b = [2(9 - yb)cb2 1/2

is the Heaviside step function defined by

1 ,x > 0,
UWx =

0 ,x < 0.

(38)

, and U(x)

Note from Eq. (38) that the electron density is constant (nb) inside

the beam cross section r'2 /a2 + z2/b2 < 1, and identically zero outside.

As indicated earlier in this section and in Appendix A, P ;Ls a

good invariant (strictly speaking) provided Eq. (8) is satisfied and

provided the beam is circular with a = b and n = 1/2. From Eqs.

2 = 2 2 2 -2 = 2
(29), (30), and (36), we therefore find w = w = and Q = Q =

where

and

2 12 + 21 (1-f)],
W cz 2 pb b

2 2 2
S b ce ~ b + W .

(39)

(40)

Moreover, the minor radius of the ring is given by

a = b = [2(j - yb)c /yb (41)

2
For existence of the equilibrium, both > Y and Q2 > 0 are required.

2
The condition 22 > 0 can be expressed in the equivalent form [Eqs. (39)

and (40)]

W b < Wb < Wb ,) (42)
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where the frequencies w are defined by
b

2 2 1/2

Wb e{+ 2cz_2 pb f (43)

Wce Wce

The requirement that the radical in Eq. (43) be real determines the

maximum allowable equilibrium beam density for given values of f, ,

Scz, and wc0 . For example, if f = 0, then

2w
2

pb+2 (44)
2 < cz ce 2 2

Yb

is required for existence of the equilibrium. For w >> W,
ce cz

Eq. (44) is identical to the result obtained by Sprangle and

Kapetanakos1 within the context of a model that examines the stability

of single-particle orbits.

Finally, we conclude this section by noting that Eqs. (13), (32),

(34), and (35) can be used to evaluate a variety of equilibrium

properties8,9 for a circular beam with a = b and n = 1/2. For example,

the mean rotational velocity V = (fd3pv f )/(!d 3pfb) of an electron

fluid element about the toroidal axis is given by

V = Wbp (45)

where the rotation frequency wb is restricted to the range in Eq. (42).

Moreover, it can be shown that the equilibrium pressure tensor in the

(p,) plane perpendicular to the e-direction is isotropic with the

perpendicular pressure P0(p) = n (p)T (p) given by

0 0o p 2 + (p - Yb 2 0
nb(p)TZ(p) = 2 af dppJ dp 8 2yb m fb

0 -04b
(46)
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0
where T,(p) is the effective transverse temperature profile. Defining

1 2 2 1 2 2
Ti -2yb ma = 2 ybmrL(47)

and substituting Eq. (13) into Eq. (46) gives

T0 -p22

T.(p) = T (l - p/a) , (48)

for 0 < p < a. In Eq. (47), rL is the characteristic thermal

Larmor radius of the ring electrons in the azimuthal magnetic field .

Making use of Eq. (47) to eliminate 2 in Eq. (40) in favor of r ,

we solve Eq. (40) for the rotation frequency wb and obtain

2 22'/
+ e 1 +0 Jz Kb 2(2  2 2 ,2rL 2 /21

b 2 2 2 b a
(49)

which relates wb to the Larmor radius rL. The two signs (±) in Eq. (49)

represent fast (+) and slow (-) rotational equilibria. In order for

the equilibrium to exist, the ratio 2r L/a in Eq. (49) is restricted

to the range

2 2w 2 2w2

< 1 - pb (1 _ f - 2 ) + 2cz .(50)
a 2 ( 2

W ce W c



18

III. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell

equations to investigate stability properties of the

equilibrium ring configuration discussed in Sec. II. In the stability

analysis, a normal-mode approach is adopted in which all perturbed

quantities are assumed to vary according to

6$( ,t) = 6(x)exp(-iwt)

= 6(p)exp[i(ke - wt),

2 2 1/2

where Imu > 0, p [(r - R0 ) + z I/ , and 3/9@ = 0 is assumed

(Fig. 1). Here, w is the complex oscillation frequency and k is the

toroidal harmonic number. Integrating from t' = -- to t' = t and

neglecting initial perturbations, we find that the perturbed

distribution function can be expressed as 6fb(xg,t) = IVfb(x,)exp(-iwt),

where

0
ofb(x,k) = e dT exp(-iwr)

