A Low Power Video Compression Chip for Portable Applications
by
Thomas Simon

Bachelor of Science in Electrical Engineering
Massachusetts Institute of Technology, June 1990

Master of Science in Electrical Engineering and Computer Science
Massachusetts Inistitute of Technology, September 1994

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillrient of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology

June 1999

© 1999 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Department of Electrical Engineering and Computer Science
April 30, 1999
Certified by —r
Anantha Chandrakasan, Ph.D.
__Associate Professor of Electrical Engineering
-Thesjs Supervisor
Accepted by

Arthur Clarke Smith, Ph.D.
Professor of Flectrical! Engineering

raduate Officer
MASSACHUSETTS INSTITUTE ¢

OF TECHNOLOGY

JUL 151999

ARCHIVES

LIBRARIES

A Low Power Video Compression Chip for Portable Applications
by

Thomas Simon

Submitted to the Department of Electrical Engineering and Computer Science
on April 30, 1999 in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

This thesis describes the development of a low power, single chip video encoder intended
for battery operated portable applications. Such an encoder is intended to serve as part
of the DSP in a portable device which might image, data convert, compress, and transmit
video signals. The encoder described in this thesis is designed with the goal of minimizing
system power, minimizing utilized bandwidth, and maximizing system integration. The
encoder achieves a peak power dissipation of several hundred yW while scalably com-
pressing a video stream of 8 bit gray scale, 30 frame/sec, and 128x128 demonstration reso-
lution. The encoder scales up for greater resolutions at mostly linear cost. The compression
is performed using wavelet filtering and a combination of zero-tree and arithmetic coding
of filter coefficients, all integrated on a single demonstration chip. The compression re-
sults achieved (a tradeoff curve of compression factor versus PSNR) are on par with the
best available based on wavelet filters. The above results do not include the use of motion
compensation, however, hooks are implemented at the algorithmic and architectural lev-
els to add motion compensation at the cost of power dissipation a few times higher. These
results are obtained by the careful coordination of design in a deep vertical manner, rang-
ing from system, algorithmic, and architectural to circuit, floor planning, and layout. This
thesis describes the motivation of the design goals, the interlinking vertical design choices,
and the results achieved.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor of Electrical Engineering

Acknowledgments

I would like to thank Prof. Anantha Chandrakasan for agreeing to supervise this thesis
and for displaying great patience throughout. I would also like to apologize for so much
patience having been required of him. Anantha managed to improve the quality of my
thesis despite my stubbornness and impatience.

I thank Dr. Ichiro Masaki for generously agreeing to read my thesis.

I owe unending gratitude and credit to my family. Without the support and under-
standing of my parents Marta and George, and my sister Rita, it is unclear that I could
have finished this thesis at all.

I also thank Prof. Arthur Smith for his advice and kindly understanding. It is clear
that I would not have finished were it not for 1/2 an hour of his time at a key moment. Of
course, the same goes for Marilyn Pierce, except tor the better part of a decade.

I'would like to thank all my friends and colleagues for support and contributions great
and small. Thanks to: Duke Xanthopoulos, Raj Amirtharajah, Vadim Gutnik, Jim Good-
man, Scott Meninger, Matt Frank, Dan McMahill, Don Hitko, Rex Min, Kush Gulati, Jim
MacArthur, Wendi Rabiner, Mike Bolotski, Oscar Mur-Miranda, Amit Sinha, Nate Shnid-
man, Alice Wang, Gangs Konduri, SeongHwan Cho, and Josh Bretz. If you should be on
this list and are not, forgive me and stop by my office and smack me (no hockey sticks).

I thank Profs. Charlie Sodini and Harry Lee for contributing te my non-technical edu-
cation.

Finally, very special thanks to Dr. Thomas Knight for reading my thesis and more
importantly teaching me wonderful bits from his large bag of engineering tricks. TK is one
of the most creative people I have worked with at MIT, as well as a great educator and a
jolly good fellow. I'm not sure which we should be most thankful for, fortunately in TK’s
case we do not have to choose.

Contents

1 Introduction
1.1 Motivation e e
12 Overview o e e
1.3 DemonstrationImplementation

14 Previous WorK o i it i e e e e e e e e e e e e e e e e e

2 System Considerations
21 Introductonr e e
2.2 System Optimization withMotion
2.3 System Optimization withnoMotion
24 Error Correction and Synchronization Recovery

3 Algorithm
31 Introduction e e
3.2 Basic EZW Image Coding Algorithm
321 Advantagest
322 Overview ittt e e e e e
323 Operationt e e
324 ImageCompressionResults
3.3 Modifications to EZW Algorithm e
331 WaveletTransform
332 SubordinatePhase
333 DominantPhase00,
334 ArithmeticCoder
335 SymbolScanningOrder

CONTENTS

336 Miscellaneous oL, 69
3.4 Extensionto Time - Frame Differencing 70
341 Introductiont 70
342 ComputationalCost 71
343 Compressiont 71
344 Synchronization and ErrorRecovery 72
34.5 Miscellaneous Modifications 74
35 VideoCompressionResults 76
36 MotionCompensation nnn... 81
361 Introduction............... i ... 81
3.62 MemoryRequirements., 81
363 FutureWork.............. 83
3.64 RelativePowerEstimate 87
Architecture 91
41 Introductiont 91
411 SIMD e e e e e 93
412 SIMDvs.Dataflow, %4
42 ArrayImplementation 0 0 oo 95
421 Overview e 95
422 PixelLoadNetwork 97
423 EZWUnloadNetwork 100
424 GlobalORNetwork 102
425 NEWSNetwork............. 104
43 PEImplementation 105
431 Overviewttt e e 105
432 Memoryand Pixel LoadRegister 107
433 ALURegister i 109
434 ALUandEZWUnloadRegister 109
435 NEWSRegister 114
436 ConditionalRegister 1i4

437 Address/PosiionROM 116

CONTENTS 9

44 Controller e e e 117
441 InstructionDecode 117

447 Clocking o i e e e 120

443 PixelLoading i 120

444 ArithmeticCoderControl 121

445 Microcode Sequencing and Synchronization 122

446 DRAMRefresh 123

447 ChipInputTiming 124

45 ArithmeticCoder i e 125
451 Clocking oo it e 125

452 NOPLookahead 126

453 ChipOutputTimingc........ 127

5 Circuits 129
51 Introduction 129
52 DeviceSizingt e 130
5.3 PE . . . e e e e e 131
531 DRAMCells.t 131

5.3.2 Bit Line Operation and Peripheral Circuits 133

533 BitLineSegmentation, 140

534 Adder e e 142

535 Flip-Flops 144

536 PETImMing, 147

54 BusSegmentation P 149
55 ArithmeticCoder 152
56 Controller e e e 152
56.1 WordLineUpConversion. 152

57 PowerEstimation iy 156

10

6

Implementaticn

6.1 ProcessTechnology

6.2.3 Bit Line Interleaving

6.2.4 Bit Line Segmentation
625 Adder
626 AreaUsage
6.3 Sequencer and Arithmetic Coder
6.4 MicrocodeMemory
65 I/D
6.6 ChipStatistics

Testing and Results

7.1 Functional Verification
72 PowerDissipation.
73 ChipDiePhoto

Conclusions
Bibliography

Compression Algorithm C Code

Al Encoder.
A2 Decoder

A3 CommonSubroutines

Microcode Assembler C Code

Example Microcode

C.1 S5TapFilterMicrocode

Chip I/O Pins

CONTENTS

175

................ 175
................ 177
................ 179

181

185

189

................ 189
................ 198
................ 206

211

219

................ 219

257

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
35
3.6
3.7
38
39
3.10
3.11
3.12
3.13
3.14

4.1
42
43
44
45
4.6
47

Block diagram of a portable videosensor. 16
Total functionality of proposedencoder. 23
Result of 1 level of wavelet filtering. 42
Result of recursive waveletfiltering. 43
ExampleZero-Tree. i 45
Values subject to arithmetic coder approximation. 59
Hierarchical alphabet break down for 4 symbol EZW alphabet.. 61
Hierarchical alphabet break down for 3 symbol EZW alphabet.. 62
Mapping of image pixels ontoSIMD array. 65
Mapping of subband coefficients onto SIMD array. 66
Compressed frames of head and shoulderssequence. 77
Compressed frames of head and shoulders sequence,cont... 78
Compressed frames of outdoorssequence. 79
Compressed frames of outdoors sequence,cont 80
SIMDification of motionvectors. 0L, 86
Image shifting pattern for motion estimation. 89
Block diagram of architecture. oo oo oL 95
Block diagram of pixel load network. e 97
Pixel scanningorder., 99
Block diagram of EZW unload network. 101
Block diagram of wired ORnetwork. 103
Block diagram of NEWSnetwork. 104
Blockdiagramof PE. i, 106

1

48
49
4.10
411

51
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

71
7.2

LIST OF FIGURES

ALUblockdiagram., 110
Functionality of PE conditional register. 115
Timing of input clock, start,and pixels. 124
Timing of outputdataandclock. 127
3TDRAMecell. e 132
PE bit line and peripheral circuits. 134
Simplified memory timing diagram. 134
DRAMleakagzcases. it e e 137
DRAM leakagewaveforms.t ... 138
PE bit line segmentation and pixelload port. 140
XORgate. it et e 142
PEaddercell. e 143
PEFlip-Flop. e 145
PEtimingdiagram. 147
Segmentation of pixel load network. L. 150
Low power word line voltageup converter. 154
Voltage up converter waveforms. 155
Registerand muxlayout.. 161
Layoutof DRAMcellpair. 162
Alternate DRAM pitch matching scheme. 164
Bit line interleaving and segmentation mismatch. 165
Bit line segment pass gateandcontrol. 167
PEadderlayout.. o 168
PElayout. 170
Bypasscapacitorlayout. 00 oL, 174
Plot of power vs. bit plat;es. 178.
Chipdiephoto. 180

List of Tables

2.1

3.1
3.2
3.3
34
35

41
4.2
43
44
45
4.6
47

51

6.1
6.2
6.3

7.1

Peak power of other system components. 28
Example waveletfilters. 43
Image compressionresults. 51
Relative bandwidth costof frames. 74
PSNR results for head and shoulders sequence. 76
PSNR results for outdoorssequence. 80
EZWsymbolencoding. 102
PEEZWlogicinputs. oottt i e 113
PEEZWlogicoutputs. 113
Functionality of PE conditional register. 115
PE position/addressROM. 117
SIMD array instructionopcodes. 118
Sequencer instructionopcodes. L. 119
Chip peak powerestimate. 157
Process technology parameters. 159
PEareausage.ttt it e 169
Testchipstatistics.. 173
Measuredchippower. 178

13

14

Chapter 1

Introduction

1.1 Motivation

Greater demand from today’s portable computation and communication systems is pro-
gressively increasing the requirements on long battery lifetime, efficient bandwidth use,
and integration. On the other hand, the desirability of information sources such as real
time video introduce huge amounts cf data for Digital Signal Processing systems. The
goal of this thesis is to develop a DSP framework to process real time video data for wire-
less portable applications. The desired solution should be highly integrated, exhibit very
low system power across relevant modes of operation, as well as minimize RF bandwidth
use for the transmission of the video data. The solution proposed in this thesis addresses

the problem broadly at the system, algorithmic, architectural, and circuit levels.

An example context for the encoder is shown in Figure 1.1. An imager senses the
video stream which is then digitized and compressed. Additional signal processing (DSP)

may be performed before RF transmission. This may include encryption, error-correction

15

Battery

!

DC/DC Conv.
cmﬂ* +
- Other
Imager | ADC [|-»{ Compression [DSP - RF |»

cntrl

Figure 1.1: Block diagram of a portable video sensor.

coding, framing, etc ... The RF transmitter communicates the data to some remote base
station which may be receiving and transmitting to multiple sensors and other base sta-
tions. Figure 1.1 only shows the sensing and outgoing half of the device. There may also
be a receiving and display half. The two halves are not completely independent. A back
channel may also be used by the base station to deliver on the fly control information to

any part of the sensor.

The design objectives are low system power for long battery lifetime, and closely re-
lated, low transmission baﬁdwidth. Meeting these objectives will depend on the ;.)erfor-
mance of the solution in two distinct modes of operation: in the presence of significant
motion in the video data source, and the absence of such motion, which for some applica-

tions such as remote surveillance may represent a large duty cycle.

16

1.2 Overview

During periods of motion in the videc stream, the transmission of data is expected to
dominate system power. The transmission power required is limited by fundamental noise
sources, as a function of distance and environment. As such, technology scaling cannot
significantly lower this power in the same way as the local computational power. For very
short distances, the transceiver circuit power may become the dominant facter. In this case,
system power, and obviously bandwidth, are roughly linear in the amount of transmitted

data.

System performance in this mode is optimized by achieving good data compression.
This means compressing the video stream to the smallest possible size for some desired
visual quality level, which may be set on the fly by the receiving base station, for exam-
ple. The requested visual quality may be a function of a-priori application requirements,
feedback on the quality of the communication channel, or feedback on the available band-
width due to other users. Chapter 3 describes the compression algorithm used to achieve
this goal. The algorithm is based on wavelet filtering and uses a combination of zero-tree

and arithmetic coding to compress the filter coefficients.

In addition, in this operating mode, system power is also optimized by performing the
imaging, data conversion, and DSP with negligible dissipation relative to the transmission
power, if possible. Chapters 4 throuéh 6 describe how this goal is achieved for the video
encoder. The architectural basis of the implementation is an efficient mapping of most of
the computation onto a very fine granularity SIMD array of simple 12 bit wide processing

elements (PE). The partitioning assigns the computation associated with a small rectan-

17

gular block of pixels in each frame to one PE. For the demonstration implementation this

mapping is a 4x4 pixel block per PE.

This fine partitioning, which is enabled by the compression algorithm, provides the
parallelism needed to operate both memory and logic circuits slowly, at low voltage, while
still meeting the required computational throughput. In fact, in the fabricated test chip,
supply scaling is limited by the technology’s device thresholds. The low power dissipation
of the encoder is due in large measure to the energy efficiency of operating at low voltage,

as well as highly localized patterns of memory access and communication.

In the absence of motion in the data stream, the result of compression should yield al-
most no output data. With a largely inactive transmitter, system power is reduced to the
computation power used by the DSP, imager, data converter, and power supply overhead.
This power, despite being possibly much lower than the active transmissicn power, can be
very important if a device spends most of the time detecting little motion. Chapter 2 de-
scribes techniques applicable to the video encoder which can minimize the standby power

for itself and the other system components.

1.3 Demonstration Implementation

The testing and performance of a demonstration encoder are reported in Chapter 7. The
demonstration scalably compresses 8 bit gray xﬂe, 128x128 resolution, 30 frames/sec
video data, with dissipation of a few hundred uyW. The compression rate can be scaled
on the fly between factors close to 10, resulting in visually perfect reproduction, to highly

lossy factors above 100.

18

In order to ward off skepticism, it is worth commenting early on the fairly smalil pixel
resolution of the implementation. The SIMD array of PEs, each consisting of a small regis-
ter file and a simple ALU, essentially constitute a large memory and some embedded logic.
The total memory capacity distributed in the array is several 12 bit wide frame buffers (3
for the test chip) required to store and perform intermediate computations for each video
frame. As such, the chip can be thought of as a memory with very finely divided subarrays

and very large bandwidth utilized locally near the memory elements.

This application is a perfect candidate for mixed DRAM/logic CMOS process technol-
ogy. However, due to availability in the academic environment, not oridy does the test chip
not take advantage of mixed memory/logic, it is fabricated in a fairly unaggressive 1.8 mi-
cron minimum metal pitch technology. Therefore, the resolution of the test chip is limited

by area. With 128x128 resolution the test chip occupies roughly lem?.

However, the dissipation of the demonstration chip is still indicative for a number of
reasons. First, given the area, if the resolution were hypothetically scaled up with the
same technology, most of the power dissipation would only scale up linearly with total

resolution. Only a small proportion would grow quadratically (see Section 5.7).

Second, technology benefits to both memory and logic would greatly reduce the dis-
sipation for a fixed resolution because of reduced area (shorter wires) and lower device
thresholcis enabling more supply voltage scaling. It should also be noted here that the test
chip fabrication technology has fairly high device thresholds (.8V to .9V) so there is room
to go before hitting subthreshold leakage bottlenecks. In addition, the large parallelism ob-

tained from the fine granularity SIMD array architecture enables aggressive supply scaling.

19

Even in the crufty implementation technology, the test chip circuitry does not greatly exer-
cise device performance. This allows the test chip to be operated with supply close on the
heels of device thresholds (chip functionality was verified as low as 1.3V). This means that
device threshold reductions due to process scaling would readily transiate into substantial

supply scaling and power savings.

To a large extent, it is expected that a resolution scaled up version implemented in a
modern mixed memory/logic process would experience similar power levels, with some
complications. Total area would remain the same since technology benefits would be spent
on resolution. Most of the system power is in decoded instruction distribution to the SIMD
array, in the form of global densely loaded wiring. This would suffer from greater per
length wiring parasitics, but lower device loading. Local wiring within and between PEs

would also sutfer greater parasitics, but for shorter distances.

The greatest complication arises from the uneven scaling of memory and logic. A mi-
gration to a mixed DRAM/logic technology would benefit memory elements more than
logic. This would dictate a different choice of logic to memory ratio, which is principally
embodied in the size of the pixel blocks assigned to each PE. That choice is made by sub-
tracting the total required memory area for a given resolution from the available reticle
area. The remainder may be divided into as many logic elements as possible. With uneven
scaling of memory aﬂd logic, it is expected that the work load per PE will go ui). However,
this relative loss of parallelism (higher required throughput per PE) would not translate
into higher operating voltage and therefore energy per operation, due to the offsetting

effect of lower device thresholds.

20

To summarize, there are a number of competing and offsetting effects involved in scal-
ing up resolution with a modern process technology. There would be more circuitry, but
with tiner feature sizes, especially for memory elements. There would be more opera-
tions, but operations would be performed with shorter local wiring and smaller devices.
There would be less parallelism per image pixel, but the computational throughput would
be met by faster devices with lower thresholds. The detailed effects of scaling on power

dissipation deper:d on the technology parameters of a prospective process.

1.4 Previous Work

Efforts at addressing video compression for low power have so far resulted in piecemeal
implementations of algorithmic subcomponents or have yielded unsatisfactory power re-
duction. As described, the aim of this thesis is to deliver very high compression for a
given video quality, with bit-rate scalability, including possible use of motion compensa-
tion, fully integrated, and at power levels modest even for short range RF transmission.

No previous solution is known which delivers these goals.

For example, the matching encoder and decoder designs in [1] [2] use power levels
comparable to our entire power target to perform a quantization compression step utiliz-
ing a Vector Quantization algorithm. This quantization is performed for filtered coeffi-
cients whose computation is not included in the designs. Further, their encoder delivers.
a fixed compression rate output which is not suitable for wireless applications in many
cases of interest. The decoder in [3] also uses the Vector Quantization method to perform

the same computation step with the same power levels.

21

The design reported in [4] computes the Discrete Cosine Transform of image frames
to produce coefficients which could be used as inputs to the Vector Quantizers described
above. The reported power dissipation at video frame rates is 10mW. A much more ag-
gressive DCT implementation is presented in [5]. Distributed arithmetic is used to scale
the complexity of the operations performed on-the-fly, and *.ierefore the power, taking
hints from the quantization applied and the spatial content of the image data. The imple-

mentation transforms 640X480, 30 frames/sec, dissipating just over 4mW.