(51)

x 6~x' + ' x6B(x') - f(x'')

In Eq. (51), T = t' - t, a ( n) and are the perturbed electro-

magnetic field amplitudes, and the particle trajectories '(t') and v'(t')

0 0satisfy dx'/dt' = v' and E+ 'x /c] with "initial"

conditions x'(t' t) = x and v'(t' = t) v. The Maxwell equations

for 6E(x) and 6B(x) are given by

V x = B , (52)
"i c rt

V x 6=-4 6 - E , (53)
C c k
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where 7 - 6B = 0 and

V - 6E = 476p (54)

In Eqs. (53) and (54) the perturbed current and charge densities

are defined by

6j(x) = -e d P fb , (55)

6p(x) = -e d3p 6 b , (56)

where v = k/ym. Taking the curl of Eq. (52) and making use of Eqs.

(53) and (54), we obtain

v2 + ) 6 = 4Tr(V6 - 4 ) , (57)
V c c

which is the form of Maxwell's equations used in the present

stability analysis.

For present purposes, we consider /O = 0 wave perturbations with

polarization

E (x) = 6E (p,6)e + 6E (p,,)e

= exp (it6E (p) + S^E (p) , (58)
0 0 P 1VtP

6B (x) = 6B (p,e)e = exp (ike)6B (p)e ,

where e A and 3 are unit vectors in the e-,p- and O-directions, res-
wh P re

pectively (Fig. 1). Approximating ik/r ~ i/Ro = ik, it is straightfor-

ward to show from the 0-component of Eq. (52) and the p-component of Eq.

(53) that 6B (p) can be expressed as

6B (p) = _6E(p) +-6E (p) , (59)

22 2 2 A k 47rip '

W 2/C2k -1 c2k2w p6 P -_
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* AA

where the perturbed current 6J is related to 6B and 6E by -ik6B =

(47T/c)6J9 - (iW/c)6EP. We also assume that the toroidal conductor

(radius p = a ) has large aspect ratio with
C

ac << R . (60)

Taking the e-component of Eq. (57), we obtain the eigenvalue equation

for 6E0,

p + - k E = 4T Wk p - 6 (61)

2 9 2 2 -l
where k = /R, and we have approximated V = V - k / p (2/_p) x

(pk/2p) in Eq. (61). It is further assumed that Rew = 2r satisfies

Qr 2 cz, and that the waves are far removed from resonance with the

transverse (r,z) motion, with10

2 +

( b a- (62)o - ocz RO

where b are the characteristic (r,z') orbit oscillation frequencies

about (r,z) = (RO,O) [Eq. (43) and Appendix B]. To lowest order,

consistent with Eq. (62), it is shown in Appendix B that the azimuthal

orbit is described by [Eq. (B.14)]

2
e' = e + (oc ~ P/bmR0)T , (63)

where T = t- t,

2

2 - (64)

2 2 W Yb

and W2 =w2 / 2 + (w2 /2) [2 ( 1-f)] for a circular beam with a = b and
cz pb b

n = 1/2.

From Eqs. (51), (58), and (59), we note that
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v x 6B(x')
E(x') + ,

c

exp (iQW) E (p') + i 6E (p) + c EA (p')16^ a c W KPI 8w p )I e (65)

+exp (ike') [&E (pI) - 6E (p') + E (p e .
p c p np

Estimating the size of terms proportional to 6E and 6E /p' in Eq. (65),

and making use of the assumption that the wave perturbations are far re-

moved from resonance with the transverse (r', z') motion [Eq. (62) and

Appendix B], it is straightforward to show that the terms proportional to

D6E /;p' and 6E in Eq. (65) can be neglected in comparison with c^E '
0 0 0

Moreover, making use of 3fb (H, P , P0)3p = v fb/lH + rafb P, we find

that 6f (x p) in Eq. (51) can be approximated by
b r'

f 0

6fb ('p) = epie) dT(RO + p'COSV')E (p') exp [ik(O' - e) - iwT]

0 3f 0
+ e exp (ike)

(66)

dtv 6E (P') exp [ik(e' - e) - iwT],

where G'(T) is defined in Eq. (63), and use has been made of the

fact that Df 0/ P and f 0/9H are independent of t'. In Eq. (66),

2
it follows from Eq. (63) that v' = (R + p'cos4')(Wcz - p6P bmRO

0 0 O 0

To simplify Eq. (66), we approximate R0 + p'coso' ~ RO to lowest

order, and Taylor expand 6E (p') = 6E0 (p) + [36 0 ( p)I/](P' - P) + .

locally about p' = p. For present purposes, we also approximate

6E0 (p') 6E (p), which is a good approximation provided rL << a

[Eqs. (49) and (50)]. Carrying out the t' integration in Eq. (66)

then gives
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6f b (x,)= ieexp(it6)6Ee (p)R0

(67)

0 0
b (W - bd5P/YbmR2) --b

+(cz e b 0ROHI
x -6

(W -kw + k4iP/ymR 2
cz + /ybRO

To complete the description, we evaluate 47(ik6p -iwtJ /C2
2P

-47eikf d3p ̂ fb(l - Wpe/c kym) on the right-hand side of Eq. (61). To

the required accuracy, (1 - Wp /c 2kym) can be approximated in the inte-

grand by (1 - WSb/ck) - 26P /C2kyb m , where w = k cz = kwczO k bc is

assumed. Making use of Eqs. (56), (61) and (67) then gives the eigenvalue

equation

+ - 2 (p) = 4Tre2^E Pd 2 k - ck db 3OcJ

f)b 6 b (68)
+ W 2 HP + z yb mR0) .

X 2W - tcz 6 b 0

Paralleling the analysis in Ref. 10, the integral contribution

r 3 0
proportional to d p ... Dfb/H gives surface-charge contributions on

the right-hand side of Eq. (68) proportional to Dn (p)/ p = (p

[Eq. (38)]. Although this surface-charge contribution can be

retained in a self-consistent manner, for present purposes we neglect

0
the term proportional to 9f /3H in Eq. (68) and retain only the negative-b

mass and resistive wall effects associated with : f /DP . This is ab 6'

valid approximation provided the beam density w2 satisfies Eq. (44).
pb

Integrating over f 0 /DP, Eq. (68) then reduces to
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2 Xb )yP
a+ - k2 )6E 2 U (a - p)6E6(p) (69)

where the susceptibility Xb(W) is defined by

W2 k2 a2 WW z

b(p) bk [4(, + cz' ,

(W - 2wcz + iIkAI/YbmR ) c)k2J

0
for the choice of equilibrium distribution function fb in Eq. (13). Since

W ~ ,Wcz k bc is assumed, the square-bracket factor in the preceding ex-
cz2 b

pression for Xb(w) can be approximated by y(l - =b 2 and the suscep-

tibility reduces to the approximate expression

2 k
2a2/ 2

Xb(W) - i 2  (70)
(W - zw cz + ilvkA /y b mR0

For the choice of f in Eq. (13), we note from Eq. (38) that the densityb

profile n (p) = bU(a -p) is constant in the beam interior. Here, U(a - p)

+1 for p < a and U(a - p) = 0 for p > a, so that the contribution on the

right-hand side of Eq. (69) corresponds to a body-charge perturbation.

Of course, the eigenvalue equation (69) must be solved subject to the

appropriate boundary conditions. At the beam boundary p = a, these condi-

tions are that 6Ee (p) and 36E (p)/ p be continuous. At the conducting wall

(p = ac > a), we assume that the wall has finite conductivity a. The boun-

dary condition at the wall can then be approximated by
1 1

6E (a) = - (1 - i) 6B(ad

~ 2 Y2 (1 + i) 6EE (P) (71)
2 b b [ P 6 p=ac
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In obtaining Eq. (71), use has been made of Eq. (59) on the vacuum side

(where ^JP = 0) of the conducting wall, and we have approximated ( w 2/c2 k 2)x

2 2 2-1 2 2
(1- 2 /c k ) b yb for w z = k$bc. In Eq. (71)

6 = c/(27wa)1/2
(72)

is the skin depth in the wall.