[6] performs the computations required for motion estimatior: and compensation. The
reported dissipation is 40mW. However, this does not include the contribution of required

off chip memory which would likely be more than 40mW itself.

[7] computes a more complete compression algorithm (though not including motion
compensation) for both encoder and decoder, side by side. Compression is performed us-
ing 3 dimensional wavelet filtering, scalar quantization, and run-length Huffman coding.
The power dissipation for both encoding and decoding is 100-200mW including separate
memory. The storage réquirements are aggravated due to the choice of 3D filtering instead

of frame to frame moticn compensation.

[8] gives a design for both encoding and decoding, including full search motion esti-
mation and compensation. At 144x176 resolution, 15 frames/sec, color images, they report
a power of 1.2W. This again does not include separate memory or a coprocessor which per-

forms the late quantization and rate control functions on the output bit stream.

By contrast, the total functionality of the encoder reported in this thesis is shown in

Figure 1.2 which is a superset of the works listed above. The single chip with measured

22

L]

—1 Motion Comp. | Transform #1 Quantization Coef. Coding [Entropy Coding

Figure 1.2: Total functionality of proposed encoder.

dissipation less than 1mW, performs all the algorithmic components except motion com-
pensation. That can be incorporated at the expense of silicon area and several times more
power, but with no significant changes to architecture or circuits. In all cases, the proposed

encoder does not rely on any external memory or coprocessor.

24

Chapter 2

System Considerations

2.1 Introduction

The goal of this work is not to design a video encoder with low power dissipation per
se, but to optimize for the system power of a portable device that might include the en-
coder. This requires optimizing in two different regimes of operation, with and without

the presence of motion in the video stream.

Operation in the motion regime requires good compression performance because the
amount of transmitted data determines the required data rate and duty cycle of the radio.
It is expected that communication power will dominate local computational power due to
fundamental physical range and noise constraints on wireless transmission, or transceiver
circuit power in the case of véry short ranges. In this regime, the burden on the encader
and other system components is to meet peak sensing and computational loads with dis-

sipation levels that do not compete with the RF transmitter.

Operation in the motionless regime requires the encoder and other system components

25

to operate with as little dissipation as possible. This is because, with a largely inactive
transmitter, the local sensing and computational power becomes the entire system power.
However, for some applications, a sensor may spend a large fraction of its battery lifetime
not sensing any motion in its field of view. In this case, this quiescent power may largely

determine battery lifetime.

For example, for a video format of 350x240 resolution, 30 frames/sec, and 8 bits/pixel,
a modest compression factor of 20 during periods of activity results in a transmission bit
rate of 1 Mb/sec. On the other hand, in the absence of motion, compression can result in

as little data as a few bits per frame, or about 200 bits/sec.

Note that determining whether there is motion or not requires the use of some kind
of thresholding to flag the no motion case. Appropriate motion thresholds would prevent
noise in the visual scene or the imager from triggering frivolous and wasteful use of energy
and bandwidth. No attempt is made in this thesis to explore what motion thresholds
should be. That would be determinei by considering application specific requirements

and the noise performance of the employed imager or even the data converter.

Note also that the preceding discussion makes clear the need for buffering of outgoing
data and efficient transmission of small packets. Therefore, it is incumbent on the transmit-
ter to avoid lengthy, expensive turn on transients. Buffering and packetization is required
even during peak operation, since compréssed data is expected to be quite bursty. This
becomes critical during quiescent periods, as the token 200 bit/sec data rate cannot be

allowed to trigger repeated radio turn on transients and packetization overheads.

However, buffering will result in greatly varying latency to the base station, as a func-

25

tion of data rate. For example, if the choice during no motion periods is to send 1 second of
data in 200 bit packets, the worst case latency increases from about 1 frame plus transmis-
sion time to 30 frames plus transmissior. time. For applications which cannot tolerate the
worst case latency, the base station may have to interpret large delays in packet arrival as
a sign of no motion in the video data (in which case the actual delivery of the token packet

serves merely as a “still alive” signal).

2.2 System Optimization with Motion

The followsing chapters describe how peak power is minimized in the encoder. Here, a brief
survey is taken of optimistic (lowest) dissipation levels of other likely system components,

as a gauge to justify power goals for the encoder.

The most stringent power case for RF transmission is small range and relatively pre-
dictable environment, such as indoors. No ultra low power solutions to this problem have
been found in the literature. However, cues for low power, short range transmitters are
taken from low power receiver designs [9] which share symmetry with circuit structu.es
relevant to transmission, and from reported developments of underlying transmitter cir-
cuit structures [10] [11). From these, it is not unreasonable to conclude that under the
most favorable circumstances 1 Mb/sec data rates can be supported with less than 20 mW

power levels.

Literature surveys for other system components reveal the following peak dissipations:
CMOS imagers [12] [13] [14] - less than 1 mW, video rate and precision data conversion

[15] - less than 4 mW, other DSP functions such as stream cipher encryption [16] - less than

27

Component Peak Power Cost

RF < 20mW

Imager < 1mW

ADC < ;mW

Encryption < 100uW

Supply Overhead < 10%
Table 2.1

Peak power of other system components.

100 uW, and power supply overhead for low current, low voltage, and wide load range

[17] [18] [19] - less than 10%.

Table 2.1 summarizes the components of peak system power which compete with the
compression function in the energy budget. Excluding the components which process
compressed data (radio, ECC, encryption), these numbers also give an indication of what
can be expected during quiescent periods of little motion if no special steps are taken for
that case. In order to keep the impact of the encoder negligible during peak periods, it is

not unreasonable to target a dissipation of less than 1 mW.

It should be noted that a relative comparison such as this also determines the efficacy of
including the use of motion compensation in the algorithm presented in the next chapter.
The severai fold multiplication of the compression power must bé weighed against the
expected additional compression of the output data and the accompanying reduction in
the transmission cost. The expected benefit to compression performance can be a strong

function of the visual content in the video source [20] [21].

28

2.3 System Optimization with no Motion

For quiescent periods with no motion, the power dissipation of the encoder benefits from
all the architectural and circuit techniques brought to bear to reduce peak power, but with
the added advantage that many fewer operations need be performed. The operations re-
quired to compute a frame difference and some motion thresholding are a smali subset
of the compression computation. The motion compensation, wavelet filtering, zero-tree
coefficient encoding, and arithmetic coding are all omitted if the difference of the current

and previous frames falls bellow the motion threshold.

In addition, the video encoder can feedback information about the presence or absence
of motion to the system in order to further lower its own quiescent power and that of
the imager, data converter, and power supply overhead. For example, after an extended
period with no motion, the frame rate throughout the system can be lowered until new
motion is detected. Of course, excessive decimation of the frame rate may allow quick
bursts of motion to go undetected. The slower frame rate also determinres the latency with
which new motion is detected and transmitted. The severity of both these constraints may
be strong functions of the specific application. No attempt is made in this thesis to explore

these limits.

It should be noted that even with generous allowances for {frame rate decimation, sub-
stantial power saving 'may be an elusive goal. Ideally, the lower frame rate shc.>uld enable
slower operation of all circuits, and therefore greater energy efficiency per operation, as
well as fewer operations. Any number of obstacles, such as poor power supply efficiency

at greatly lower average current levels, or device threshold limits to supply scaling, may

29

make slower operation difficult. Even the non-ideal case of same speed but bursty op-
eration at the lower frame rate requires at least that circuitry can be turned off (with no
DC power dissipation) and back on without long startup transients. The problem of pur-
suing energy efficiency past voltage scaling limits may be addressed by adiabatic circuit

techniques [22] [23] [24].

With the same caveats concerning the translation of fewer operations into lower dissi-
pation, two other techniques are suggested for optimizing quiescent system power during
long motionless periods - spatial decimation and reduced precision. The idea of spatial
decimation would be to reduce the resolution of the image which is being sensed, con-
verted, and differenced while the system is searching for new motion. The full resolution
would be restored as soon as new motion was detected. The lower resolution might be
arrived at by averaging pixels, or true decimation. Similarly, the search for new motion
might be carried out with lower bit precision than that required to visually represent the
image. The applicability of these techniques is not studied in this thesis, and is left for

future work.

2.4 Error Correction and Synchronization Recovery

Because of the wireless transmission of the compressed data, it is assumed that the com-
munication cannel is subject to fairly l;igh bit error rates (BER). No study of optimal error
correction or detection coding is made here. However, the compression algorithm pre-
sented in the next chapter provides two mechanisms needed to operate in a high BER

environment.

The compression algorithm is easily scaled on the fly. The compression rate can be
traded off for visual quality over a wide range. This tradeoff is carried out with good
compression performance and energy efficiency at all points along the tradeoff curve. This
convenient on the fly scalability is useful, among other things, for responding to a time

varying channel quality by changing the output data rate.

In addition, the compression algorithm provides periodic checkpoints at which the en-
coder and base station decoder can become resynchronized after uncorrectable errors. This
limits the maximum loss of visual data to the time between synchronization points. As will
be shown in the following chapter, there is a tradeoff between this time and compression
since the synchronization points cost bits. The choice of this time period is application
specific. The relevant factors are the probability of uncorrectabie errors and the maximum

allowable loss of data.

3

32

Chapter 3
Algorithm

3.1 Introduction

The system considerations outlined in the previous chapter present several goals for the

compression algorithm:

The resulting compression factor versus video quality must be good. This is important
because, during peak periods of motion in the video stream, the amount of compressed
data to be transmitted essentially determines system power. Video data rates, even after
compression, can be fairly high (perhaps 1 Mb/sec), so that wireless transmission will

dwarf the power dissipation of local computation.

Further, the power cost of transmission is lower bounded by fundamental physical con-
straints suc;h as noise and range. While current technology has not ‘reached these bounds,
further improvements would depend on clever use of technology and wouid only benefit
from simple fabrication process scaling to some extent. On the other hand, the bound on lo-

cal computation is much lower [25] [26] [27], and computational power benefits vigorously

33

from process scaling as well as cleverness. The cost of large amounts of local computation,

as shown in Table 2.1, is already smaller than transmission, and this disparity is expected

to grow.

Therefore, a tradeoff of increased local computation for reduced data rate is pursued
throughout this work, where such a tradeoff is lucrative. Some opportunities for this
tradeoff are suggested even if they do not payoff in current technology. In such cases,
it is expected that those techniques would become relevant as the cost of computation and
communication diverge. This tradeoff influences major architectural choices as described
in the following chapter. Algorithmically, the tradeoff motivates the inclusion of motion

compensation despite its relatively heavy computational burden.

On the other hand, a second competing algorithmic goal is to keep the power dissi-
pation of the local computation as small as possible. This is important for two reasons.
During peak motion periods, the cost of local computation should not compete with com-
munication in the power budget. During possibly long quiescent periods with no motion,
the wireless link remains largely unused, and the computational cost of detecting new

motion determines the system power.

Methods by which quiescent power can be minimized in the encoder and rest of the
system were outlined in the previous chapter. Here, the techniques used to keep the
peak computational power .cost relatively small are presented. This optimization oft;en en-
tails the opposite tradeoff than the one discussed above. Several examples are presented
throughout this chapter of marginal data rate reductions being discarded because of their

large computational cost.

There are several connected properties of an algorithm which further the goa! of low

computational cost:

o The most basic power efficiency is to minimize the total number of operations per-

formed.

¢ Not all operations can be performed at the same cost. So equally important, arith-
metic and logical operations should be kept as simple as possible. Where the op-
portunity arises, addition and shifting are preferred to multiplication and division.
Similarly, integer operations of as little precision as required are preferred to floating

point.

s Even on chip, communication can account for as much, or more, power as computa-
tion. The most effective algorithmic way to control the cost of communication is to
minimize mutual interactions between large amounts of data, or movement of data
over large distances. Some optimizations are evident from first principles, while oth-
ers require a model of the architectural and circuit implementation. While these are
described in detail in succeeding chapters, minimal overviews are used to justify al-
gorithmic choices. The vertical, coupled design approach taken in this thesis requires

this mingling of subject material.

e It is important for the algorithm to be conveniently parallelizable. Parallelism en-
ables voltage scaling, which is a principle architectural and circuit level energy effi-
ciency. Parallel computation allows the use of many slower, and lower energy per

operation, circuits to meet the total throughput needs of the application.

35

A third principle algorithmic goal is data rate versus video quality scalability. On-the-
fly scalability can be used to tailor data rate to user demand. In addition, scalability can
also be used by the system in feedback to respond to changes in communication channel

quality or crowding due to other users.

The remainder of this chapter describes how these goals are met, by first describing a
two dimensional image coding algcrithm, and then the extension to time for sequences of

video frames.

3.2 Basic EZW Image Coding Algorithm

3.21 Advantages

The basis of the image compression algorithm is the EZW algorithm reported in [28]. The

EZW algorithm is chosen as a starting point for 3 reasons:

First, as shown below, this algorithm achieves very good compression, being compet-
itive with the best know results at the time this work was begun. Further, because this
algorithm is based on a hierarchical, multi-resolution wavelet transform as described be-
low, not only are the compression resluts good in a numerical sense (according to distortion
metrics such as PSNR), but highly compressed images avoid some of the most bothersome
‘visual artifacts associated with blocked transform schemies [29] [20], such as the block DCT

used in the JPEG standard [30].

Second, like other basic numerical transform aigorithms, including DCT, the EZW al-

gorithm is conveniently parailelizable and amenable to circuit implementation. EZW has

36

been {nund to be computationally efficient in the number of operations per pixel. In ad-
dition, the most burdensome costs associated with the complexity of operations and espe-
cially with the locality of communicaticn have been found to contribute little to compres-
sion performance. Modifications and omissions from the algorithm reported in [28] are

described below.

Finally, the EZW algorithm is inherently scalable. In fact, the algorithm produces an
embedded output bit stream. Embeddedness is a more rigorous superset of the scalability
property needed for this application. An embedded output stream contains all lower ac-
curacy encodings as its prefix. That is, the encoded bits come out in order of importance.
Each output bit produced is the next most useful one according to some numerical distor-
tion metric (such as PSNR for the algorithmic parameters suggested in [28] and adopted
here). If the bit stream is terminated at any point, for example at some target bit rate per

frame, the resulting output is the best one the algorithm is capable of producing.

This is the most rigorous form of scalability, being applicable at the bit level. For this
application, it is satisfactory to obtain scalability at coarser granularities. Some algorithmic
modifications motivated by computational and communication cost are described which
s.acriﬁce bit level embeddedness, but preserve it coarsely: Scalability is achieved, without
sacrificing compression performance, by limiting compression choices to the granularities
which preserve embeddedness. These choices are known a priori and are convenient to
dial up on-the-fly.

37

3.2.2 Overview

Before describing the detailed operation of the EZW algorithm, the main ingredients of its

success are summarized.

Wavelet Transform

The use of discrete wavelet transforms to represent images provides multiresolution de-
compositions which compactly represent the image content at all scales, and without the
imposition of arbitrary block boundaries. A wavelet transform is recursively appiied to
obtain a hierarchical subband decomposition with octave spaced bands. This multires-
olution decomposition can represent low frequency narrow band information, such as
textures and background, and visually important wide band information, such as edges,
equally well. An excellent qualitative overview of the power of hierarchical wavelet de-
compositions can be found in [28] itself. For rigorous mathematical treatments, the reader

is referred to [31] [32] [33] [34].

Successive Approximation Quantization

The embedded property is derived from the use of successive approximation quantization.
While this is a fairly general notion, the realization in the EZW algorithm essentially boils
down to bit plane er.lcoding. The computed wavelet coefficients are encodéd one bit at
a time, from MSB to LSB. A key to producing an embedded output is that a bit plane
is fully encoded for all coefficients before the next bit plane is begun for any coefficient.

This ordering is motivated by the relative importance of MSBs of other coefficients versus

38

further resolution of any single coefficient -egardless of its magnitude or spatial frequency.

Within a given bit plane, the EZW algorithm imposes other prioritizations on the en-
coding of coefficients. All these encoding priorities contribute to embeddedness by tar-
geting the most sigrificant distortion reductions first. These intra bit plane priorities are:
new significants second - identification of new non-zero coefficients is encoded after fur-
ther resolution of those determined tc have non-zero magnitudes in previous bit planes,
scale - new non-zero coefficients are encoded from low to high frequency, magnitude -
coefficients already encoded with a non-zero value from preceding bit planes are further
resolved in descending magnitude order, spatial location - this is the default catch all, if
nothing else distinguishes coefficients, they are encoded in some a priori scanning order

agreed on by encoder and base station decoder.

The successive bit plane quantization, scale, and spatial location prioritizations are key,
and fortunately not computationally burdensome, and are adhered to. The new signifi-
cants second and magnitude prioritizations, however, are omitted to reduce complexity
and therefore power, as described later in this chapter. The new significants second or-
dering is incompatible with architectural choices, while the magnitude prioritization is
rejected from first principles, with an eye toward the localization of communication pz;t-
terns. The omission of these two priorities results in the loss of a completely embedded
output encoding within bit planes. In order to achieve scalability without compromising

compression performance, compression choices are limited to the bit plane boundaries.

39

Zero-Tree Significance Maps

A large part of the good compression results obtained with the EZW algorithm can be at-
tributed to the use of zero-trees. These tree data structures are imposed on the wavelet co-
efficients according to frequency and location. The trees crganize coefficients correspond-
ing to the same area of the image from low frequency at the root, to high frequencies at the

leaves, and are intimately tied to scale prioritization.

During encoding of new non-zero coefficients, a progression is made from tree roots
(low frequency) to leaves (high frequency). The ordering of low frequency components
before high ones at the same location not only contributes to embedding, but also allows
an important conditioning of high frequency components with the low frequency coded
magnitudes. The zero-tree coding scheme, described below, takes advantage of statistics
found in natural images [20] [29] [28] by predicting the insignificance of high frequency
components from the insignificance of low frequency ones. That is, the use of zero-trees
effectively embodies into the algorithm a statistical image model which predicts that small
amplitude low frequencies are accompanied by small magnitude high frequencies in any
given area of a frame. By incorporating this model into the coding of new non-zero co-
efficients, the EZW algorithm greatly reduces the cost of the significance maps of those

coefficients.

Adaptive Arithmetic Coding

An adaptive arithmetic coder is used as the final lossless entropy coding compression step
in the EZW algorithm. The adaptivity is important to optimize compressiori performance

40

in the face of non-stationary image statistics, without requiring training of the algorithm on
sample images beforehand. Training is a viable strategy for database applications which
compress libraries of images to reduce storage size and transmission bandwidth. However,

a priori training for a portable sensor is unworkable.

The use of an arithmetic coder is important because the EZW algorithm can produce
symbels with probabilities close to 0 or 1, especially for high compression ratios. Arith-
metic coders can approach bit rates close to symbol entropies for these cases easily and
elegantly. Adaptive Huffman and run-length codes are very awkward when faced with
wide dynzmic ranges in syrabol probabilities. Compound Huffman codes may have to be
used for groups of symbols. The result for both Huffman and run-length codes is large

alphabets.

By contrast, the EZW algorithm itself outputs symbols from a fairly small alphabet, as
described below. The preservation of small alphabet sizes by the arithmetic coder is an
advantage for adaptivity, since it takes less symbols to acquire good probability estimates.
The use of small alphabet sizes also turns out to be an enabler for a modification to the
arithmetic coder, described below. The modification, motivated by power efficiency, ap-
proximates symbol probabilities to reduce the complexity of mathematical operations in

the coder. These approximations are more accurate for small alphabets.