Equation (69) can be further simplified for Ix 1' 1 and w =w =
b o cz

kwczRO. In this case,

k2 -
2 ) 2a2  <

w R b
which is consistent with Eq. (62). .Equation (69) can then be approximated by

! p 1 + T2] 6E (p) = 0
(p ;P P 0

and

p 9 6E (P) = 0
p 3p 3p e

0 < p < a ,

a < p < a c

where

2 2T a = Xb w) (75)

and Xb(w) is defined in Eq. (70). The physically acceptable solutions

to Eqs. (73) and (74) with 6E (p) and 26E / p continuous at p = a

are given by

J AJ0 (Tp) , 0< p < a

6E = AJ (Ta) 1 +Ta J L

0 1 0J (T a) a

(76)

a < p < a C

where J (x) is the Bessel function of the first kind of order zero,

and J (x) dJ (x)/dx. Enforcing Eq. (76) at the conducting wall

p = ac gives the required dispersion relation

(73)

(74)
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J (Ta) - (T a) J (T a) [n - (l+i)

where use has been made of J(x) = - M

Equation (77) is a transcendental equation for the complex

eigenfrequency w and must be solved numerically in the general case.

There are two limiting regimes, however, where Eq. (77) can be

simplified analytically.

2 2
(a) ac >> a or b b6 >> ac: There is a large temptation to Taylor

expand Eq. (77) for

T1 a < 1. (78)

To lowest order this gives the approximate dispersion relation

1 - T2a2 1 + 22,n aC- - (1+i) f Y2= 0 - (79)
c

From Eq. (79), it is evident that Eq. (78) is a valid approximation

only if

1 + 2in - (l+i) Y 1 (80)

c

is satisfied. Equation (80) typically requires a large conducting wall

radius a >> a , or 2 Y 2 >> a in order for the inequality to be satis-
c b b c

fied. Making use of Eqs. (70) and (75), the dispersion relation in Eq.

(79) reduces to

(W - zwcz + iIjkAl /YbmRO)2

2 
(81)

2 2b 2 ]
- pbk2 [( 1+ 2kn - c 21

b
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Equation (77) also supports solutions with IT12a2 > 1 when the

inequality in Eq. (80) is satisfied. Making use of Eq. (80), we find

that the dispersion relation in Eq. (77) can be approximated by

J1 (Ta) = 0 , (82)

which gives T 2 = ln, n = 1,2,... where J1 (Xn) = 0 and Xin is the

n'th zero of J 1 (x) = 0. Making use of Eqs. (70), (75), and (82),

we obtain the dispersion relation

(W - W cz + iIpkA/ybmRO )2

2 2 2 (83)

2 k a/Yb
=-popb -2 , n = 1,2,...

Th

where J 1 () 0 -'

Equation (83) is really an extension of the dispersion relation

2 2 2 2
(81) from the regime ITI a << 1 to the regime IT1 a 2 1. What is most

important to note is that Eq. (83) is independent of wall resistivity,

whereas Eq. (81) is not. Moreover, the characteristic growth rate . =

Im. obtained from Eq. (81) is larger than that obtained from Eq. (83).

2
Indeed the mode is rapidly stabilized for increasing X 2

(b) ac ~ a and 2 Y 6 << a In circumstances where 2 Y 6 << a and

the beam radius is approximately equal to the conducting wall radius a = aC

the coefficient of J (Ta) in Eq. (77) is algebraically small, and the dis-

persion relation (77) can be approximated by

J0 (Ta) = 0 , (84)

which has solutions T 2= 2 = 1,2,..., where XOn is the n'th

zero of J0 (X) = 0. Making use of -Eqs. (70), (75), and (84), the

dispersion relation (84) gives
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(W - kwcz + i IkAI/YbmRQ 2

-I2k2 a2 1,2..(85)2 k a
= -pIpb 2 2 , " = 1,2..

'b On

where J0 (X) = 0. The most unstable solution associated with Eq.

(85) is the fundamental mode with n = 1. As in Eq. (83), the growth

2
rate Imw decreases rapidly for increasing X0 . Comparing Eqs. (81)

and (85), we note that placing the conducting wall radius (ac) near

the beam radius (a) significantly reduces the growth rate.
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IV. NEGATIVE-MASS INSTABILITY

We now make use of the dispersion relations (81) and (85)

derived in Sec. III to determine negative-mass stability properties

for the case where the wall is perfectly conducting with 6 = 0.

Introducing the geometric factor

(l+ 2n , for a >> a,

g =(86)

2 for a a,2' c
On

and approximating k2 W2/c2 k2 2 R2/c) = k2Y 2 for w ~w
cz 0 b cz

the dispersion relations (81) and (85) can be expressed as

- cz + iIkfl IYbmRO) 2

(87)

2 k2 a g
-Iopb 2 4

Yb

Solving Eq. (87) for w, we find that the necessary and sufficient

condition for instability (Imw > 0) is that

0 < j <-- g m~c 9
Yb A ' (88)

2 2 2
where v = (nb ra )(e /mc ) is Budker's parameter for the beam, and

g is defined in Eq. (86). When the inequalities in Eq. (88) are

satisfied, the real frequency 0 r = Rew and growth rate Q. = Im

are given by

Sr k cz

(89)

c ( 1/2
YR ) mR cYb 0 b 0

where k = k/R.
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The stability results in Eqs. (87) - (89) can be investigated

in various regimes of experimental interest. It is interesting to

note from Eq. (87) that a sufficient condition for stability (Imw < 0) is

2

= < 0, (90)

W Yb
2 2 2 2

where 2 = w /2 + (wp/2)[S - (1-f)]. For f = 0, the condition p < 0whee L) Wcz /+(wpb /) b

[Eq. (90)] and condition for existence of confined equilibria [Eq. (44)]

can be expressed as

2 2

1 < W b< l + W ce91
1< 2 W2 2w2  (1

b cz cz

Evidently, for f = 0, the inequality in Eq. (91) can be satisfied pro-

2 2
ided w /W is sufficiently large. That is, the negative-mass instabi-

pb cz

lity can be completely stabilized for A = 0 provided equilibrium self-

field effects are sufficiently strong.

The regime where 1 > 0 is perhaps of more practical interest.

In this case, making use of Eqs. (87) and (88), the instability

is completely stabilized whenever the inequality

2
( c 2 > , (92)

(bmab cRO)by

is satisfied. It is evident from Eqs. (86) and (92) that the instability

is most difficult to stabilize when ac >> a and the geometric factor g

is large. Even in this case, however, only a modest spread A in

canonical angular momentum is required for stabilization. As a

2 2 2 2
numerical example, consider the case where wpb /W << 1 and y 1 - 1/yb b

pbcz b b

For v/yb = 1/20, g = 5, yb = 5, and ab ~ 1, Eq. (92) predicts stability

for (A/ybmabcRO) > 1/10.
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V. RESISTIVE WALL INSTABILITY

In this section, we consider the dispersion relation (77) and its

limicing versions [e.g., Eq. (81)] in circumstances where wall resistivity

effects (as measured by 5/ac) play an important role. In this regard,

since a spread A in canonical angular momentum has a stabilizing

influence, we first-consider the most unstable case with

A= 0, (93)

and 2 2 2

Ta pbk 2 (94)

b cz

We further consider circumstances where

-P < 0 ,(95)

and therefore the negative-mass instability is absent (Sec. IV).

2 2
Assuming weak dissipation in Eq. (77) with b b6/ac<< 1, the real oscil-

lation frequency 2r = Rew is determined from

a 1622
J (Ta) - Ta J (Ta) 1jn __ -1 % Y2 0 , (96)

and the growth rate Q = Imw is determined from

1 6 2 2
- TaJ ( b b

A= c . (97)0i , ( ac 16 2 2 9 a(7

1 J;(Ta) - (J (Ta) +J(T )n a 2 a b b S

where Ta in Eq. (97) solves Eq. (96), and we have neglected the (slow)

variation of 6 with Q r. We now consider Eqs. (77), (96), and (97)

in various limiting regimes.
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2 2
(a) ac = a and A = 0: For $b yb6<< aC, and beam radius equal to the

conducting wall radius (a = a C), Eq. (96) reduces approximately to

J0 (Ta) = 0. Making use of Eqs. (94) and (95), the real frequency 2r

is given by [Eq. (85)],

± - o l1/ 2 'pbka , n = 1,2,..., (98)
r onyb n

2 2
where J0 (X) 0. Moreover, making use of ac = a, b « a a and J'(x) =

-J1 (x), Eq. (97) reduces to

16 Ta 2 2
2 ac Bra/3 b bc r

(99)