41

Image Low Freq High Freq

baig mo

ba1q ysSiy

Figure 3.1: Result of 1 level of wavelet filtering. Separable horizontal and vertical filters
are used to compute critically subsampled low and high frequency subbands.

3.2.3 Operation

Wavelet Transform

Before filtering, the image mean is computed, subtracted off, and coded separately. The
hierarchical 2D wavelet representation is arrived at by recursive application of separable
horizontal and vertical filters. For each recursion, low pass and high pass filters are used to
divide the image into equal sized subbands, which are critically subsampled. The result of
the first level of filtering is shown in Figure 3.1. At each level, the low frequency quadrant

is recursively filtered. The result of 3 levels of filtering is shown in Figure 3.2.

No attempt is made in this thesis to explore the optimization of filter design. The reader
is referred to [35] [31] [29] [36]. Following [28] the filters in [35] are used here, examples of

which are shown in table 3.1. Note that the symmetry of the filters allows simple reflection

12

Image High Freq

LL3|HL3

HL2
LH3|HH3 -
LH2 | HH2
"

=

LHI HHI -,

es

8

Figure 3.2: Result of 3 levels of filtering. At each level, the low-X, low-Y (like LL at level
3) frequency subband is recursively filtered and critically subsampled to obtain the next
filter level. Labels used to refer to the subbands are shown inside.

to be used to treat image edges.

Bit Planes

The coefficients resulting from the hierarchical filtering are coded one bit plane at a time
» 'om MSB to the desired accuracy ievel. The coding of a bit plane is separated into two

phases, termed subordinate and dominant in [28]. First, during the subordinate phase,

Length Coefficients

5 { €.05381 | 0.25 0.60762 | 0.25 -0.05381

7 0.00525 | -0.05178 | 0.25525 | 0.60355 | 0.25525 | -0.05178 | 0.00525

9 0.01995 | -0.04271 | -0.05224 | 0.29271 | 0.56458 | 0.29271 | -0.05224 | -0.04271 | 0.01995

Table 3.1
Example wavelet filters. Lowpass filters are shown. High-pass filters are derived by mul-
tiplying by —1'? assuming the center tap is numbered 0.

all coefficients already found to have non-zero magnitudes (significant coefficients) from
previous bit planes are refined by coding their bit in the current plane (termed subordinate
bit). Note that the first plane is exceptional in that there are no previous significant coeffi-
cients, and the first subordinate phase is skipped. After a subordinate phase is complete,
the significant coefficients are sorted in decreasing magnitude order. This ordering is used
in succeeding subordinate phases to deliver LSBs. The relative ordering of subordinate and
dominant phases within a bit plane, and the sorting of significants by magnitude, are two

of the prioritizations introduced above, which are used to achieve embedded encoding.

During dominant phases, new significant coefficients are mapped with the aid of the
zero-tree structures. That is, all coefficients are identified which have the leading 1 of their
magnitude in the current bit plane. Zero-trees and the coding rules described below are
used to aid compression by predicting the insignificance of high frequencies from low ones
in the same spatial area, as discussed above. As new significants are identified, they are
appended to the list for use in succeeding subordinate phases. (They cannot immediately

be ordered by magnitude since, until further refinement, they all look the same.)
Zero-Trees and Dominant Phases

The purpose of zero-trees is to establish an ordered dependency graph between coeffi-
cients in the same spatial area, from low to high frequency. A small example is shown in
Figure 3.3. The example is for 3 levels of. filtering and a 16x16 image size. The bold out-
lines indicate frequency bands while the light ones show all the coefficients which belong
to the example tree. For the 16x16 pixel example, four such trees would make up the whole

image.

Root

—
7/
N
/
;

Figure 3.3: Example of a zero-tree for a 16x16 image with 3 levels of filtering. The tree is
a dependency graph for coefficients belonging to the same image area, from lowest fre-
quency (upper left) to highest (down and right). Bold outlines show subbands. Light
outlines show all coefficients belonging to this tree. Not all dependencies are drawn. 4
such trees are needed to fully represent the 16x16 image.

45

The root of the tree is the low frequency coefficient at the third filter level. It's 3 children
are the higher frequency components at the same level. From here, until the tree leaves,
each node has 4 children which are the high frequency coefficients at the next lower filter
level, corresponding to the same spatial area, and the same X-Y, high-low frequency ori-
entation. For clarity, not all the dependencies are represented by arrows in Figure 3.3. The

total number of coefficients belonging to the example tree is 64.

For purposes of dominant phases, some a priori scanning order is agreed on which
ensures that low frequency coefficients are encoded before higher ones. For the 16x16
example, this would mean the 4 lowest frequency ones (in some order), followed by the 12
others at filter level 3, then the 48 at level 2, and finally the 192 at level 1. The following

simple set of cases is used to encode the coefficients:

1. If a coefficient has been found significant in a previous bit plane, the decoder already

knows its status and it can be completely ignored.

2. If a coefficient is being identified as a new significant this plane, a symbol is sent

indicating the sign.

3. If a coefficient is still insignificant, and all its descendants are either also still in-
significant or have been found significant during previous Lit planes, the coefficient
-is enccded as the root of a zero-tree. This is expected to be the common case. The
descendants are effectively already encoded and are marked as ignorable for the du-

ration of this bit plane.

4. If a coefficient is still insignificant, but any descendant is a new significant this bit

46

plane, the coefficient is encoded with an isolated zero symbol. This is expected to
be the uncommon case. In this case, the algorithm is forced to separately recurse
on all the children of the affected coefficient, which may result in more isolated zero

symbols until the new significant is reached and encoded.

5. As indicated above, if a coefficient is included in a zero-tree reported by an ancestor,

the decoder already knows its status and it can be completely ignored.

Note that, in the general case, there are 4 symbols in the EZW dominant phase alpha-
bet: positive/negative new significant, zero-tree root, and isolated zero. As an exception,
since the highest frequency level 1 coefficients have no children, the root and isolated zero
symbols are merged into a still zero symbol, which reduces the alphabet size to 3. Of

course, subordinate phases use a 2 symbo! alphabet, 1 and 0 to indicate LSBs.

These outgoing symbols are entropy coded by the adaptive arithmetic coder described

below. Here, some optional conditioning possibilities are explained:

The goal of the wavelet, or any other, filtering is to remove all dependencies between
the resulting coefficients and to concentrate the signal energy into as few coefficients as
possible. If this were perfectly true, coefficients would be statistically independent of each
other and could be optimaliy coded individually. This ideal condition is clearly not met. in
addition to the zero-t;'ee scheme, some conditioning of outgoing symbols by r.learby states
can also be used to take advantage of residual correlations. In [28] it was found marginally
useful to condition outgoing EZW symbols with the significance of a coefficient’s zero-tree

parent and a nearest neighbor at the same filter level.

47

Finally, in order to further understanding of the statistical model implicitly incorpo-
rated into the algorithm by the use of zero-trees, it is worth briefly commenting on a choice
made in the third of the coding rules listed above. Coefficients already found to be signif-
icant do not block the formation of zero-trees in succeeding bit planes. That is, after a
parent has been an isolated zero because a child violates the statistical assumption of de-
caying distribution with frequency, it can later go back to being part of a zero-tree if no

further significant energies are present in the area.

The poir: of zero-trees is to code significance maps cheaply by taking advantage of
the decaying spectral energy distributions commonly found in real visual images. How-
ever, the algorithm does not ignore, obscure, or statistically swamp out higher frequency
aromalies which violate this assumption, but which may represent visuaily important in-
iormation such as edges. The isolated zero case is the mechanism which allows the anoma-
lies to be recognized, with some bit cost per anomaly, as expected. An anomaly being what
it is however, it is expected that much of the surrounding areas follow the common case.
Therefore, after the anomaly has been recognized, its presence is masked for future bit
planes so neighboring coefficients can be coded normally, without contamination from the

statistical outlier.
Arithmetic Coding

The job of the entropy coder is to sc.lueeze the last bits of compression out of the EZW
symbol stream iosslessly. All quantization is performed by choosing how many bit planes
to encode. The goal is to approach as closely as possible the actual entropies of symbols,

for both dominant and subordinate phases. This must be done in the face of non-stationary

48

statistics and some probabilities close to 0 or 1.

Probabilities close to 0 may result from infrequent occurrences of isolated zero symbols.
Probabilities close to 1 may result from long runs of zero root symbols. This kind of pattern
is alternately compressed with run-length coding, however, as discussed above, the choice

of an adaptive arithmetic coder is more efficient and elegant.

Following the suggestion in [28], the arithmetic coder used is based on the one found
in [37], which contains an excelient description of the mechanics of arithmetic coding, ex-
planations of the advantages, and examples of working code. Arithmetic coding is as old
as the hills [38], despite possibly being underappreciated and underutilized, and a mathe-

matical development is not duplicated here.

The arithmetic coder uses estimates of symbol probabilities to make optimal partitions
of its code space. In this case, local probability estimates are learned on-the-fly from sym-
bols recently encoded by keeping a histogram of the symbols. The relative frequencies
recorded in the histograms serve as probability estimates. Different histograms are kept
for the respective alphabets used (dominant and subordinate) and conditioning values
(parent and neighbor significance). The tallies are kept fresh (local) by periodically der-
ating the contribution of older samples. When the total histogram count reaches a preset
maximum, all current counts are divided by 2, and this discounted starting point is used

to continue further encoding.

The choice of maximum histogram count involves a tradecff, albeit a fairly shallow
one. The maximum determines the smaliest probability which can be represented and,

therefore, how closely the entropy for very infrequent symbols can be reached. The small-

49

est probability is related to the reciprocal of the maximum count. On the other hand, the
maximum also controls the learning rate. A smaller maximum adapts the probability esti-
mates to more recent and local samples. As in [28], a maximum histogram count of 255 was
found to be a good tradeoff between granularity and learning rate. All the histograms are
reinitialized every bit plane to allow the acquisition of estimates without contamination

from previous phases.

3.24 Image Compression Results

Table 3.2 shows compression vs. PSNR results from [28]. The data is taken from com-
pressing images with working code, not simulations. The test images are the well known
“Lena” and a lesser known “Barbara”. These compression results were among the best
available when this work began. The author is not aware of recent changes in the state-of-

the-art for compression algorithms.

It should be noted that the results shown in Table 3.2 are for the exact algorithm re-
ported in [28]. Specifically, they include the use of 6 filter levels and the 9 tap filter shown
iﬁ Table 3.1. These results do not include the effects of an.y of the modifications described
below. The effects of those modifications are stated using these original results as a ref-
erence point. Compression results for the final algorithm including all modifications are

shown at the end of the chapter as a summary.

50

Compression || PSNR
Ratio Lena | Barbara
8 39.55 | 35.14
16 36.28 | 30.53
32 33.17 | 26.77
64 30.23 | 24.03
128 27.54 | 23.10
256 25.38 | 21.94
512 [| 23.63 | 20.75
Table 3.2

Image compression results for unmodified algorithm. Results obtained with 6 filter levels
and 9 tap wavelet filter.

3.3 Modifications to EZW Algorithm

3.3.1 Wavelet Transform

Filter Choice

No modifications were actually made to the wavelet filters used. However, while [28] uses
the 9 tap filter shown in Table 3.1 to report compression results, the 5 tap filter is used
throughout the examples in this thesis. There is nothing algorithmic or architectural pre-
venting the use of lorger filters here. The use of the shorter filter was motivated by the
author’s desire to cut corners in writing microcode to control the test chip (Appendix C).
With the proper microcode, longer filters can be used to achieve slightly better compres-

sion performance at the expense of more power.

While no careful studies were done, it should be noted that compression performance
saturates quickly with the filter length used. Results using a 3 tap filter not shown were

observed to be quite bad. The change from 5 tap to 7 tap is marginal, and 7 to 9 negligible.

51

Meanwhile, the use of longer filters increases power cost in two ways. There are more
operations, for example the 7 tap filter requires 2 more additions and multiplications. Fur-
ther, some multiplications are more complex. As discussed in the next chapter, multi-
plications are not performed by dedicated circuitry, but pieced together with shifts and
additions. Complex coefficients require more microcode operations to perform each mul-
tiply. These additional costs are not a bottleneck, however, since fiitering represents a tiny
fraction of the encoder’s power consumption and computational throughput. Even with-
out the use of motion compensation, filtering amounts to less than 10% of the power. With

motion compensation, this would be reduced to noise.

Filter Levels

The number of filter levels used is reduced for reasons of power and area. The choice
of 6 levels used in [28] is changed to 3 in the examples here. Power savings is obtained
from two sources. A negligible gain comes from the omitted computations. This does
not amount to much because of the exponentially decreasing amount of computation with

each succeeding filter level.

A more substantial gain in power, and area, comes from the required arithmetic pre-
cision used to compute filter coefficients, as discussed below. The precision grows with
the number of filter levels. Lower frequency coefficients require greater dynamic range
to accurately represent large image areas. This translates into wider bit representations of

data and arithmetic circuitry, at the rate of 1 bit per extra filter level.

On the other hand, filter levels greater than 3 have little impact on compression perfor-

52

marce, except for very high compression factors (a few hundred) for which visual quality
becomes quite poor. Extra filter levels result in coefficients which represent exponentially
smaller subband width and greater image area. For reasonable compression ratios and
visual quality, the encoding reaches significant higher frequency coefficients at early filter
levels. These compictely dominate the resuiting bit rate. Any gains achieved during early
bit planes, where only very low frequency coefficients have any chance of being significant
and where the extra filter levels help, are quickly swamped out. The extra filter levels only
translate into compression for encodings which stop at those early bit planes, where only

a few low frequency coefficients are transmitted.
Precision

No mention of arithmetic precision is made in [28], but it is assumed that floating point
representations and operations are used. The circuits required to perform such operations
are very expensive. Here, fixed point operations are used instead, with the lowest possible
precision.

The minimum precision is determined by the number of filter levels, the highest de-
sired visual quality, and rounding/truncation errors. Extra filter levels add 1 bit of re-
quired precision each, to contain larger magnitude low frequency coefficients, as discussed
above. Higher visual quality requires extra precision in order to encode extra bit planes.
Finally, some extra bits are required be.yond the last encoded bit plane to keep the round-
ing and truncation errors of intermediate computations from reaching the last bit plane.
The minimum precision for 3 filter levels and 8 maximum encoded bit planes (visually

perfect reconstruction) is 12 bits.

3.3.2 Subordinate Phase

Prioritization by Magnitude

The sorting step after subordinate phases which orders significant coefficients according to
descending magnitude is discarded. This is motivated from first principles. Sorting large
numbers of items is an inherently costly operation and involves widespread communica-

tion patterns.

As discussed above, the omission of this, or other, encoding prioritization does not af-
fect compression. It does spoil the embedded output stream property for small granular-
ities (within bit planes). Limiting compression scalability choices to bit plane boundaries

makaes this effect irrelevant.

Subordinate Bit Encoding

As encodings progress through bit planes, subordinate bits quickly become decorrelated
from each other, so the probabilities of 0s and 1s are always very close to § and there is no
way to avoid paying 1 output bit per subordinate bi.t. There is no point in the arithmetic
coder learning the statistics of subordinate bits, so the subordinate alphabet histogram is
discarded. Instead, all subordinate bits are forcibly encoded with probability 1. Except for

very high compression factors, there is no effect on compression performance.

54

3.3.3 Dominant Phase

Sign Bit Encoding

As with subordinate bits, sign bits are largely uncorrelated, except for very high compres-
sion ratios. It must be remembered that the image mean is subtracted off before filtering, so
the resulting coefficients have a globally zero mean distribution. In addition, the sign bits
do not have much local correlation in real images. Therefore, sign bits are also encoded
with constant 3 probabilities, and the arithmetic coder histograms associated with them
are discarded. The special treatment of sign bits within the dominant alphabet is facili-
tated by the breakup of the 4 and 3 symbol alphabets into a succession of multiple smaller
alphabets. This is coincidental, due to changes to the arithmetic coding itself, described

below.

Conditioning

As in [28), it was found that conditioning EZW dominant phase symbols with parent and
neighbor significance has marginal effect on compression. For substantial tests on sample
images, the contribution of the conditioning was never observed to be greater than 5%.
More precisely, that was the maximum loss of compression due to discarding the condi-
tioning and using one histogram instead of 4. This net loss is not solely attributed to the
condiﬁoni;\g since there is an incidental counteracting effect to the .neduced number of his-
tograms. With all dominant symbols being counted in the same histogram, the probability
estimates developed in it form more quickly and track changing statistics faster. That is,

the learning rate of the coder is enhanced by not diluting the samples among 4 separate

55

histograms and forcing the coder to learn 4 separate sets of probabilities.

Extended 3 Symbol Regions

In [28] the EZW coder switches from the 4 to the 3 symbol alphabet at the first level of filter
coefficients (the highest frequency). This is because the lowest level coefficients have no
children in the zero-trees, so there is no need to distinguish between zero rcot and isolated
zero for insignificant coefficients. This switch is also applicable in a different region of

operation.

The maximum magnitude of coefficients grows with each filter level, 1 bit per level as
discussed above. For example, it is known that at the highest bit plane, where level 3 coeffi-
cients might be significant, level 2 and 1 coefficients must all be 0. Similarly, the second bit
plane might contain significant level 3 and 2 coefficients, but not level 1. Therefore, there
is no point during these early bit planes to even consider these high frequency coefficients
(which also happen to be the most numerous). For these early phases, the zero-trees are
effectively truncated at the higher levels and the newly exposed leaves are coded with the

3 symbol alphabet.

This modification is not motivated by a tradeoff between compression and computa-
tional complexity. There is, in fact, a benefit to compression, albeit a negligible one except
for very high compresslion ratios. The real benefit is reduced computation in ti\e form of
large numbers of ignored coefficients. For example, out of the 8 total possible bit planes
available for coding with the chosen 12 bit precision, the top bit plane need only consider

1% of the coefficients and the second plane }. (Note that this benefit also applies to the num-

56

ber of coefficients that must be examined during the immediately succeeding subordinate

phases).

3.3.4 Arithmetic Coder

Initilization of Histograms

In [28] the histograms which implement the adaptivity of the arithmetic coder are reini-
tialized each bit plane. The assumption is that symbolis in different bit planes are not well

correlated to each other, and the coder is better off learning new statistics from scratch.

In fact, it was observed that it is slightly beneficial to reinitialize more frequently than
that. Symbols at different filter levels within the same bit plane do not share the same
distributions, so reinitialization is performed at each level. The compressicn benefit of this
modification was never observed to be greater than 3%, so this is not being touted as an
algorithmic improvement. However, the modification is free, and this discussion serves to

explain the implementation difference which is evident in Appendix A.

Probability Approximation

The arithmetic coder acts on an already compressed data stream. However, adaptive arith-
metic coding is inherently a serialized set of operations. Preceding symbol encodings are
used to estimate probabih:ties of later ones. It is very difficult to parallelize the arithmetic
coder, especially in light of the fact that individual symbol encodings take an indeterminate
number of computations and generate an indeterminate number of output bits [37]. Note

that counting symbol frequencies in some average haphazard manner does not suffice.

57

The decoder must have exact a priori knowledge of ordering in order to remain properly

synchronized and decode the data stream.

The difficulties of parallelizing the arithmetic coder mean that architectural and circuit
techniques which achieve energy efficiency by usirg slower circuits (adiabatic, voltage
scaling, etc ...) are ineffective. Therefore, despite the partially compressed data stream the
coder acts on, there is strong motivation to keep the complexity of the coder as small as
possible. Power is directly benefited by any reductions in number of operations or their
complexity, and indirectly by reductions in required throughput and critical path delays,

which alleviate the speed burden on circuitry.

The principal computational cost in the arithmetic coder stems from the probability
estimates and their conversion into appropriate fractions of the code space. A symbol’s
probability estimate is the ratio of its current histogram count to the sum of the counts in
the alphabet. This estimate is used to partition the coder’s space in the fashion described
in detail in [37]). Both of these steps involve division, which is a very expensive arithmetic
operation, as well as multiplication by non-constant values (in contrast to the wavelet fil-
tering which involves multiplication by constant filter coefficients which can be trivially

converted to small numbers of shifts and additions at compile time).

This cost is eliminated by making a tradeoff against a modest compression degrada-
tion. In the arithmetic coder used het"e, all probability estimates are approximated as
fractions which can be represented by inverse powers of 2. This converts all divisions
and multiplications into the much cheaper operations of shifting and addition (required to

make the approximations). Note that while the shifts are by non-constant values and are

58

Syml Sym2 Sym3 Sym4

0 P1 P1+P2 P1+P2+P3 1

Figure 3.4: The arithmetic coder segments the encoding space optimally by allotting each
symbol in the aiphabet a segment proportional to its probability. The symbol probabilities
are the ratio of symbol counts to total histogram count. The values shown (probability
sums) must be approximated as inverse powers of 2.

therefore not quite as cheap as the compile time shifts used in the filtering, the number of
shifting choices is quite small due to the limited dynamic range of the probabilities being
estimated. For example, the largest shift necessary is 7, so a logarithmic shifter needs only

3 levels of 2-to-1 muxes (shift by 4, 2, and 1) to implement the entire operation.

While this strategy is conceptually simple, the implementation is not straightforward.
There are a number of impediments to accurately approximating relevant fractional values
as inverse powers of 2. Figure 3.4 shows the values used by the coder which are subject
to approximation for the 4 symbol alphabet case. The arithmetic coder segments the en-
coding space optimally by allotting each symbol ir: the alphabet a segment proportional to
its probability. The symbol probabilities are the ratio of symbol counts to total histogram
count. The fractional values which divide the space, (P1, P1+P2, ’1+P2+P3) must be ap-

proximated as inverse powers of 2.

In addition, to ensure functional correctness, no probability can be set to 0, even if a

symbol has not yet been encountered in a large sample set. That is, no matter how small

59

the likelihood of a symbol, a finite width segment of the code space must be allocated to

enable coding an unpredictable occurrence.

These two requirements make acceptable approximations difficult. For example, if the
4 histogram counts were C1=100. ("2=80, C3=75, C4=2, the smallest space that could be al-
located to symbol 4 is 3, equivalent to a 50% probability of occurrence. This kind of gross
inequity could be rectified by reassigning symbols to a different ordering for purposes of
segments in the encoding space. After each new histogram entry, the symbols could be
sorted in increasing probability order, with a mapping recording the assignment of sym-
bol number to segment number. The decoder would have all the same histogram values
from previous decoded symbols and could duplicate the mapping applied to the next one.
However, the quality of the resulting approximations would still be poor. Consider the
simple example of all equal probabilities. The closest match for segmentboundaries would

be0- § - § - 5 - 1. The disparity between segments 1 and 4 is a factor of 4.

The solution to these problems is to break down the EZW alphabets into hierarchies of
2 symbol alphabets. Instead of transmitting a single symbol from several choices, multiple
consecutive symbols are sent with only 2 choices each. Figures 3.5 and 3.6 show how this
is done for the 4 and 3 symbol cases, respectively. There is no compression penalty for
doing this, since entropies of independent events add. In addition, after each transmitted
symbol, each 2 syrx;bol sub-alphabet is sorted by probability, as proposed e;bove for the 4
symbol case. Of course, with only 2 symbols per sort, this reduces to a very cheap toggling
operation. With these changes, the actual approximation becomes straightforward. For
example, for any 2 symbol sub-alphabet, a probability of 1 is approximated as §, or &5 as

60

PosSig NegSig

IsoZero

Figure 3.5: Hierarchical alphabet break down for 4 symbol EZW alphabet.

Root @ NegSig

Root

PosSig NegSig

Figure 3.6: Hierarchical alphabet break down for 3 symbol EZW alphabet.

62

|
128°

Note that separate histograms are kept for the 2 symbol alphabets. On the other hand,
the convenient isolation of the sign decision for significants makes it easy to discard that
particular histogram, as discussed above. In total, 2 histograms of 2 entries each are kept.
One for identifying isolated zeroes, the second for distinguishing zero-tree roots from sig-

nificants. The first histogram is unused in 3 EZW symbol regions.

The penalty in lost compression due to these modifications is quite small. In extensive
trials on varied test images, the loss in compression was never observed to be greater than
2%. It may seem surprising that an approximation as gross as substituting nearest powers
of 2 for values should have so little effect. However, it should be kept in mird that the
probabilities being approximated are only gross estimates themselves. Estimates of non-
stationary statistics which are tracked with finite speed and sample sets (despite possibly
small symbol probabilities in some cases). In many cases, approximations both smaller or
larger than the original probability estimates will actually yield better results than the use

of the unadulterated values.

Appendix A contains code for 2 versions of the probability approximation. Thé unused
version (commented out) includes a slightly better rounding scheme. The simpler version,
which is implemented on the test chip, losses an additional 1.5% in compress:.ion. There
is no reason not to use the better rounding scheme. The additional operations involved
are quite cheap. The simpler version used was another corner cutting opportunity for the

author.

3.3.5 Symbol Scanning Order

The modifications described in this section involve the reordering of symbols encoded in
both dominant and subordinate phases. These ordering changes are motivated by archi-
tectural issues, and it is necessary to take a small detour to preview what those issues are.
The architectural choices stated below are motivated and described in detail in the next

chapter.

The overriding architectural factor is the SIMD arrangement of processing elements
(PEs). The implication is that operations which keep the array of PEs working together in
lock step are efficient. Operations which serialize computation by making exceptions are

inefficient.
Mapping Data onto SIMD Array

With an eye on efficiency and parallelism, every effort is made to equalize the work load
and memory requirements of all PEs. Toward that end, each PE in the array is assigned a
4x4 pixel area of an image, and all the associated computation. Figure 3.7 shows how an
8x8 part of an image is mapped onto 4 neighboring PEs. Each pixel is numbered with the

index of the PE it is assigned to.

Figure 3.8 shows how the wavelet coefficients corresponding to the same image area
.and resulting from 3 levels of filtering are mapped onto- the 4 PEs. The bold outlines sep-
arate coefficients of different filter levels. Note that the 48 coefficients of level 1 and the
12 of level 2 map onto the respective PEs uniformly. The 4 coefficients of level 3, however,

do not. (Note that this is an artifact of the 4x4 pixel per PE granularity. A different choice,

64

11 (1(1}12]12]2]2

1|1 1}1 12222 PE PE
11111 2]2]2]2 1)
111(1(1|2(2]2]|2

—

3(3(3(3(4|14(4)|4 PE PE
3133344144 3 4
3{3|13(3|4{4(4,4

313133/ 4|1414|4

Figure 3.7: Mapping of image pixels onto SIMD array. Pixels are numbered with the index
of the PE they are assigned to.

such as 8x8 pixels/PE, resulting from a different process technology, as discussed in the

introductory chapter, would not experience this uneveness.)

Scanning Order of Level 3 Coefficients

While no explicit scanning order is specified in [28] other than that imposed by zero-trees,
the most obvious would be a raster scan of one subband at a time. For example, after en-
coding all the level 3 low-X, low-Y frequency (LL) coefficients, the ordering might continue

through all the level 3 HL, LH, and HH coefficients, and then on to filter levels 2 and 1.

Due to the level 3 subband mapping onto PEs, as shown in Figure 3.8, the encoding

order chosen involves an interleaving of subbands HL, LH, and HH in level 3. That is,

65

LL3 HL3 HL2 HL]
11211121]1}2)2
T
S131413(4(11]1]2]2 PE PE
31413|1413|3|4/|4
—
1(1}(2(211]1]2]2 PE PE
1(1(2]2]1]1]2]2 3 4
313/414|3(3(4)|4
3(3(4(413(3[4]|4
LH1 HH!

Figure 3.8: Mapping of subband coefficients onto SIMD array. Coefficients are numbered
with the index of the PE they are assigned to. Bold outlines separate coefficients at different
filter levels.

instead of having the SIMD array execute 3 separate sets of instructions which picked off
the respective coefficients of those subbands continuously, before moving on to the next
subband, only 1 set of instructions is used (o encode all 3 bands in 1 pass. Thus, starting
a raster scan of the PEs, say from the upper left corner, and scanning PEs across one row
at a time, the encoding encounters an entire row of HL coefficients, followed by a row
of interleaved LH and HH coefficients, and then another row of HLs, etc ... The raster
scanning across PEs is converted to a serialized stream of symbols for use in the arithmetic

coder by parallel to serial conversion circuitry described in the next chapter.

The price for this interieaving is a loss of the embedded property at small granularities.

66

Again, however, macroscopic scalability is not disturbed. Note that compression is tech-
nically not identical in this case, due to a second order effect in the arithmetic coder. If the
coder was presented symbols in separated bands, it would iearn and use their statistics in
order. The interleaving causes the coder to learn and use joint statistics for the conglomer-
ate. As it happens, this is suboptimal since coefficients have more correlation within their

own subband. However, this effect was found to be completely negligible.

Note that the level 3 LL subband is kept separate from the other 3. This is not because
of any violation of zero-tree ordering that might occur. Notice that a left to right and up to
down scanning of PEs always places an LL coefficient before its own 3 higher frequency
children (though not necessarily before the higher frequency coefficients in neighboring
zero-trees). The separation is maintained because the statistics of the LL subband is differ-

ent enough from the other 3 to impact the performance of the arithmetic coder.

Scanning Order of Level 1 Coefficients

The mapping of level 1 coefficients onto the PE array causes a lesser disturbance to the
scanning order compared to level 3. While all PEs contain coefficients in each of the 3 level
1 subbands, so a PE scan can be filled with coefficients of the same band, it is evident that
a raster scanning across PEs does not result in a raster scanning across coefficients. In fact,
4 passes are required to complete each of the 3 lev;el 1 subbands, with each pass skipping
every other column and every other row. Again, there is a negligible second order effect
on the learning pattern of the arithmetic coder, this time due to the less spatially localized

(as opposed to subband localized) delivery of symbols.

67

Interleaving of Dominant and Subordinate Phases

The last, and most dramatic, ordering change involves the interleaving of symbols from
adjacent dominant and subordinate phases. Because the interleaving is between symbols
of a dominant phase of one bit plane and the subordinate phase of the next lower bit plane,
a subtlety of the embedding/scaling scheme is elaborated which has so far been omitted

for clarity.

So far, subordinate and dominant phases have been grouped in kit plane pairs, with
the exception of the absent top plane subordinate phase. Further, modifications affecting
the embedded output property at various granularities have constrained scaling choices
to bit plane boundaries. However, the modifications described so far only spoil the em-
bedded property within a single dominant phase or a single subordinate phase. Nothing
prevents choosing scaling points at bit plane midpoints, between a subordinate phase and
its matching dominant phase. This is in fact the choice made here. From the standpoint of
embedding/scaling, this frees up the possibility of mixing up the order of symbols across

back to back dominant and subordinate phase pairs.

This is done by only scanning across PEs in the SIMD array once for each group or
subband of coefficients instead of twice. For each coefficient, any necessary dominant
symbol is encoded, followed immediately by a subordinate bit, if necessary. Note that
there are 4 possibilities of what categories of symbols.are encoded for each coefficient: none
- the coefficient is still insignificant and part of a zero-tree, just dominant - the coefficient
is insignificant but is a root or isolated zero, just subordinate - the coefficient was found

significant in a preceding plane, both - the coefficient is a new significant. Also note that,

68

at this point, the symbols being referred to are not the final ones represented in the output

bit stream, but instructions to the arithmetic coder which are translated to the output.

This ordering modification is motivated by the power used in the parallel to serial con-
version circuitry, described in detail in the next chapter. The serialization involves a lot
of clocking which would be duplicated if dominant and subordinate symbols are sent in
separate PE scanning passes. In addition, some power would also be wasted on the data
wires, because both dominant and subordinate symbols alone do not pack nicely into com-
pact representations. For example, separately there would be 5 dominant symbols: root,
isolated zero, positive significant, negative significant, none (merely a NOP instruction
to the arithmetic coder for this slot). The 5 choices would pack inefficiently onto 3 data
wires. Meanwhile, the subordinate list is an awkward 3 long: 1, 0, none. Sent together, the
two sets can be compressed to 9 choices on 4 wires: none, root, isolated zero, 2 kinds of

subordinate only, 4 kinds of new significant (2 signs, 2 subordinate bits).

This time, there is no second order effect on the performance of the arithmetic coder
due to learning pattern. The relative order of the dominant symbols is undisturbed, while
the interlaced subordinate bits do not contaminate the histograms which record dominant

symbol statistics.

3.3.6 Miscellaneous

Rounding vs. Truncation

With the fully embedded output of [28], the encoding may be suddenly truncated, say

when an exact target bit rate has been reached. With controlled video quality scaling deci-

69

sions made either at the encoder or fed back from a base station, the precision with which
wavelet coefficients are quantized is known on a per image (or frame) basis. This presents
the opportunity to round coefficients before quantization, instead of just truncating them.
While the gains here are small and thé optimum is shallow, compression of test images has
been used to pick § the value of the LSB as a rounding value added to coefficients before

quantization.

3.4 Extension to Time - Frame Differencing

3.4.1 Introduction

The algorithm presented so far is capable of compressing single images. While it could be
used to compress one frame of a video sequence at a time, this would not take advantage

of the substantial correlation between frames.

The first choice made toward extending the single frame algorithm to the time dimen-
sion is to rule out any form of 3D transform. That is, just as a 2D wavelet transformn is used
to concentrate signal energy into a few coefficients, a 3D transform, separable or otherwise,
could be constructed to do the same for groups of ccnsecutive frames. This possibility is
ruled out due to the prohibitive memory burden imposed by the need to collect several
frames at a time prior to the 3D filtering. Instead, the strategy is to remove correlations

between 2 frames at a time.

The following section discusses the possibility of using motion compensation. Here,
the simpler option of frame differencing without motion compersation is discussed. This

is the option implemented on the test chip.

70

3.42 Computational Cost

Simple frame differencing is computationally trivial. Before quantizing and encoding a
frame, a representation equivalent to the previous frame received by the decoder is sub-
tracted off. Only the difference is encoded. Note that, as convenience dictates, the sub-
traction may be performed in either the pixel or coefficient domain, since the wavelet fil-
tering is a linear transformation. The choice here is to subtract the wavelet representation
since the quantized and transmitted versions of frames in this representation are readily
available to the encoder. The only requirement is one frame buffer to store the encoded
coefficients transmitted in the previous frame. Performing the differencing in the pixel
domain would require the encoder to perform an extra inverse transform of the quantized

coefficients.

34.3 Compression

Frame differencing is also remarkably effective at removing correlations between frames.
Any static object or background in a visual scene is subtracted off. Most of the residual
energy is due to motion, in which case there will certainly be content around the object
edges, and some in the interior. However, some energy from the interior of moving objects
can still be removed without the use of motion compensation (eg. smooth object textures).

Of course, other residual energy may be due to lighting intensity changes or just noise.

Note that the author cannot confidently account for the EZW algorithm'’s success at
compressing frame differences as well as frames. An underlying statistical assumption of
the EZW algorithm is decaying signal energy with spatial frequency in natural images. It

71

seems obvious that this is less so for frame differences, where a lot of DC energy may be
removed, but high frequency energy around the edges of moving objects remains. It is
left for future mathematical and algorithmic work to determine whether the assumption is
still valid or if there is some other property which explains the algorithm’s success. Never-
theless, the algorithm’s compression of frame differences is spectacular, as demonstrated

below.

3.4.4 Synchronization and Error Recovery

As described so far, the algorithm might begin encoding at some first frame after a system
reset and continue with frame differencing indefinitely. There is no problem with regard
to integrating numerical errors due to limited precision and truncation. This is prevented
by the feedback of subtracting previous frames just as the decoder is receiving them, after

the effects of rounding, truncation, etc ...

However, as described in the previous chapter, there is a problem with high bit error
rates expected in wireless communication and synchronization loss. The decoder needs
to know exactly what symbols have preceded any point of an encoding to know how to
proceed. This is true because of the state of the arithmetic coding [37], the state of the
symbol histograms, the place in the PE scanning order, etc ... Clearly, an error burst which
the degree of error correction coding used cannot recover from will result in a complete

loss of data afterward.

To limit the losses due to uncorrectable bit errors, the encoding process is periodically

reset. At the reset points, frame differencing is abandoned for one frame. The first frame

72

of each group is encoded in its entirety. In addition, both the arithmetic coder state and its

histograms are reinitialized.

These actions enable the decoder to acquire fresh data uncontaminated by errors in
the previous group, so long as the decoder can tell where the new data stream begins. To
assist with this, the encoder chip provides an extra signal to the sensor’s transmitter. The
signal marks the reset point between the last frame of one group and the first frame of
the new group. The transmitter can use this event to trigger the flushing of any buffering
used, including the possible use of a last padded packet. In addition, it is assumed that
the next packet header is marked with a flag informing the decoder at the base station that
a synchronization reset point has been reached. The decoder can then also flush all of its

state and begin decoding from scratch at the first bit of the flagged data packet.

For example, for the test algorithm and chip the choice was arbitrarily made to reset
the encoding every 16 frames. With a frame rate of 30/sec this results in a maximum loss
of about 1 sec of data. There is a tradeoff here. More frequent synchronization points
reduce the maximum data ioss. However, each synchronization point involves the coding
of an entire first frame, which is more expensive than the coding of succeeding frame
differences. Therefore, there is an associated losz of compression. An indication of the
relative cost of the lead and differential frames can be seen in the example bit rates of
Table.3.3. (The bit rates are taken from a test example given bélow.) This tradeoff is subject
to purely application specific considerations. Note, however, that there is no reason this
choice cannot be made on-the-fly with possible feedback from the base station, just as the

scaling of quantization and bit rate.

73

Frame # | Output Bits |
1 6574
2 1631
3 2450
4 1656
5 1232
6 1752
7 1299
8 1534
9 1717

10 1575
11 1443
12 1542
13 401
14 543
15 1408
16 1277
Table 3.3

Number of output bits for frames from a 16 long synchronization group shows the relative
cost of the lead frame and differential frames. These output bit rates are for a test example
whose PSNR performance and visual quality are given later.

3.4.5 Miscellaneous Modifications

Two changes are made to the frame compression algorithm specifically to accommodate

the encoding of frame differences.

Empty Bit Plane Flags

The removal of a lot.of low frequency signal energy by the use of frame differ.encing results
in a high probability that several top bit planes will be completely insignificant. These are
bit planes for which, even in a whole image, only low frequency coefficients have much

chance of being significant. The empty bit planes would consist only of zero-tree root

74

symbols for each of the LL subband coefficients at the top filter level.

This is not a large cost because the arithmetic coder would quickly learn the high prob-
ability of the root symbol and encode a succession of them fairly cheaply. Nevertheless,
it is a trivial matter to short circuit this cost by preceding bit planes with a 1 bit flag in-
dicating whether the plane is empty and can be omitted. In fact, the algorithm generates
empty flags until the first significant bit plane, and one non-empty flag for that first plane.
After the first significant plane, flags are not included for the remainder of the frame, and

all succeeding planes are encoded normally.