1 a(Q- W 2 Y2

(a r ~ 2 Ib bc

and the slow-wave (lower) branch in Eq. (98) corresponds to instability

(SI. > 0) with growth rate

1 6 2 2 1 1 2 Wp ka
ny i-Y' / bka , n = 1,2,... (100)a 2ac b b XOn b

2 2
(b) a >> a and A = 0: For . Yb 6 << a, large conducting wall radius

(ac >> a), and ITI2a2 1, Eq. (96) reduces approximately to J1 (Ta) = 0,

and the real oscillation frequency Q r is given by [Eq. (83)]

(Q - cz ) = ±I l1/2 wpb ka (101)
r cz X lnyb

where Jiln) = 0, and use has been made of A = 0 and p < 0. To the

accuracy of Eq. (97), we then find

= 0 , (102)

for |TI a 1.
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On the other hand, for ac >> a, the dispersion relation (77)

also supports solutions with TI 2a2 << 1. In this case Eq. (77)

reduces to Eqs. (79) and (81), which has solutions (for A = 0

2 2
and << ac

1/2 'pb ka ac /

(r 2zb + 2n - (103)

and

1 6 2 2 r cz
Di = 2 a b b e *(104)

As in Eq. (97), the lower branch in Eq. (102) is unstable with growth

rate

1 6 2 2 1/2 " ka
i 2 bb y b 1 1/2 (105)

1 + 2kn
\ a

Comparing Eqs. (100) and (105), it is clear that the resistive-wall

instability exhibits the strongest growth when ac ~ a.

(c) ac >> a and A # 0: To illustrate the stabilizing influence of

a spread -, in canonical angular momentum on the resistive wall instability,

we consider the regime where TI a2 << 1 and make use of Eqs. (79) and

(81) to investigate stability properties for y, < 0 and A # 0.

2 2
Expanding Eq. (81) for small b Y 26/a << 1, we determine Qr Rew and

b b c r

. = Imw to be given by

r Vcz 1/2 W2pb (1 ) 2/2, (106)
r~ +z 22b n

1/2
1 6 2 2 pbka - kA

i 2 bb 1/2 y bmR (107)

2yb 1 + 2kn ) b

for the unstable branch with Imo = Q, > 0. From Eq. (107),
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we find that the resistive wall instability is completely stabilized

by a small spread A in canonical angular momentum satisfying

2 2 2 2
A\2 -- 6 ___ba___b b_1 pb ~b b (108)

(Ybm~bcRO/ 16 ac2  H2( + ac.
f ae C ( r E. (1 + 2n a 0

Of course, Eq. (107) reduces to Eq. (105) in the limit A+ 0.
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VI. CONCLUSIONS

In this paper we have investigated the equilibrium and stability

properties of a relativistic electron ring within the framework of the

linearized Vlasov-Maxwell equations. The analysis was carried out for

perturbations about an electron ring located at the midplane of an ex-

ternally applied mirror field combined with an applied toroidal field

ext
B . Equilibrium and stability properties were calculated in Sections00

II - V for an equilibrium distribution function which incorporates a

spread in canonical angular momentum P0 [Eq. (13)]. Equilibrium proper-

ties were calculated in Section II, and one of the most important features

of the equilibrium analysis is that the maximum beam density confined in

the modified betatron field configuration can be greatly enhanced by the

toroidal magnetic field B [Eqs. (43) and (44)]. Moreover, the rota-

tion frequency wb in the minor cross section of the ring plays an impor-

tant role in determining detailed equilibrium properties.

The formal electromagnetic stability analysis was carried out in

Section III, and stability properties were calculated for eigenfrequency

w near harmonics of w . A closed dispersion relation [Eq. (77)] was ob-
cz

tained assuming that the electron ring is located inside a toroidal con-

ductor with finite resistivity and minor radius ac << R0 . Negative-mass

stability properties were investigated in Section IV for zero resistivity,

including the important influence of equilibrium self fields. For a low-

density ring, a modest spread A in canonical angular momentum stabilizes

the negative-mass instability. In a high-density ring with f = 0, however,

if the self fields are sufficiently strong, the negative-mass instability can

be be completely stabilized by equilibrium self-field effects [Eq. (91)].