The most important berefit of this addition is in the case of empty frame differences
resulting from no motion in the video stream. The previous chapter addressed techniques
which can be employed to optimize system performance during prolonged periods of no
motion. These techniques are not implemented because they relate to other system com-

ponents and involve application specific tradeoffs.

However, the empty bit plane flags do address the case of isolated or small numbers of
empty frame differences during short periods of no motion. Note that the cost of encoding
an empty frame has been reduced to 1 bit per plane (with a maximum of 8 bits). Of course,

the same mechanism marginally improves the compression of mostly empty frames.

Image Mean

In the same vein as above, the image mean is not coded for empty frame differences. The
image mean is always coded for the lead frame of each synchronization group, and for

sucreeding frame differences which contain a significant plane.

75

3.5 Video Compression Results

Results for the entire video compression algorithm are shown below. These results are
for the real algorithm implemented on the test chip. C code which emulates the encoder,
and a matching software decoder, is given in Appendix A. (The C code generates output
8 times bigger because data is saved in ASCII. This is a debugging aid leftover). The
algorithm includes all the modifications described above including the use of the 5 tap

filter, 3 subband levels, 12 bit integer precision, and 16 frames per synchronization group.

Figures 3.9 and 3.10 show compression results for different scaling choices. The two
columns of images are the lead and end frame from the same synchronization group for
corresponding scaling choices. The video sequence is a head and shoulders sequence with
little motion. Table 3.4 gives PSNR results for the compressed images shown. Figures 3.11
and 3.12 and Table 3.5 show similar results for an outdoors scene with a great deal of mo-
tion, including camera pan, rotation, and zoom. The relative results for the two sequences

underline the need for motion compensation.

Compression || PSNR

Ratio Frame 1 | Frame 16
7 44326 | 44.626
12.8 43.264 | 43.594
238 40900 | 41.359
49 37502 | 37.885
115 | 33.494 | 33.773
300 | 29.831 29.851
967 | 26.120 | 26.169

Table 3.4

PSNR results for head and shoulders sequence. Frames 1 and 16 are the first and last
frames of one synchronization group.

76

Figure 3.9: Compressed frames of head and shoulders sequence. Left and right columns
are first and last frames of one synchronization group. From top to bottom, the rows are:
original images, compression factor 7, compression factor 12.8, and 23.8 .

77

Figure 3.10: More compressed frames of head and shoulders sequence. Compression fac-
tors: 49, 115, 300, and 967 .

78

Figure 3.11: Compressed frames of outdoors sequence. From top to bottom: original im-
ages, compression factor 2.6, 6.3, 12.2 .

79

Figure 3.12: More compressed frames of outdoors sequence. Compression factors 26.7 and
67.

Compression PSNR

Ratio Frame 1 | Frame 16
2.6 40496 | 40.176
6.3 35.156 | 35.194
12.2 31412 | 31.613
26.7 28.059 | 28.067
67 24574 | 25.045

Table 3.5

PSNR results for outdoors sequence.

3.6 Motion Compensation

3.6.1 Introduction

Motion compensation before frame differencing is expected to aid compression perfor-
mance, especially for motion which can be well modeled as translational. This is ideally
the case for objects moving parallel to the field of view, and for camera pan. The bene-
fits are the removal of more signal energy of moving objects, both high frequency around

edges and all scales in the object interior.

Use of motion compensation is not included in the test chip. Further, motion compen-
sation itself is a substantial subject of study. No attempt is made in this thesis to optimize

this technique for low power or to describe it in detail. The reader is referred to [20] [39].

3.6.2 Memory Requirements

Inclusion of motion compensation on the test chip was ruled out due to memory area costs
already exacerbated by the coarse implementation process technology. Without motion
compensaticn, the test chip requires 3 separate frame buffers: previous frame - used for
frame differencing, current frame - used as workspace for intermediate results and buffer
for coefficients being sent to the arithmetic coder, next frame - used to load pixels of the
next frame in parallel with current frame encoding. The inclusion of motion compensa-
tion would raise this to 5: nexi frame - same function, current frame - current frame a.nd
workspace, previous frame coefficients - buffer holding outgoing coefficients for the arith-
metic coder, previous frame quantized pixels - used as a reference for motion cornpensa-

tion, previous frame shifted - used as workspace to try varying motion vectors.

81

The increase in memory capacity requires some explanation. First, note that with mo-
tion compensation, the current frame workspace can no longer double as the outgoing
coefficient buffer. With simple frame differencing, the algorithm has almost no work to do.
In fact, more than 9% of the computational throughput in the test chip is spent idle. This
throughput would normally be reserved for the considerable computational needs of mo-
tion compensation. Therefore, in the test implementation, the computation of the current
frame and its processing through the arithmetic coder can be serialized. After filtering,
frame differencing, etc ... the resulting coefficients remain in the currenit frame buffer, from
which they aze shipped to the arithmetic coder over the duration of the remainder of the
frame. With motion compensation, the throughput of the entire frame is required to pro-
cess the motion compensation step, so the coding must be parallelized from a separate
buffer. Note that, because of energy efficiency issues as discussed above, it would not be
acceptable to speed up the arithmetic coder so it could process a frame in much less than

a frame period.

Second, motion compensation requires that the previous frame information be kept
in both wavelet coefficient and pixel format. The wavelet domain is required for parallel
coding, as just discussed. The pixel domain is required because motion compensation is
fundamentally a pixel domain operation. Note therefore, that the inverse transform opti-
mized out with simple frame differencing is no longer avoidable. Motion compensatiém
must also be with respect to the previous fran.e as the decoder has access to it. The quan-
tized coefficients must be inverse transformed to obtain this representation. However, this

extra cost is swamped out by the motion compensation itself.

82

Finally, a separate copy of the previous frame must be kept, as it is shifted around to
identify optimal motion vectors, because shifting operations are irreversible (with just one

buffer, data can be lost at the image edges after a shift by a trial motion vector).

3.6.3 Future Work

However, motion compensation cannot be completely ignored. As discussed above in
this chapter and in the previous chapter, expected trends in computational and communi-
cation costs make techniques which trade local resources for communication bandwidth

desirable. Motion compensation is an important such technique for video compression.

Therefore, high level architectural decisions are made in the next chapter, and architec-
tural hooks are included in the design, so that motion compensation can easily be added,
as process technology and memory area allow. In addition, two avenues for future work
are suggested below which may play an important part in optimizing the use of motion

compensation for low power.

Temporal Motion Vector Prediction

Motion vector estimation is computationally very expensive. For each frame, image data is
partitioned into small blocks of pixels. For each such block, an attempt is made to identify
an optimal motion vector which predicts the visual content of the block from another block
known from the previous frame. Optimality.is measured by the amount of residual signal
energy remaining from the difference between the translated blocks. The resulting coding
cost is for the motion vector itself and a much reduced block difference from the previous

frame (at least if there was significant motion).

83

Recent studies [21] [40] [41] [42] suggest that a significant way to reduce the cost of
identifying motion vectors is to predict them from previous frames. The studies indicate
that motion vectors have good correlatior: from frame to frame. This may seem obvious
by simply considering the continuity of the motion of real objects in a scene. However,
there are complications from local minima, moticn vectors identified by the residual en-
ergy metric which are fleeting coincidences but not real motion vectors of objects. These

kinds of minima are not expected to have good correlation across frames.

Nevertheless, the studies indicate that motion vectors from previous frames can be
good starting hints for new searches. In this case, computational cost could be reduced to
identifying motion vector corrections in small wi _ows around the values of the starting
points. Presumably, a compression benefit is also obtainable from coding vector correc-

tions instead of full vectors.

Note that, again, there is a tradeoff involving the frequency of synchronization resets
since, at reset points, full motion vectors must be sent to the decoder. On the other hand,
there is no reason why the encoder cannot still reduce its computational costs by taking

hints from vectors used before reset points.

Global Motion Vector Sets

Typically, full blown motion compensation attempts to assign individual motion vectors
to each small image block before comparison to the previous frame. This is fundamentally
incompatible with the SIMD architectural model which serves the rest of the algorithmic

needs so well. Efficiency is maximized for a SIMD architecture if all elements are doing

84

the same thing. However, independent block motion vectors require pervasive serialized

exceptions to be made as each block vector is corrected from frame to frame.

Instead, a study is proposed to ascertain the utility of using a small number of global
motion vectors. For each frame, a few possible motion vectors would be identified. Each
pixel block would have the choice of using one of the vectors or opt out entirely and default
to the (0, 0) vector (simple frame differencing). This would greatly reduce computational
costs since all elements would shift and compare all blocks in the same way, for each global

vector.

In addition, there could also be compression benefits from using a limited set of mo-
tion vectors. Instead of coding vectors for each block, the global vectors would be encoded
once, along with a block to vector choice map. Further, the coding of the vector choice
maps may benefit from the same scale-hierarchical structure used in the rest of the algo-
rithm. That is, one might expect that if the real motion vector of an object was identified,
there would be good correlation of the vector choices of nearby image blocks which cover

that object.

There is good reason to expect a payoff from such a scheme. A few global motion
vectors cover a great deal of the benefit one might expect from motion compensation for
natural video sequences. Clearly, camera pan is covered supremely well, in addition to
the motion c;f small numbers of large objects in a scene. Not cover;ad would be a lot of
haphazard motion of many real objects, or incidental benefits due to block matches which
do not represent real motion. On the other hand, a few globally optimal motion vectors

may be much more likely to identify real motion, as opposed to accidental local minima.

85

\\
Ny

Figure 3.13: SIMDification of motion vectors with 2 global vector choices. Upper figure
is a hodge-podge of independent block vectors. Below is the result of using just 2 glob-
ally optimal vectors. (For clarity, vectors are drawn with block sized magnitudes. Actual
motion vectors have at least pixel resolution.

86

This would enhance the predictability of these vectors in succeeding frames, as suggested
above. Figure 3.13 shows an example of how motion vectors might be constrained by
the use of global vectors, in a manner compatible with a SIMD architecture. Of course, a
minimum benefit threshold, or some other heuristic, would be required to weed out stale

vectors and trigger a full search for new motion.

3.6.4 Relative Power Estimate

In order to get a qualitative feel for the extra power cost of using motion compensation,
a rough, back of the envelope estimation is used to compare the cycle counts for motion
compensation and the rest of the algorithm, whose cost is included in the test chip’s mea-
sured dissipation. Note that the total power with motion compensation would not be the
chip power multiplied by the factor estimated here. The chip power includes components
which are unaffected by the use of motion compensation, such as: new pixel loading, EZW
symbol parallel to serial conversion (actual power is reduced by the extra compression of
the motion compensation!), arithmetic coding (also reduced!), SIMD controller and periph-

eral circuitry, etc ...

A qualitative estimate for the instruction count of motion compensation is based on
the structure of the SIMD array, described in the next chapter, and the following list of

assumptions and parameters:
e A scheme like the global motion vector sets suggested above is used, with 2 such
vectors for this example.

e Modon vector magnitudes are limited to 32x32 pixels.

87

e Frame to frame motion vector prediction is used. The cost estimated here is that of
searching for motion vector corrections in a 7x7 pixel window (chosen as an arbitrary
example) centered around each previous frame vector. Figure 3.14 shows an efficient
pattern of image shifts which can be used to cover the search window. The arrows
indicate the shifts performed by the entire SIMD array. At each vector, all blocks are
compared to the current frame and residual energy is measured to find the globally
optimal motion vector. Only 7 shifts by the magnitude of the entire vector need to
be performed. Most of the shifts are incremental single row or column hops. Further
improvement could be obtained by executing U incremental turns. This could be at
the cost of some accuracy loss by dropping pixels at image edges, or adding gutted
dummy PEs at the SIMD array edges with enough memory to cache the shifting

spillover.

The estimate for this computation is 25K SIMD instructions per frame. This includes
the cost of the inverse transform, getting residual energy measures out of the array to
the controller, and all shifting and arithmetic operations for both motion estimation and
compensation. This is compared to about 3.3K instructions per frame for the rest of the

algorithm. The factor is less than 8.

gorre]cl:tion f I
Window | 11 oo o,
VYT

N

Previous Frame %/1 1 1 1 f—»
Vector \\/,/ ///r/y/”/'

Figure 3.14: Solid arrows show combinations of long and short image shifts which cover
a 7x7 pixel window. The window is used to search for the optimal motion vector around
the previous frame’s (dashed arrow).

89

Chapter 4

Architecture

4.1 Introduction

If not using adiabatic charging, the central mantra of low power architecture design is

equation 4.1.

Power = Z lCsza 4.1)

all circuits
where C is the capacitance of any circuit element, V is operating voltage, f is clock fre-
quency, and « is the probability that a circuit node will change value in any given clock

cycle. V2 becomes VAv for low swing signals.

The most important architectural contribution to low power operation is the minimiza-
tion of physical capacitance, 3C. Not only does this linearly reduce power, it increases
circuit speed and typically reduces area. In contrast, techniques which lower power by re-
ducing a sometimes use more area [43] (raising Cs, but reducing the amount of capacitance
actually switched per cycle).

91

Finally, reducing the V2 term (voltage scaling) involves a tradeoff between power and
speed. The quadratic reduction in power due to lower V is offset by, ideally, a linear re-
duction in the speed of circuits. To maintain some desired throughput, more circuitry, cr

C, must be used in parallel, which costs area.

Note that parallel operation of slower circuitry is subject to the algorithmic parallelism
available. The constraints are not only functional correctness, but the circuit overhead
imposed by parallelism, which detracts from the maximum quadratic gains of voltage
scaling. Overhead may take the form of distributing or merging input and output data,

suboptimal functional granularities, etc ... [43].

In addition, it is important to note the effects of device threshold voltages, the principal
physical limit to voltage scaling. As operating voltage approaches device thresholds, the
speed of circuitry falls off more rapidly than the linear ideal, again reducing the gains of
voltage scaling. Device modeling and behavior is extensively studied in the literature, and
the reader is referred to [44] [45] [46], however, a very simplistic relationship is given in
equation 4.2. In the test chip, voltage scaling limits are arbitrarily set by the implementa-
tion technology’s device thresholds. More generally, threshold voltage reduction is itself
subject to limits imposed by subthreshold leakage, which increases exponentially with

lower thresholds. Loss due to leakage must be kept small for equation 4.1 to remain valid.

(V = Vr)?

- 4.2)

Circuit Speed o<

The literature derives detailed power minima in the face of known thresholds. This is

the crossover point between reduced V2 and the larger than quadratic offsetting increase

92

in Cs associated with parallelism required to keep up with the slower circuits. The impor-
tant realization is that, as operating voltage approaches device thresholds, voltage scaling
bottoms out. If more parallelism is algorithmically available, other means must be found
to exploit it. In this vein, unusual circuit examples are given in the next chapter which

reduce Cs at the expense of slower circuits!

411 SIMD

Fortunately, the compression algorithm, especially after the modifications described in the
previous chapter, falls into a category known in the algorithm community as “embarrass-
ingly parallel”. In addition, the copious parallelism exhibits a lot of data parallelism, with
very localized communication patterns, if data is correctly organized. A fine granularity
SIMD array is a natural architectural choice. No overhead is paid for the independent
instruction execution, interprocessor synchronization or handshake, addressable commu-

nication networks, etc ..., of more complex parallel architectures, such as MIMD.

As already shown in Figure 3.7, the compression algorithm is mapped onto a SIMD ar-
ray of processing elements, such that small blocks of neighboring image pixels are assigned
to one PE. Each PE contains both the logic and memory required for its image block. One
effect of this partitioning is to split up the total memory of the architecture intc very small
subarrays. This fine granularity benefits the bandwi.dth out of the total memory and the
energy cost per load or store. However, the small subarray sizes also impose some cir-
cuit design challenges, especially with regard to area, since bit line peripheral circuitry is
amortized over few memory elements. These issues are discussed in the next chapter.

93

4.1.2 SIMD vs. Dataflow

While the fine granularity SIMD array is one obvious choice, a dataflow-like architecture,
which is in widespread use in modern dedicated DSP systems, must be ruled out. Here,
dataflow means that the graph of operations which make up the algorithm are flattened
out in space, with data flowing through a network of circuits which implement 21l the
required computations. Typically, heavy use of pipelining raises throughput, which is

desirable to enable voltage scaling, just as many parallel PEs in the SIMD array do.

The attraction of a dataflow type architecture is the inherent, hard wired instruction
sequence which is embodied in the nodes and interconnections of the circuit network.
This saves the considerable cost of distributing instructions, which is required in one form
or another for any architecture that reuses circuits to unfold operations in time rather than
space. Although, it should be noted that unfolding complex graphs in space can be difficult

and result in inefficiencies due to merging data streams widely separated in area.

The use of any dataflow architecture is ruled out for the simple reason that it is incom-
patible with the algorithmic demands of motion compensation. Motion compensation is
a global optimization, which means that all elements of an image frame must be present
and involved in the operation at the same time. Further, motion compensation is the first
algorithmic s.tep. The filtering, quantization, and coding of any imagé element cannot start
until the entire motion compensation operation is complete. This is incompatible with a
dataflow structure which pipelines the data in sequence through a one way network of
circuits.

94

16

PE | PE PE| PE

PE| PE PE| PE

, ?
- Arith. - —=| Sequencer [«—
Coder

PE| PE PE | PE

PE| PE PE | PE
16

N

32

Figure 4.1: Block diagram of architecture shows 32x32 PE array and peripheral circuitry,
including arithmetic coder and sequencer.

4.2 Array Implementation

421 Overview

Figure 4.1 shows a block diagran'; of the entire architecture. The SIMD array consists of a
square arrangement of 32x32 PEs. A granularity of 4x4 pixels per PE results in the 128x128
resolution of the test chip. The SIMD array is responsible for the computation, communi-

cation, and memory requirements for most of the algorithm, including motion compensa-

95

tion, frame differencing, wavelet filtering, quantization, and zero-tree coding. Peripheral

functions are handled by the separate arithmetic coder and the controller/sequencer.

The controller decodes a microcode instruction stream for the PE array, generates PE
timing signals, controls loading of incoming pixels and unloading of outgoing symbols
to the arithmetic coder, and keeps track of global state used to sequence through the mi-

crocode.

Communication is served by 4 separate and independent networks distributed through-
out the PE array. These are described in detail below. They are: a one hop north-east-west-
south (NEWS) network, a serial to parallel converting pixel load network, a parallel to
serial converting unload network for coded EZW symbols going to the arithmetic coder,

and a one bit global wired or used to return control information to the sequencer.

The SIMD array is split into two equal sections of 32x16 PEs. The trench separating
the two halves carries the backbones for the pixel, EZW, and global OR networks, as well
as control and handshake signals between the controller and arithmetic coder. The gap
separating the two array sections is a bit awkward from a layout/floor-planning stand-
point since PE boundaries are designed to allow simple tiling with no additional glue. The
alternative would be to leave the array unbroken and place the communication network
backbones along one side of the array. However, the special layout treatment at the trench

is warranted by the power efficiency in the communication networks, as described below.

96

PE PE |- PE
PE PE |- PE
PE |« PE |~ PE |-
v a4+— T ju— — | Ef]<_/§- Sequencer |-a—
PE PE |- PE
PE |- PE PE
PE [« PE |- PE |-

Figure 4.2: Block diagram of pixel load network.

4.2.2 Pixel Load Network

The pixel load network, shown in Figure 4.2, must distribute serially incoming 8 bit pixels
to the PE array. A separate communication network is required because the pixels arrive
continuously over an entire frame time (to allow the imager and ADC to operate as siowly

and energy efficiently as possible).

The data stream is parallelized in 2 ¢imensions for delivery to the array. The 1st di-
mension conversion is performed in the trench backbone. One row of pixels at a time is

collected in the backbone and delivered to the appropriate row of PEs. The PEs hold the

97

incoming pixels in special registers until all PE rows have received data, which completes
the 2nd dimension of parallel conversion. Once complete, a single SIMD instruction loads
the holding registers into the appropriate PE memory locations. Note that the loading in-
structions are not entered in the microcode, the controller generates them automatically
and transparently to the microcode. This is desirable because the loads are required at
precise times, while the microcode may be executing branch instructions that make syn-
chronization uncertain. Circuitry which enables trivial implementation of the transparent

pixel loading is described in the next chapter.

Note that each load of pixels into the array memories delivers 1 of 16 pixels of the image
block each PE is assigned. 16 such passes per frame are required to load an entire image.
Clearly, the scanning order of incoming pixels is not a simple rastering. The combination
of 16 passes and uniform SIMD loading results in the scanning order shown in Figure 4.3,

which must be adhered to by the imager.

Serial to parallel conversion is parformed with busses and gated clocks rather than shift
registers, in order to save power. As each row is delivered from the backbone to a PE row,
the controller provides the specific PE row one clock edge to load the holding regsters.
Clock power is saved because clocks are not delivered all the time and not delivered *o all
rows along with row enables. While a shifting scheme would limit the distance traveled by
any da-\tum to just the right number of PE rows, and a wire in a'simple bus implementation
might span all the rows, some data power is also saved with the use of busses. First, the
considerable extra capacitance of shift register internal nodes is avoided. Second, busses

can be segmented to limit the needless wire lengths exposed to switching data. Circuits

98

9 10| 11|12} 9|10 11}12} 9110|1112
131 1415|161 13[{ 14| 15| 16| 13| 14[15} 16

9 (10| 11(12] 9 (10 11|12 9 |10 11| 12
13| 141 15| 16| 13| 14| 15| 16| 13| 14| 15| 16

13 14| 15 16(13| 14| 15| 16| 13| 14| 15| 16

Figure 4.3: 16 pass pixel scanning order to deliver 1 image frame to SIMD array. Pixels are
labeled with the pass they are delivered in. All pixels in pass 1 are raster scanned, followed
by pass 2, etc ...

which perform this segmenting are described in the next chapter. However, the placement
of the network backbones in the center trench is a coarse example of this concept. Busses
to the upper and lower halves are not connected. The controller routes rows of pixels to
one side or the other as appropriate. This is a simple way of cutting the capacitance seen

by data on these busses in half.

4.2.3 EZW Unload Network

The EZW unload network, shown in Figure 4.4, serially delivers 4 bit EZW symbols from
the PE array to the arithmetic coder. Again, a separate network is used in order to spread
the activity of the coder over the entire frame time. The structures and circuits used for
the unload network are the exact counterpart to those used in the pixel load network,
but in reverse. All the same ccmments apply with regard to use of busses, gated clocks,

segmented wires, and the central backbone.

The EZW symbol ordering described in the previous chapter is the counterpart to the
dicing of the pixel scanning order into 16 passes. In total, when taking into account the
ordering just referred to, the 8 bit plane maximum chosen, and the special treatment of
3 dominant symbol regions also described in Chapter 3, the maximum number of EZW

unload passes per frame is 109.

It may seem puzzling that the incoming pixels are delivered in the course of 16 passes,
while 109 are used to extract an already highly compressed output stream. The discrep-
ancy is that an overwhelming fraction of the EZW symbols are NOPs. This cannot really

be helped since, the arithmetic coder does not have information to predict where the NOPs

100

’

-— PE -— PE -— PE

-— PE -—1 PE -— FE
B T L A

Coder 4\— 4&— A— —

- PE -— PE -— PE

-~— PE -—] PE <-— PE

<-—— PE -— PE -— PE

Figure 4.4: Block diagram of EZW unload network.

will be. Fortunately, this also comes at a fairly small price. The throughput of the arith-
metic coder is minimally burdened by the volume of NOPs (more on this below), and a
large succession of identical symbols does not cause any power consuming switching on

the data busses. Only the associated clocking power is still spent.

Table 4.1 shows the encoding of the 9 symbols used onto the 4 wires. These symbols
are decoded, in some cases split into multiple sub symbols, recorded in histograms, and

entropy coded by the arithmetic coder.

101

Code | Meaning

0000 [NOP (part of a zero-tree)
001B | already significant

sub bit =B

1S1B | new significant

sign =S, sub bit =B
0100 | zero-tree root

0110 | isolated zero

Table 4.1
EZW symbol encoding.

4.24 Global OR Network

The global Or network, shown in Figure 4.5, is a one bit wired Or used to return control
information from the array to the sequencer. For example, the global Or is used by the
sequencer to poll the PEs for significant wavelet coefficients in order to identify empty bit
planes, as described in the previous chapter. The global Or network could also be used
to extract more localized information if combined with the PEs’ ability to determine their

own addresses, described below.

The labeling of this network as a global wired Or indicates functionality, not imple-
mentation. In fact, for latency reasons, only small segments are actually wired together,
and the entire network is precharged. There are a total of 65 wired segments, 32 upper and

32 lower half columns, and the backbone.

Each use of the network occurs over two microcode cycles, precharge and evaluate.-
During the first, the 65 segments are precharged in parallel. In the second, PEs leave off
or turn on evaluate devices attached to the column wires. Each half column is buffered

before triggering an evaluate device on the backbone, in a Domino fashion. Note that

102

PE [— PE [— PE |—

PE | PE |— PE |
PE |— PE |— PE
o o o { X X » Sequencer
—
PE | — PE |— PE |—
PE |—~ PE PE |—
PE |— PE |— PE |—»

Figure 4.5: Block diagram of wired OR network.

separate cutoff devices in each PE are dispensed with. Before precharge, all PEs turn off

their evaluate devices, under microcode control.

In addition to doubling as cutoffs, the evaluate devices can also act as keepers, if
needed. During prolonged periods of disuse, evaluate devices could be forced on un-
der microcode control. This would prevént high impedance column wires from leaking
charge, experiencing degraded voltage levels, and triggering massive dissipation losses in
the form of overlap currents in the buffers to the backbone. This usage is only necessary if

the sum of the device thresholds, |Vrp| plus Vry, is smaller than the operating voltage. If

103

<«—»| PE |« - PE » PE le——
|)
) i
e o o - PE - PE - - PE -————a e o o
1 [[
) Y y
-—— PE - - PE - PE [

Figure 4.6: Block diagram of NEWS network.

the sum is larger, the buffers effectively become Schmitt triggers, and no overlap currents

are possible.

4.2.5 NEWS Network

The one hop NEWS network, shown in Figure 4.6, carries all inter PE communication. This
includes pixels (during filtering or motion compensation), wavelet coefficients, and EZW

symbols or state information. The NEWS network also operates in a SIMD fashion. All

104

PEs transmit in the same direction at the same time. At the array edges, known values (all
0s) are supplied as inputs to the NEWS network to prevent floating voltages and spurious

overlap currents.

The NEWS network is capable of carrying full 12 bit values, though a very small pro-
portion of the traffic (wavelet coefficients) is the full data width of the PEs. (Pixels are 8
bits, and most zero-tree state information is 1 bit. No serious penalty is paid for this mis-
match. The NEWS clock wire must span all the bits anyway, and unused bits will typically
be zeroed out, avoiding data switching at those positions.) Normally, values would be
transmitted one hop per cycle. However, because of the omission of motion compensation
from the test chip, and therefore most of the NEWS traffic, the opportunity was taken to
save some area. The test chip time multiplexes the *?2 bit data onto 3 wires per direction,
taking 4 cycles per hop. This is a fairly small savings. The full 12 wires would be used
with inclusion of motion compensation. The cost estimate given in the previous chapter
for motion compensation assumes cone cycle per hop. (Not only would the throughput
be increased to meet the demands of motion compensation, power per transmitted word
would be reduced. Clock power would be reduced through fewer edges per word, and

data power through the bypassing of extra internal capacitances of shift stages.)

4.3 PE Implementation

4.3.1 Overview

A block diagram of a single PE is shown in Figure 4.7. Both memory and datapath are

12 bits wide, following the algorithmic considerations discussed in the preceding chapter.

105

Pixel l;etwork

Pixel Reg

!

Memory

— ALU Reg

!

>>

!

ALU EZW

Reg
Cond 1

Re
g ’(>>, <<, NOT, concat Cond

Y

Input
Result

EZW Network

Glol}al Or
A

NEWS Reg

:

NEWS Network

Figure 4.7: Block diagram of PE. Memory and datapath are 12 bits wide.

106

Each of the blocks shown is described in detail below. The pervading emphasis throughout
the PE design is on simplicity (in fact, minimalism), both for power and area reasons.
Section 5.3.6 shows the timing for PE control signals which are identically distributed to
the entire array from the sequencer. PE timing is postponed until after the description of
circuits which use those control signals. Some issues relating to instruction distribution

are discussed later.

4.3.2 Memory and Pixel Load Register

The PE memories are hardly more than register files. In the absence of motion compensa-
tion, 3 frame buffers are required to execute the algorithm, as developed in the previous
chapter. With 4x4 pixels per PE, this amounts to 48 words, 12 bits wide. The memory
serves to store the previous, current, and next frames, as well as all required temporary
workspace. A SIMD array cycle is split into read, modify, and write portions, so the PE

memories perform 2 memory operations per cycle (1 read, 1 write).

It should be noted that the wavelet filtering operation requires more workspace than
the current frame allotment. This is handled in a somewhat esoteric way. The start of the
computation for each frame is synchronized to the arrival and delivery of the last pixel
raster pass to the PEs. These are placed into the next frame buffer. By convention, this data
should be transfered to the current frame buffer for encoding since the next frame buffer
must be made available to the pixel loading process which continues at the first pass of the

succeeding frame.

However, because the pixel load holding registers collect rows of data until an en-

107

tire pass is completed, the next frame memory locations, inside the PE register files, are
not needed for % of the frame time. Fortunately, the wavelet filtering operation is small
enough to fit comfortably in this window. Therefore, the next frame buffer is transparently
pressed into service, without interfering with the background loading process. Note that,
tranisparently means it is up to the microcode to guarantee this condition is satisfied. No

special circuitry is added to ensure against data collisions.

This situation would be modified in the presence of motion compensation. The filter-
ing step occurs after motion estimation and compensation, which takes up most of the
frame time. Clearly, the next frame buffer is no longer available. However, after motion
estimation is complete, the extra shifted, previous frame buffer is no longer needed for its

main purpose, and can be used for extra workspace.

The memory is constructed from pseudo DRAM cells in the test chip (the process used
is a vanilla, logic only one). Circuit and implementation details of the DRAM elements
and operation of bit and word lines is presented in the following chapters. The issue of

DRAM refresh is addressed below with the array controller.

Of architectural interest in the memory design is the transparent loading of incoming
pixels. As with the dual use of the next frame buffer, no special circuitry is used to prevent
collisions between pixel loads from the holding register and normal microcode triggered
memory accesses. This is accomplished through the .use of a pseudo second memory port.
'The DRAM is not really dual ported, however, the bit line power optimization technique
described in the next chapter incidentally results in the formation of a back door into the

register file. The operation of this feature is described then.

108

43.3 ALU Register

The ALU register is used to preload the second operand reauired for some ALU opera-
ticns. This is necessary because there is only one read phase per cycle. The ALU register
is often used as an accumulate register. Many sequences of arithmetic operations can keep
reading fresh data, combining it, and storing the result directly back to the ALU register
with no intermediate fuss. To aid the efficient repeated use of the ALU register, its con-
tents can be optionally right shifted one bit before delivery to the ALU. Sign extension is
used to perform the right shift. This shifting is often used in sequences which perform

multiplication, such as required by the wavelet filtering.

43.4 ALU and EZW Unload Register

The ALU can perform 3 different kinds of operations: logical, arithmetic, and EZW spe-

cific. Multilexers are used to select the desired output, as shown in Figure 4.8.

Logical

As with the ALU register’s contents, the input provided by the read bus can be optionally
manipulated before use by the ALU, however with considerably more choices. The input
can be: right shifted one bit (sign extended), left shifted one bit (LSB is zero filled), have
the LSB replaced by the contents of the 1 bit conditional register (described below), and be

inverted.

Inversion is orthogonal to the other 3 choices and is performed last. That is, the input

can be shifted and then optionally also inverted.

109

INV

<<
Input
Bus >>
CONCAT

Output

ALU Reg 9 >> |J_/

EZW —

Figure 4.8: ALU block diagram shows the 3 modes of operation.

The other 3 choices are mutually exclusive. This decision was made because the same
cycle use of more than one of the 3 options was considered rare. The benefit is the saving
of an instruction signal (the concatenation of the conditional register to the bottom of the

input word is signaled by the assertion of both shift down and shift up signals).

The logical mode of ALU operation simply routes the shifted and inverted input to the

result bus, bypassing the rest of the ALU.

Adder

The 12 bit adder is the only arithmetic unit in the PE. Its implementation is covered in
the next chapter. Multiplications are unfolded into sequences of shift and add operations,
aided by the one bit shift options on both inputs. Reliance on the limited shifters to se-

quentially perform multiplication is a great power and area benefit. Multiplication is only

110

performed in the wavelet filtering step, which is a small part of the computation, even
without motion compensation. On the other hand, barrel shifters, and especially muitipli-
ers, are large, complex circuits, which would needlessly occupy area and load ALU input

and output nodes most of the time.

Subtraction is performed in conj'inction with the input inversion. Note that only the
input can be subtracted since the ALU register cannot be inverted. As can be seen in the
microcode in Appendix C, this restriction does not resuit in any inefficiencies. A study of
microcode examples was used to optimize out a possible ALU register inversion. Several
cases are used to compute the adder’s carry in. Normally, the carry in is 0. If both operands
are being right shifted (multiplications), the carry in is set to the AND of the two discarded
LSBs. This action aids rounding. For subtraction or increment operations, the sequencer

can force all PE carry ins high.

EZW Specific

After wavelet filtering and frame differencing, coefficients are prepared for quantization
and coding. Two’s complement coefficients are separated into sign anid magnitude, mag-
nitudes are rounded as appropriate for the number of bit planes chosen, and sign and
magnitude are packaged together into one 12 bit word along with state information such

as bits which flag coefficients already found significant.

The coding of each bit plane is split into two portions. The first collates zero-tree root
information by working from high to low frequencies. That is, the state and significance

of coefficients is propagated up from leaves to zero-trees roots to find the highest level at

m

which insignificant zero-trees can be represented and coded. The second portion uses the
state of each coefficient and its possible inclusion in zero-trees to code instructions for the
arithmetic coder. This second stage progresses from low to high frequencies, as dictated
by the algorithm. In the course of the second stage, results of the first stage are propagated
back down the trees to inform coefficients about their inclusion in insignificant zero-trees

at higher levels.

The propagation of zero-tree information both up and down the tree involves one bit
logical operations and is handled by the conditional register, as described below. The
coding of symbols during the downward stage involves more substantial opcrations, and
these are hardwired in specialized iogic which constitutes the ALU’s 3rd distinct mode. In
this mode, the ALU performs all relevant computations in a single cycle, at the cost of a

modest amount of special logic.

The EZW logic takes coefficient magnitude and state information, assembled in the
ALU register and the input bus, and produces two results. The 4 bit arithmetic coder in-
struction, shown in Table 4.1, is routed to the EZW holding register. Once loaded with a
pass worth of symbols, those holding registers throughout the SIMD array are subject to
control by the arithmetic coder, which serially raster scans the PEs and processes the sym-
bol stream, as described previously. The holding registers have tristate outputs which are
sequenced one row at a time to perform the first dimension of parallel to serial conversion

(the second occurs in the trench backbone).

The second ALU result, routed to the result bus, is the new state for the coefficient. This

is written back to the current frame buffer and will be used again in succeeding bit planes.

112

Table 4.2 shows the format of inputs to the EZW logic. Table 4.3 gives equations for the

outputs computed.
Source Bit || Name Function
Field
ALUReg | 11 || FND already found significant
10:3 || BITS|7:0] | current bit plane is at MSB
2 0
1 SGN coefficient sign
0 ROOT could not be a zero-tree root
InputBus | 0 poOT already part of a zero-tree
Table 4.2

ALU input sources and values for EZW logic mede.

Output Equation

NOP POT + FND
NEWFND | FND + BITS[]]
ezwa SGN * EZWReg[3]

EZWReg[3] | BITS[T] + FND
EZWReg[2] | NOP * ezw2a
EZWReg(l] | FND + ROOT
EZWReg[0] | NEWFND + BITS[6]
result(11) NEWFND

resuit{10: 3] | BITS[6:0], 0

result[2 0

resule1 SGN

result[0 POT
Table 4.3

ALU output equations for EZW logic mode. Includes intermediate shared terms in top
lines.

113

43.5 NEWS Register

Despite its name, the NEWS register serves 3 purposes. The obvious one is to interface to
the NEWS network. A straightforward assortment of muxes and tristate buffers is used to

route data to and from the appropriate direction.

The second function is to enable PEs to execute conditional branches of the instruction
sequence. This is accomplished in conjunction with the conditional register, which is used
to compute a condition flag based on appropriate local conditions for each PE. The NEWS
register can then conditionally load or ignore a particular result based on that value (ie.
the conditional register acts as a load enable for the NEWS register). Note that two distinct
modes are available for loading the NEWS register, the one just described, and an override
mode in which the sequencer forces all PEs to ignore their conditional registers and load

NEWS regardless.

The final utility of the NEWS register is as a generic, 1 word, low power cache. That is,
intermediate values to be used in the near future, or used frequently, can be stored in the
NEWS register instead of a workspace location in memory. Access of values stored this

way save the power of traversing bit lines and bit line peripheral circuitry.

4.3.6 Conditional Register

The conditional register also serves 3 purposes. It complements the NEWS register for
conditional instruction execution by acting as its (overrideable) load enable. Secondly,
the conditional register is used to compute arbitrary 1 bit logical operations, for example,

zero-tree significance information. Finally, the register controls the evaluate/cutoff device

114

cona_
load_Z l_

result[1] cond cond
d ¢ {>0
result[10] ’J\ (o)
= r
foad__ —
] sell cond clk
cond

Figure 4.9: Functionality of conditional register.

Possible conditional register functions
cond = result[10}

cond = result{1]

cond = cond * result[10]

cond = cond + result{1]

Table 4.4
Functionality of conditional register.

wired to the global Or network.

Besides being wired to the NEWS load enable, functionality is facilitated by making
the conditional register available for write back into an input word. As described above,
the 1 bit flag can be concatenated to the bottom of the input word to the ALU. In addition,
the conditional register can be loaded in a number of ways, as shown in Figure 4.9 and
Table 4.4. With a minimum of logic and instruction signals, a great deal of flexibility is

provided to load and compute conditional values.