35

The stabilizing influence of equilibrium self fields on the negative-mass

instability is an important new feature for stable operation of high-current

modified betatron accelerators. The resistive-wall instability was exam-

ined in Section V. It was shown that resistive-wall instability can also

be stabilized by a modest spread A in canonical angular momentum
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APPENDIX A

DERIVATION OF APPROXIMATE INVARIANT P = CONST. FOR A CIRCULAR

BEAM WITH a = b AND n = 1/2

In this Appendix, we make use of the single-particle equations

of motion in the equilibrium field configuration and the assumptions

outlined in Sec. II to determine the conditions where

1 e 2P ~pp 2 c 2 ' (A.l)

is a good approximate invariant. Here, (p,0,6) is the toroidal

polar coordinate system defined in Fig. 1 and Eq. (2).

In (r,e,z) coordinates, the radial and axial equations of

motion can be expressed as

VePe +l0 1 0P- r Fr = -e(E 0 + v B - vB , (A.2)

and

z Fz = -e(E +- vrB- v B 0) (A.3)

0 c
Here, E 0 - O(rz)/ r and E 0  - (r,z)/9z are the radial andr 0z = 0

axial self electric field components determined from the equilibrium

electrostatic potential O(rz), and B = B t + Bs = -(/3z)(A t + A s0r Or Or Oe O

and B = B z + BOz = r 1(3/r)[r(A e + As0 6 )] are the radial and

axial components of the total (applied plus self) equilibrium

magnetic field. The quantity A (r,z) = A + As is the 0-componente 00 08
of the equilibrium vector potential. Making use of the assumptions

enumerated in Eqs. (3), (4), (5), (7), and (9), and considering

density and current profiles of the form n (r,z) = n + and

02 0 + w r 2 b

J b , z)= J2)+ where r' = r - RO, it is straightforward to
a b2
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show to the accuracy required in the present analysis that the equilibrium

potentials and field components can be approximated in the ring interior

(Ir - Ro = Ir' < a and IzI < b) by8';9

E = -4 e(l-f)fib b r, (A.4)r b

o a
E = -4ne(l-f)i - z , (A.5)

=1 b (br' 2 + a)2 (A.6)

and

B = -nB 4 RObb a+b R (A.7)

o t b

B = - nB + 4b eRr'bn (A.8)
0 0abR

0 0
rA =R0A (R ,0) + R0 z

1 A 2 1 2
+ (1-n)Bzr, + - nB z (A.9)

1 n b ,2 2+ - 4reR b (br, + az

where r' =r- Ro' z Bext (Ro,), b n b(Ro0 ), b V e (RO /c,

and n = -[r3ZnB t(r,z)/ r](RO is the external field index. Moreover,

from Eq. (1), the applied toroidal field can be approximated by

B = (1 - r'/R (A.0)

in the ring interior.

We make use of Eqs. (A.2) and (A.3) and Eqs. (A.4) - (A.10) to

form the difference product
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eB
zp - r'p = -- (zv + r'v )

+ 4re2  b- - f)nb a r'z

(A.ll)

ve 7r 2 R f b - a ,i-- 4 0e RObb a + b

p -eBz eBz r'

+ zcZ+ 2nASr c c RO

where small terms of cubic and higher order (zr'v r, r,2 v, etc.) have

been neglected in Eq. (A.ll). Note that the self-field contributions

in Eq. (A.ll) vanish identically for a circular beam with a = b.

0
In the final term in Eq. (A.ll), we express p = P /r + (e/c)A (r,z)e e e

0
P /r + (e/c)A (r,z) + 6P /r, where 6P =P - P, and make usee e
of P0 = (1/2)(ei /c)R2 and A 0(ROM R /2. Neglecting terms of0z 0 A(R z B 0/2

cubic order and higher, and assuming a circular beam with a = b, Eq. (A.il)

can be approximated by

Zr - r'%z = - (zv + r'vr

eB 1

+ v (2n - 1) z rz (A.12)
e c R0

6P

S2

R0

Strictly speaking, a circular beam with a = b requires external field

index n = 1/2, so that Eq. (A.12) reduces to

eB 6?e pe
- r'p = - (zvz + r'v ) + zv - (A.13)r c r R 2

0
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Comparing the two terms on the right-hand side of Eq. (A.13), and

estimating z \ r' , a, vz vr '\ pI/Ybm, and ybmve ' eiBzRO/c, we find

that the 6P contribution in Eq. (A.13) is negligibly small whenever

the inequality

|6PeI Be p

yb bcRO z e(A.14)

is satisfied [Eq. (8)]. Within the context of Eq. (A.14), Eq. (A.13)

can be approximated by

d -d / 1 eB
dt p -dt ( 2 c P2 = 0 , (A.15)