New inputs can be taken from two different bit positions of the ALU result. The result

bus is sourced so that incoming data can benefit from optional shifting and inversion. Bit

115

positions 10 and 1 (out of 11 to 0} are chosen for two reasons. The separation of the two
choices makes 6 of the 12 bits available in a single cycle (in combination with input up or
down shifting). Second, the two choices are strategically placed near positions of interest:
sign bit, MSB, LSB, etc ... New inputs from either location can either load fresh data, or
be logically combined with the current value. Note that for flexibility, both AND and
OR functions are provided as operators. However, for simplicity, only one or the other
is available at each bit position. The coupling of AND with bit 10, and OR with bit 1, is
combined with careful placement of relevant bit operands inside words to achieve very
efficient use of the resources. This optimization is due to the moderate cleverness of the

author (enough to carry it out, not enough to have found a better use of his time).
4.3.7 Address/Position ROM

Algorithmic requirements make various operations dependent on the location of a PE in
the array. For example, filtering treats image edges specially, and mapping subband coef-
ficients onto groups of 2x2 PEs, as shown in Figure 3.8, depends on the location of a PE in
its group.

To satisfy this requirement, a 49th read only memory location is included in the register
file. The contents of the ROM word, whose value varies from PE to PE, are shown in
Table 4.5. Following the discussion above, the flags are positioned near bits 10 and 1, and
it should be remembered that their use can {nclude convenient inversion. (Note that access
of bit positions 10 and 1 themselves is slightly more power efficient than their neighbors,
since the shift up or down control signals are not switched. The row and column position

information is accessed more often than the edge positions, and are placed in the sweet

116

Bit 1 10 9 8|716|5]|4]|3 2 1 0
Flag || right [odd | left | X | X | X [X|X|[X] up |odd | down
edge | col | edge edge | row | edge

Table 4.5
PE position/address ROM.

spots. This is an indicator of the author’s compulsiveness.)

4.4 Controller

The controller serves as microcode sequencer and glue logic between the SIMD array, the
arithmetic coder, and the pixel and global Or ccmmunication networks. (The NEWS net-
work is wholly contained in the array, and the arithmetic coder controls the EZW network
directly.) The controller contains instruction decode logic, generates PE timing signals,
controls pixel loading, keeps a program counter and other state to sequence instructions,
interacts with the arithmetic coder, and schedules PE DRAM cell refreshing. These func-

tions are discussed below.

4.4.1 Instruction Decode

There are two major categories of microcode instructions: array instructions, listed in Ta-
.ble 4.6, which cause the array PEs to take some action,.and control instructions, listed in
Table 4.7, which leave the SIMD array idle. A C program which assembles microcode into
the opcodes listed in the two Tables is given in Appendix B. Microcode based on this

instruction set which implements the algorithm of Chapter 3 is given in Appendix C.

117

[Bit Field [| Value | Function]
19:18 [01 [array inst, ALU input shift down
| 10 | array inst,, ALU input shift up
| 11 [array inst.,, no ALU input shift
17 || 0 | no ALU inputinversion
[1 | ALU inputinversion

16:11 0-47 | ALU input from mem. address 0-47
48 | ALU input from ROM position flags
|| 49 | NOP, ALU unused this cycle
| 51 [ALU input from NEWS register
10:;5 [0-47 [store ALU output to mem. address 0-47
48 | store bit 1 to cond. register
49 | store ((bit 1) or cond.) to cond.
50 | store bit 10 to cond. register
51 | store {(bit 10) and cond.) to cond.
52 | store to NEWS unconditionally
53 | store to NEWS conditional on cond.
54 | store to ALU register

|| 55 | NOF no store this turn
43 [00 [ALU output = input with shifts and inversion
[01 | ALU output = EZW state update
{ 10 [ALU output = adder
| 11 [ALU output = adder, with (ALU reg. >> 1)
2:0 u 000 | NOP, no special action

001 | concatenate cond. reg. to bottom of input
input = input{11:1}, cond. reg.

100 | NEWS transmit South

101 [NEWS transmit West

110 | NEWS transmit North

111 | NEWS transmit East

. Table 4.6 .
SIMD array instruction opcodes. Table shows bit fields, values, and effect for array mi-
crocode instructions.

118

Bit Field |] Value | Function

[19:18 " 00 | control instruction

17:14 || 0000 [decrement global counter
| 0010 | global counter =11 - (EZW bit planes)
[| 0011 | global counter = (EZW bit planes) - 2
0110 | start arith. coder pass and stall until done
0111 | stall until new frame loaded
1000 | NOP, just a jump instruction
1001 | precharge global Or
1010 | set subordinate possible bit
1011 | cIr subordinate possible bit (last plane)
1100 | set 4 dominant symbol alphabet
1101 | cir 4 dominant symbol alphabet
1110 | reset coder histograms
1111 | reset coder encoding state
13:11 || 000 [nojump
100 | jump if global counter not 0
101 | jump if image_mean|7] = 0, and rotate image_mean (ROL)
110 | jump if last frame in synch group
_||_111 | jump if empty plane
100 [addr [jump address

Table 4.7
Sequencer instruction opcodes. Table shows bit fields, values, and effect for controller
instructions.

119

442 Clocking

For the test chip, in the absence of motion compensation, it was found convenient to clock
the controller and SIMD array at the incoming pixel frequency (128 x 128 x 30), about
500KHz. This clock is externally provided, and assumed to be 50% duty cycle. Both edges
are used as seeds for PE timing generation. Various timing points, resulting in signals
shown in Section 5.3.6, are derived by delaying either clock edge by some amount. In a
commercial product, the desired delays would be ensured against process variations with
an automated feedback scheme. For simplicity, the test chip uses variable delay elements

which are controlled from external static chip inputs.

4.4.3 Pixel Loading

Serial to parallel conversion of the pixel stream is controlled with a straightforward assort-
ment of shift registers, clock gates and buffers, etc ... Note that, full 8 bit wide busses are
used to collect rows of pixels in the trench backbone. However, the distribution to PE rows
is 4 to 1 time multiplexed over 2 wires per PE column. This trades a negligible amount of

row clocking power, for a small area benefit.

In addition, the controller counts pixels for start of frame synchronization, and accu-
mulates the image mean each frame for subtraction from the image and transmission to

the decoder.

4.4.4 Arithmetic Coder Control

The controller has various small hooks to affect the arithmetic coder’s behavior, some au-

tomatic, others under microcode control.

e The microcode determines if a 3 or 4 symbol dominant phacse alphabet is in effect.
o The microcode signals the last bit plane, in which case no subordinate bits are used.

e The microcode signals that EZW holding registers are prepared with ar-ther symbol
pass. In the test chip, this causes the controller to start the arithmetic coder and idle
itself and the PE array until the pass is complete. With motion compensation, this
throughput cannot be lost and an interrupt or polling scheme would have to be used

to allow the array to continue to process the next frame’s motion estimation step.

e The controller automatically causes the coder to include the image mean into the
output stream at the appropriate time (beginning or end of frame, depending on
whether it is a lead synchronization group frame or differential frame). A special
mechanism causes the coder to spit out individual bits without triggering a symbol

pass encoding.

¢ Using the same single bit output mechanism, the controller automatically inserts bit

plane significance flags when the microcode computes such information.
¢ The microcode orders symbol frequency Listograms to be reset.

e The controiler orders the coaer to flush remaining state to the output stream and

reset when a 16 frame synchronization group is complete.

121

44.5 Microcode Sequencing and Synchronization

Sequencing is accomplished with an 11 bit program counter and other assorted state. The

microcode in Appendix C fits comfortably in 2K instruction words.

The program counter operates in 3 different modes: it can increment during normal
operation, it can be halted during idle periods, and various jump instructions can load new
values from the microcode. The PC is halted under two conditions, while the arithmetic
coder is processing an EZW symbol pass, and while the sequencer waits for a new frame
of pixels to finish loading into the PE array. Jump instructions can act on the following 4

conditions:

¢ A 3 bit counter which can be loaded and decremented is used to count encoded
bit planes. The sequencer can branch on a test of the counter’s value (0 or not). This
counter is sometimes loaded with a known nonzero value and immediately branched

on to simulate an unconditional jump instruction.

¢ A 4 bit counter tracks the number of frames encoded in a 16 frame synchronization

group. The value of this counter can also be branched on.

e The sequencer can branch on the value of the significant bit plane flag, which is

collected from the PEs via the global Or network.

e The pixel mean for each frame is collected into an 8 bit accumulator. The sequencer
can branch on the MSB of the image mean (the mean automatically executes a logical

rotate left operation whenever this branch instruction is encountered).

122

44.6 DRAM Refresh

Refresh of PE DRAM cells is handled in a variety of ways. A single, general method is
avoided to save power. Different methods are tailored to the needs of different frame

buffers at different times.

¢ Refresh operations are omitted in some cases, and DRAM cells allowed to lose their
state to leakage currents. This is the case for memory elements belonging to the
current frame buffer, after the encoding of a frame is complete and the array idles
until the next frame. At that point, all required state is contained in the next and
previous frame buffers. The current frame buffer will be initialized with new data

after another frame of pixels is loaded.

e Some refresh operations are automatically scheduled by the sequencer. For these
cases, the sequencer contains special logic which schedules the refreshes at an ad-
equate rate to avoid unacceptable leakage levels, and to avoid collisions in the PE
memories beiween the refresh operations and normal microcode memory accesses.
This is done for the next and previous frame buffers, during array idie periods, such
as arithmetic coder passes and next frame wait. Restricting automatic refreshing to
the idle periods simplifies the collision avoidance circuitry, since no normal memory
accesses are occurring (only need to check for idling, instead of checking for memory

use or interrupting the instruction sequence).

¢ Refresh operations may be explicitly included in the microcode. This is periodically
done for the current frame buffer before the frame encoding is complete, and for the

123

next and previous buffers during long continuous periods of instructions with no
idle breaks (arithmetic coder passes). This last method determines the worst case
time DRAM cells must keep their state without refresh. The current frame buffer is
not automatically refreshed by the sequencer during the idle arithmetic coder passes
(after which the current frame bulffer is still needed, except for after the last pass of
the frame). Therefore, the cells must survive the longest possible single arithmetic
coder pass duration, which is about 4m sec. The DRAM cells, discussed in the next

chapter, are sized accordingly.

4.4.7 Chip Input Timing

The test chip takes 4 sets of input signals: a 50% duty cycle 500KHz clock, an 8 bit pixel,
a reset, and a start signal. The separate reset need only be pulsed for one clock cycle at
any arbitrary point before the start sequence shown in Figure 4.10. The Figure shows the
relationship between the start signal and the first delivered pixels. It is assumed that the

preceding ADC switches pixel data on positive clock edges. The test chip samples the

Pixels X X Pixel0 X Pixel 1

Figure 4.10: Timing of input clock, start signal, and pixels.

124

pixels on negative edges.

4.5 Arithmetic Coder

The arithmetic coder is largely a straightforward and verbatim implementation of decod-
ing, histogram tables (registers), and data path logic (adders, barrel shifters), following
the C code which appears in Appendix A. Two aspects of the coder are architecturally

interesting.
451 Clocking

First, the coder operates off a self generated, and gated clock, which is asynchronous with
the sequencer and PE array. The coder operates at a mu;:h higher frequency than the se-
quencer and array because it processes the EZW symbols serially. In addition, the number
of cycles needed per pass is unknown because of the unpredictable nature of arithmetic
coding and the variability of the kind of EZW symbols arriving. Therefore, the coder and
sequencer signal the start and end of EZW symbol passes with a simple two wire asyn-

chronous handshake protocol.

During operation, the coder clock is generated with a simple ring oscillator, which is
much easier than a frequency multiplier synchronized with the array clock. After the com-
pletion of each pass, the seciuencer gates off the coder’s clock while the PE array pnépares
the next pass of symbols (or until the next frame after the last pass). The coder may ex-
perience considerable off periods, so the clock gating saves significant power (the coder

is small, but the frequency is high). Note that using a frequency divider from the fast

125

coder clock to the slower array clock is out of the question since the slow clock is needed

continuously, while the fast one is not.

The frequency of the coder is set to cover the worst case, maximum number of cycles
required per frame. For example, the test chip uses a 5Mhz ring oscillator (compare that
to the 500KHz main array clock). As with the PE timing generation, externally controlled
variable delay elements in the ring oscillator produce the desired frequency. Note that, for
obvious reasons, the EZW network is timed by the coder’s clock. The array clock is used
up to the EZW holding registers inside the PEs. Past that point, everything leading up to

the coder is synchronized to its clock.
4.5.2 NOP Lookahead

The second interesting architectural feature is a decoding lookahead for NOP symbols.
Many symbols delivered to the arithmetic coder through the EZW network are NOPs.
These are decoded and immediately discarded without triggering any activity inside the
coder. On the other hand, other symbols iypically require several coder cycles to process.
Consecutive substantial symbols cannot be decoded and processed without interruption.
While the coder processes a preceding symbol, the EZW network is halted. Thus, the par-
allel to serial conversion is executed in fits and starts. An exception is made if succeeding
symbols are NOPs. Thus, even during the processing of a previous symbol, the EZW net-
work is allowed to continue so long as oﬂy NOP symbols are decoded. (The decoding
front end can operate independently from the rest of the coder.) While this scheme cannot
reduce the worst case number of cycles and therefore reduce the operating frequency, the

average number of cycles is substantially reduced, lowering the coder’s clocking power.

126

Data X__ X X X XX X
CLK

Figure 4.11: Timing of output data and clock.

453 Chip Output Timing

The test chip outputs 3 signals, a bursty serial data out, a sampling clock which accompa-

nies the data out, and an asynchronous end of 16 frame group signal.

The output sampling clock is a gated version of the arithmetic coder’s SMHz internal
clock. The output clock fires whenever a valid data bit is transmitted. Data is switched by
the arithmetic coder on negative edges, and it is assumed that external circuitry samples
the data on positive edges. The generated clock has a 50% duty cycle. Both data and clock
are bursty for algorithmic reasons already discussed. The output clock remains low when

idle. Figure 4.11 shows an example of output timing.

The end of 16 frame group signal is asynchronous with the serial output data. It pulses
high for 2u sec (one array clock period) to signal the end of a frame group. Both encoder
and deccder are expected to reset their arithmetic coders at this point. The end of group

signal is given well away from any output data activity.

127

Chapter 5

Circuits

5.1 Introduction

The most basic goal of low power circuit design is to ensure that power dissipation is
%CV 2fa, dominated. (Again, this is in the absence of adiabatic circuit techniques.) To-
ward this end, circuit forms which experience static dissipation, or prolonged overlap cur-
rents, are avoided. This includes ratioed and positive feedback circuits in which a fight
between competing devices must settle before the circuit action completes. Care must also
be taken to avoid triggering inadvertent overlap currents due to wandering input volt-
ages. This may happen due to leakage cutrents at nodes left at high impedance for long
periods (gated clocks), or charge sharing between suddenly connected high impedance
nodes. Note that these kinds of overlap current are principally of concern if the operating

voltage, V, is comparable to, or greater than, the sum of device thresholds, Vry + |Vrp|.

In addition to avoiding current losses, circuit techniques may also be employed to re-
duce dynamic dissipation, by lowering Cs and as. Clock gating, the architectural equiv-

129

alent of this, was already discussed in the previous chapter, as applied to both the SIMD
array and arithmetic coder. Clock gating can be thought of as lowering Ca. in time. Seg-
menting both data and clock wires, described in examples below, is the equivalent benefit
in space. The sizing of devices is covered in detail in the following section. Layout and
floor planning techniques used to reduce Cs in the test chip are discussed in the next chap-

ter.

5.2 Device Sizing

In marked contrast to typical standard cell design, device sizing used throughout the test
chip leans heavily toward small or minimum widths. This is true for both the all custom
circuits used in the PE design, and the cell library used for the sequencer, arithmetic coder,

and communication network backbones. Two principal considerations motivate this trend.

The combination of a fixed computational throughput (fixed maximum, but not always
constant), copious available parallelism, and process thresholds pushes voltage scaling
near its limit. As discussed in the previous chapter, reducing capacitance is another way

of trading circuit speed for further power reduction.

The second motivation stems from the generally short wires which load the circuitry.
Relatively short wires permeate the design for a number of reasons. Specific algorithmic
concessions were described in Chapter 3 .which ensure communication locality in the SIMD
array. Second, the PE is a hand crafted, all custom layout because it is duplicated over
1000 times and occupies most of the chip area. Third, despite the use of a fairly generic cell

library (except sized down in device widths) for the peripheral circuitry, the placement was

130

done by hand (no auto place and route was used anywhere on the test chip), for various

reasons.

It is desirable to keep the trench separating the two array halves small and tidy in order
to minimize the impact of the breach between PEs, which are designed to abut. The total
area of the arithmetic coder and sequencer are not of great concern, but their aspect ratio
is. Because both are pressed up against the massive and very smooth edged STMD array,
the coder and sequencer can impact the area of the whole chip out of proportion with their
own individual areas. For this reason, both the coder and sequencer are lzid out to be
very narrow and tall, in order to efficiently press up against the SIMD array. This kind of
awkward aspect ratio is very difficult to obtain from CAD tools, so hand placement was
used instead. A side effect of this tender care is relatively short wires compared to what

might be expected from a typical standard cell impiementation.

Examples of the resulting device sizes will follow throughout the remainder of this

chapter.

53 PE

5.3.1 DRAM Cells

The use of real DRAM cells was not an option on the test chip due to process restric-
tions (logic only, no trench capacitors). However, sin.ce memory constitutes sc much of
the architecture, even the marginal area benefit of pseudo DRAM is desirable. Rather than
choosing the classic 2T cell, the verbatim translation of DRAM to a logic only technology,

the 3T DRAM cell shown in Figure 5.1 is used. This trades a small area penalty for some

131

2T Celi 3T Cell

Write Read
Word Word
Line Line
Bit Line L| T |.| Bit Line

1.4/.6 1.4/.6
1| 8.5/1.7

Figure 5.1: 2T versus 3T DRAM cell. Devices sizes are in microns. The storage device is
sized to obtain a 4m sec refresh time. (The cell leaks away 10% of its charge in 4m sec.)

power benefit.

Because of separate read and write access points, the 3T cell is not subject to destructive
reads, as the 2T cell is. This obviates the need for extra bit line peripheral circuitry and the
switching power of timing signals required to control that circuitry. Such circuitry would
be needed to perform a write back of the read value (in addition to the real write of the

ALU output to the write address).

In addition, reading through an active pulldown device makes it possible to develop
the read value on the bit line as a macroscopic voltage change. Use of the ZT cell would
result in small .voltage changes, as limited by charge sharing between the bit line and cell
storage capacitance. Unfortunately, this is exacerbated by cell capacitance values obtain-
able in reasonable area in logic processes (compared to DRAM process trench capacitors).

As in real DRAMs, the bit line read voltage would have to be greatly amplified by sense

132

circuitry, which costs power. Keep in mind that the sensing power is being amortized cver
a very small bit line with few cells. This is a different design point than optimally sized

subarrays in large volume commercial DRAMs.

The area cost of using the 3T cell is due to the extra access device and word line. How-
aver, this cost is not as large as it might seem. The extra device is dwarfed by the large
storage device. While the critical dimension of the cell is determined by the minimum
metal pitch of word lines, as described in the next chapter, the cell area could not easily
benefit from the elimination of the second word line. The layout of the cell is restricted by

pitch matching considerations and aspect ratio limits.

The storage device is sized to accommodate the 4m sec refresh time requirement. Sim-
ulation of worst case subthreshold leakage was used to size the storage device so that 90%
of the cell charge is retained after 4m sec. The next section describes a technique used to

reduce the worst case leakage.