2 2 2 2 2which is the required result. Here, p r + z= (r - R0) + z , and

p is the I- component of mechanical momentum in the toroidal polar

coordinate system -(p,i,e) illustrated in Fig. 1.
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APPENDIX B

ELECTRON TRAJECTORIES IN THE EQUILIBRIUM FIELD CONFIGURATION

In this Appendix, we determine the electron orbits in the

equilibrium configuration described self-consistently by Eq. (13)

in Sec. II and Appendix A. For a circular beam with a = b and n = 1/2,

we express the Hamiltonian H in Eq. (27) as

2 1 1 ,2 +e' 2
H = Ybmc + 2rm 4bwcz') +(Pz 2 Ybmwcer)2

2 (B.)

+ 2 +Wcz(1 - r'/R 6 +Ybm (r + z,2
2ybmRO

0
where (P', P') are the transverse canonical momenta in the toroidal B0r z

field,

P = p + Ybmwcez'

(B.2)

PT = p,-1
z z 2Ybmwcer

2 _2 + (w2 /2)[2 - (1-f)) is the betatron frequency defined in
S cz p

Eq. (39), and wce = eB /ybmc and cz= eBz /y bmc. The "primed" orbits

(r',z',6',p',p',p') in Eq. (B.1) pass through the phase space pointrz

(r - Ro, z,0,pr'pz'pO) at time t' = t. Moreover, p'= rb' and

= ybmv' for the nonrelativistic transverse motion described by Eq.

(B.1). From Eq. (B.1), Hamilton's equations of motion (d/dt')(3H/ P')

= -@H/r', (d/dt')(;H/aP z') = - DH/3z' and de'/dt' = BH/DP0 , give

d2  dz' 6P2

Ybm dt + Yb"'cT + 'cz R bm r (B.3)

I
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d z' dr' 2

Ybm ,2 b'c t b ' , (B.4)

d6' r+ 6P (B.5)
dt' R

0 W czyb'O

Simplifying Eqs. (B.3) and (B.4) gives the coupled oscillator equations

2 r' - c +W 22z 6P e= 0 (B.6)
dt' Ybmw RO /

d2 + dr' ~2'
d 2 Z + W ' + W 2 =i 0 .(B.7)

dt' 2  ce dt +

Introducing

n' =(r' - 6Pe) + iz', (B.8)

Yb R0

Eqs. (B.6) and (B.7) can be combined to give

d2 ,+. d 2(B)d2-n' + iWc dt, t + W2 n' 0 ,(B.9)

dt' cedt'

which can be integrated to give

= n+ exp(iwb ) + nexp(iwbT) , (B.10)

where T = t' - t, n are constant complex amplitudes, and the

frequencies W- are defined by Eq. (43)],
b

2 1/2
=c [ 1 + 4,(B.11)

ce

Note from Eqs. (B.8) and (B.10) that the (r',z') motion is biharmonic

in W and b and that r' and z' can be expressed as
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rt = 6P + (W'cosW T + ricoswbT)

Smw R 0  + b(B.12)

- ('sinw+T + 'sinw T)

+ bb

Z'= (z'cosW T + V'coswT)
+ b - b

(B.13)

+ ('sinw+T + i'sinw T)

The oscillation amplitudes 1 and V of course can be determined

from the boundary condition that the particle trajectories (r',z',p',p')
r z

pass through (r-R0 ,z,prP z) at T = t' - t = 0. For a thin ring with

a << R, we note that 12j 1 << R0 '

Substituting Eq. (B.12) into Eq. (B.5) and integrating with respect

to t', we obtain

6'=6 + (Wc - 116P /ymR 2)T

(B.14)

+ (small oscillations),

where ; is defined by

2
= - 1 (B.15)

2 - -
W b

In Eq. (B.14), the small oscillatory terms (of order a/R0 ) are biharmonic

in W and make negligibly small contributions in the frequency regime

considered in the stability analysis in Sec. III. Depending on the

sign of b (1-f) and the size of yb and wpb /Wcz we note from

Eq. (B.15) that p can assume large positive or negative values.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.
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