5.3.2 Bit Line Operation and Peripheral Circuits

Operation

Figure 5.2 shows a bit line and its peripheral circuitry. A SIMD array cycle consists of read,
modify, and write phases. The read or write operations may not access the memory each
cycle. Other sources and desiinations may be used by the ALU, for example the NEWS,
ALU, or conditional registers. To satisfy the maximum possible throughput, the memory is
operated as shown in the simplified timing diagram of Figure 5.3. The real, more complex

timing is shown in Figure 5.10.

133

Bit Line | T T we read_en
Heen H Heet H Heent | "2_6,_"|6
| w
l.4l.6|

Figure 5.2: PE bit line and peripheral circuits, including sense, latch, and write.

-]

Bit Precharge (pre)

Read Word (rw)

Bit WE/Read Ltch |

Write Word (ww)

Figure 5.3: Simplified memory timing diagram.

A bit line precharge pulse precedes the read cperation. Read word lines are not ac-
tivated until after the end of the precharge pulse to avoid overlap losses. The read data
propagates through the read latch to the input bus and ALU. The read latch requires a tri

state output to allow the input bus to be alternately driven from the NEWS register.

If a write is required, the read value is latched and the write pass gate is enabled.
Activation of write word lines is slightly delayed to avoid contamination of the read value.
This may happen due to charge sharing between the high impedance bit line and write ceil
storage node. The deliberate delay avoids a race condition between signals triggered from
the same sequencer timing event, but which pass through different circuitry. The release of
the write enable is similarly delayed until after word lines are turned off. This eliminates
possible contamination of the write value by charge sharing with the read latch internal

node.

Note that write word lines must be raised to a higher ON voltage than the normal
supply. This is required to be able to pass V44 to cells through the N-channel only write
access device. This is especially important with low operating supply, since V;; may only
be a few hundred mV higher than Vry. Charging the cell storage node all the way to V,, is
critical to turning on the storage device for reads, as well as providing charge to hold the
state for the required refresh time. To accomplish this, the ON voltage of write word lines
must be at least V4 + Vry, including any body effécts on the threshold voltage. The higher
write word line voltage is provided by the controller, and is discussed in Section 5.6.1. The
higher voltage used for the write word lines does not represent a great power burden. The

weord lines have small activity factors and account for a small part of chip power.

135

Peripheral Circuitry

The bit line peripheral circuitry is very light on both area and power. This frugality is due

to several contributions:

¢ No buffering is needed between the result bus and bit line write port. A small, simple

pass gate is adequate because the 48 cell bit line is so small a load.

e The sense amp is a simple inverter because the read value is developed as a large

swing signal, as enabled by the 3T DRAM cell.

e The 3T cell does not require special refresh circuitry or timing to compensate for

destructive reads.

e Instruction distribution power is saved by reusing the write enable signal for the
read latch. In this case, there is no possible race condition with the write enable
which might open the read latch too early or close it too late, because the same signal
is used to synchronize the two events. In addition, any momentary overlap of an
open latch and write pass gate due to finite transition time of the enable is too small

to disturb any charges or voltages.

Note that, many of these circuit choices are an artifact of the logic only technology
used for the test chip. With a mixed memory process, the operation of the bit and word
lines woulci have to be reworked to gain the area benefit of real DRAM cells. However,
the author does not necessarily believe that the correct solution would consist of typical
DRAM circuit techniques. Again, the small granularity of the subarrays makes this an

interesting, and different design point.

136

0

Bit Line

WW RW WW RW
‘ | | Bit Line
| iC

=T

Figure 5.4: Two possible cases of cell state and bit line voltage which experience subthresh-
old leakage.

Cell Leakage Reduction

The most significant cell charge loss mechanism is subthreshold leakage (across the write
access device). Diffusion to substrate leakage tends to be much lower. Subthreshold leak-
age occurs when a device source and drain are at different potentials, despite the device
being cut off. Clearly, if a cell storage node happens to be at the same potential as the bit
line, storage charge will only be lost to diffusion leakage (and that only if the cell state is

high - only N-diffusion to substrate touches the storage node).

However, there are two cases in which subthreshold leakage does occur, as shown in
Figure 5.4, and they exhibit very different behavior. A high cell state leaks away charge to
alow bit line at a fairly uniform rate. However, a high bit line potential leaking charge into
a low cell state experiénces a very strong negative feedback. Waveforms den;onstrating
the two cases are shown in Figure 5.5. As small amounts of leakage charge accumulate
inside the cell, the write access device’s gate to source voltage is lowered (in fact, become
negative). Since this exponentially reduces subthreshold current, the process quickly be-

137

T 1 1 T | T T
\ : : : : : :
\ : : : : : :
\ : : : : : :
18F- - O L R SRR ERELTE e P e R -
N : : : : :
N z z z 5 :
L R S P e e e e 4
16 RN : : : : ;
s z : s : :
\
b N e e [e e, -
14 N : : : .
NG : : : :
N : : : .
12k LN L P e -
~ ; : : :
N
~ : : ; :
§1--\\ e R R R R R RS L _l
~ : : : :
~ : : : :
S : : :
0.8_ .. \\, =
N : : :
N : :
0.6]- - \\ -
N . .
DN : :
: A : :
0.4_ .. HEIII \\ R -
: DA
0.2F e ‘~‘\‘_
0 1 1 1 1 l 1 1
0 0.5 1 15 2 25 3 35 4
time x10°

Note that, during periods of SIMD array activity, bit line potential is dictated by the

Figure 5.5: DRAM leakage waveforms. The two voltage waveforms show cell leakage to
opposite state bit lines.

comes self limited. This presents an interesting opportunity to affect DRAM leakage rates,

other than paying area for larger storage capacitance.

statistics of the data that happens to move across it. The resulting, worst case refresh
rate may be strongly influenced by the wo'rse, low bit line potential case identified above.
This is of little concern, however. Refresh during active periods is either not necessary
because of assured regular access patterns (current frame/workspace buffer), or accom-

plished with explicit microcode instructions (next and previous frames) which account for

138

a tiny fraction of the active computation cycles.

Refresh requirements during idle periods are of great concern however, because refresh
of previous and next frame buffers are required even during periods of no motion in the
video stream. In this case, with little computation being performed and a largely inactive
radio, refresh cycles may significantly contribute to the lower bound on system power.
(Note that techniques discussed in Chapter 2, such as frame rate decimation, do not help
the cost of DRAM refresh.) For example, with a 4m sec refresh time, 30 frames/sec, and 32
cells requiring refresh, 256 refresh cycles are needed per frame. This is already about 8%
of the peak SIMD computational throughput of the test chip. Note that this refresh lower
bound on idle power would not be swamped out with the inclusion of motion compensa-
tion. A simple frame differencing and threshold check would be performed before motion

estimation. The considerabie cost of motion estimation is avoided if no motion is detected.

Fortunately, during idle periods, bit lines are not occupied with data accesses, so bit
line potential can be controlled to benefit cell leakage rates. This is done by keeping bit
lines continuously precharged during idle periods. This restricts cell subthreshold leakage
to the self limited case identified above. Note that no power is wasted switching precharge
clocks. For this purpose, precharge signals are not pulsed. The sequencer enters a special

mode, continuously forcing precharge clocks ON.

This circuit technique is of more general interest than some of the lo-gic only process
artifacts discussed above. It can be applied equally well to bit lines with real DRAM cells.
Further, this represents a specifically low power circuit technique, in that the refresh rate

benefit relies on the use of gated clocks and idle periods.

139

Pass Pass

Cntrl 2 Cntrl 1
g S
Z_Iq 7 BitLine o
g 9 | [T [l -
& Write
IV Cell]® * *|Cell Cell|®* * °|Cell Cell{® * °|Cell

Pixel Pixel w w w

Row Load
Clock EN Next Frame Prev Frame Current Frame

low o high a

Figure 5.6: PE bit line segmentation and pixel load port.

Finally, note that if the read latches are forced open during idle periods, the continuous
bit line precharging also coincidentally serves to keep the latch node at low impedance,

preventing wandering potentials and unintentional overlap current in the sense inverter.

5.3.3 BitLine Segmentation

Memory elements belonging to the different frame buffers experience widely varying ac-
cess ra ‘'es. The current frame buffer is accessed continuously throughout the frame com-
putation. Previous and next frame buffers are accessed essentially once each. Similar

variations would exist among the 5 frame buffers required with motion compensation.

To take advantage of this, the PE bit lines are segmented with pass gates, as shown in
Figure 5.6. The frequently used curre;\t frame buffer is positioned in the first segment, close
to the business end of the bit line. This results in lower average bit line power. When a cell
on the first segment is accessed, the pass gate control signal remains off. The capacitance

switched during precharge, read evaluate, and write is cut to one third of the entire bit

140

line. Only accesses to the last bit line segment switch the entire capacitance (in fact, a tiny
bit more because of the extra pass gates themselves). This is negligible, however, due to
the low access frequencies to the back of the bit lines. This technique effectively cuts bit
line power by a factor of 3. While the full bit line power does not represent a dominating
fraction of the encoder power (see Section 5.7), this optimization comes at practically no

cost.

The inter segment pass gates are implemented with only N-channel devices. It is im-
portant for area reasons to avoid N-wells and routing V;, inside the memory cell arrays. To
allow full write voltage levels, the pass gates must be over driven, just as the write word
lines are. Again, the higher switching voltage of the pass controls are not a power burden
because of their low o. In addition, the pass gates add extra series resistance to the far

segments of the bit lines, but the small loads involved makes this tolerable.

Bit line segmentation by access frequency is also of more general interest as a low
power circuit technique, and could be used with real DRAM technology. It can be thought
of as a cheap way of mimicking subarray division - cheap in that there is no need for dupli-
cate bit line peripheral circuitry or muxing. The price of an occasicnal N-channel pass gate
and (effectively) extra word line is quite small. This is important in real DRAM processes,
especially with already small subarray sizes like the PE register files, because the cost of

any extra substantial bit line circuits is amortized over a small number of memory cells.

Note that the access frequency argument presented so far only justifies the first pass
gate at the } point. The second pass gate at the point is added to provide the cheap,

pseudo, second memory port hinted at previously. Because bit line segments are discon-

141

nected so long as the pass gates are off, new pixels can be loaded from the back of the
bit line, without interfering with normal microcode accesses at the front, and without re-
quiring special collision avoidance circuitry in the sequencer. To ensure the required condi-
tions, microcode access to the next frame buffer is forbidden after ¢ of the frame time after
the start of the frame (the time needed to collect the first pass of new pixels), as discussed
before. The second pass gate is required because access to the previous frame buffer could
not be prevented later in the frame. Finally, of course, the next frame is placed on the last

bit line segment, with the previous frame occupying the middle position.

5.3.4 Adder

The adder cells used in the PE are shown in Figure 5.8. The two cells are alternated as
explained below, in a ripple carry fashion. The XOR used in the adder, shown in Figure 5.7,

is a standard transmission gate XOR.

These adder cells are an effort to exploit the long, 2u sec cycle time, the small complex-

ity of the PE, and the relatively narrow 12 bit word, in some additional way to voltage

Figure 5.7: XOR gate used in adder cells.

142

Ci, b XOR —[>o—p Sum| | C;, B-{b XOR Sum
a a a a
T 1
P P P P
Cin
—_ & out _ C out
a a
PP PP
b®qb XOR P b DJ b XOR P
a a a a
| P | 3
ab- a ab- a
Even Stages Odd Stages

Figure 5.8: Static PE adder cells with minimized area and total capacitance.

scaling. Toward that end, the cells were designed to minimize area and switched capaci-
tance. These adders are the smallest static adder cells the author is aware of, given that the
SUM output inverters are needed for ALU output buffering anyway, and hence represent

no additional tost (they are shown in Figure 5.8 to explain functionality).

Note that a precharged adder (especially precharged carry chain) was not used in order
to avoid the significant power cost of another timing signal. It must be remembered that

the switching cost of a carry chain through static circuits is limited by the average number

143

of bit positions carries propagate, which is typically between 2 and 3. On the other hand, a
precharge clock switches at two edges per cycle, each cycle of ALU use, and spanning all

12 bits of the word.

The even stage cell shown on the left is a fairly standard transmission gate adder. Typ-
ically, ripple carry configurations of such cells use occasional (every 2 or 3 stages) buffers
to interrupt the carry chain. This prevents very poor carry propagation through an unbro-
ken, and quadratically degrading RC chain. The area and capacitance benefit comes from
the use of the already computed SUM output in the odd stages as a way of introducing re-
generation into the carry chain. This has the dual advantage of eliminating the extra, inter
bit carry buffers, and of making the layout of different bit positions practically identical,

as well as smaller.

Note that this is a very quirky adder, and the author does not necessarily recommend
its use heartily. In particular, the reader should be aware that for the odd stages, the cairy

computation is dependent on, and slower than the SUM output!

5.3.5 Flip-Flops

Gated clocks are used for all PE registers: ALU, NEWS, conditional, EZW, and pixel. Each
register is provided a separate clock which is pulsed on the register’s active cycles. How-
ever, the registers must hoid their state for possibly long idle periods. For examp'le, the
pixel holding registers are clocked every i of the frame (about 2m sec), while the oth-
ers must hold their state across arithmetic coder passes (maximum 4m sec). In addition,

high impedance nodes, susceptible to leakage and drifting voltages, are avoided to ensure

144

clk 3 q[2616

146 ||

[}
=1
L

1.4/.6

Figure 5.9: PE Flip-Flop with low idle state clocks.

against overlap currents, as discussed above.

i“or these reasons, static flip-flops like the one shown in Figure 5.9 are used. Since it is
known that clocks are gated low during idle periods, only the second latch er ploys feed-
back. The first latch remains open during idle periods, and its storage node is not high
impedance. The feedback path of the second latch is cut off by the series, clock controlled
devices. This prevents a current wasting fight when the second latch is opened, which
would alternately be the case if the feedback devices were merely made weak. Note that
the lost current could be minimized l;y making the feedback devices very weak, for ex-
ample by using minimum channel width and considerable length. However, this is not
power efficient. Despite the two switching events per clock cycle, the series cut off devices

are small loads on the clock. Very long channel feedback devices, however, would be a

145

sizeable lnad on the latch output.

In addition to having the required static property with minimum power impact, these
flip-flops are also inherently very robust with respect to clock timing. This is taken advan-

tage of in two ways.

The cost of producing the clock inverse is efficiently amortized over an entire row of
PEs (32 of them) with one big row bulffer, rather than the awkward layout of many small
localized inverters. Besides the robustness of the flip-flops to tolerate some skew between
the two clock polarities, this is further enabled by the known, uniform, and highly sym-
metric loading of the clock consumers in the SIMD environment. (Actually, as is evident
from Figure 5.9, the two polarities are predictably not identically loaded. The positive
clock drives two of the larger P-channel devices. This is taken advantage of by initially
producing that polarity, and making the lighter loaded negative one suffer the exira in-

verter delay.)

Second, the flip-flops are fairly robust to poor clock rise and fall times. A small amount
of power is saved by using modest row buffer sizes. Reasonable limits on these were
determiﬁed with circuit simulation. For example, on the test &ﬁp, the capacitance ratio
of a row clock to its buffer is 40. The resulting worst case rise/fall times, with V;y = 2V,
are about 15n sec. The flip-flops experience no erroneous input to output transparent flow

through, even in shift registers with no inter bit logic.

146

Instructions

X
Bit Precharge 11

Read Word | I

Bit WE/Read Ltch [
Write Only Bank Cntrl, []

Write Word, Reg Clks

NEWS Cik []

Read Only Bank Cntrl _ |

Read+Write Bank Cntrl __| L

Figure 5.10: PE timing diagram.

5.3.6 PE Timing

The full PE timing diagram is shown in Figure 5.10. The non-timing instruction signals,
such as shift, inversion, and ALU controls, are switched at the beginning of a cycle. Most
of the memory timing controls,-precharge, read, write, and read latch/write enable, ha;/e
already been discussed. Figure 5.10 also shows the bit line segment pass controls. One of 3
possible timings are used, depending on whether a read and/or write access is occurring

past the segmentation point. The read only pulse spans both the precharge and read phases

147

of the cycle. The write only pulse encloses the write word line timing. The purpose of the
joint read and write option is to avoid 2 unnecessary edges when both memory accesses
reach the back bit line segments. This optimization is a trivial matter for the sequencer,

although, because of the low as, it is a minor benefit.

Most of the edge triggered PE registers, ALU, conditional, etc ..., use the same timing
as the write word lines. That is, registers are loaded at the start of the write pulse. To limit
the complexity and width of microcode instructions, the ALU result can only be written to

one destination per cycle, which can be one of the registers, or memory.

The NEWS register is an exception because it can be independently loaded from the
NEWS network on the same cycle the ALU result is written to a different destination. The
delayed timing of the NEWS clock is necessary to avoid a race condition. The danger
would be a slightly fast loading and overwriting of the NEWS register from the network,
coupled with a slow loading of the ALU destination with a result which was a function of
the previous NEWS register contents. Note that, no possible race condition exists between
the NEWS clock and the release of the bit line read latch. If the NEWS register is loading
from the network, the new value cannot depend on the ALU or the memory read value.
If it is loading the ALU result (possibly a function of a memory read), the memory cannot
also be executing a write operation on the same cycle, and the write enable/read latch

would not be switched that cycle in the first place. -

The special treatment of the NEWS timing allows parallel PE computation and data
movement, with efficient, same cycie unload and compute of the arriving values. This

is important for throughput, especially with motion compensation, when a lot of Jata is

148

being moved, but not invoived in extensive computations. (In the test chip, this feature

elimirates the cycle cost of time multiplexing the NEWS network wires.)

5.4 Bus Segmentation

PE bit line segmentation is enabled by the access frequencies to different memory elements.
A similar power optimization, implemented for the pixei and EZW networks, is enabled
by the sequential access patterns. Figure 5.11 and the following description is for the pixel

load network. The EZW network uses similar structures.

The pixel network backbone shown in Figure 5.11 performs the 1st dimension of serial
to parallel conversion. Without the data bus and clock segmentation, the backbone would
consist of a 1 bit shift register for load enables. Each enable gates its respective 8 bit pixel
latch. Effectively, each cycle, a token progresses around the enable shift register to mark
which column position is latching the current pixel. After an entire row is collected, the
sequencer clocks the row into the next PE row holding registers, and the enable token
rotates around to the beginning. (Reset logic which synchronizes the starting position of

the token to the frame start signal is not shown.)
Note the pcwer and area advantages of the pixel data bus, instead of a row long, 8 bit

wide shift register:

o The 8 bit data are loaded into latches instead of full, edge triggered flip-flops.

e The clock, with 2 edges/cycle, only drives 1 register per column, instead of 8. Enables

to the 8 data latches are only toggled once per pixel row (128 cycles for the test chip).

149

Data

4
4
Clk

~—— Pass |-
]
- ’ Pass

as$
]
ass

R

iy

-~ -
-
~ -
- -
-~ -

Pass
Cntrl
$

P -
.
~ -
-

Figure 5.11: Segmentation of pixel load network. One of the 8 data wires is shown.

150

e Pixels are switched across wire length spanning a row, lightly loaded with diffusion
capacitance from latch inputs. This is compared to the same total wire length, plus

all the internal flip-flop node capacitances.

The data and clock wire transmission gates (could also be implemented as AND gates)
take advantage of the sequential access pattern in order to save power. Segmenting the
wires limits the spatial extent to which each wire is exposed to signal switching, thereby
lowering switched capacitance. After pixels to the left of a segmentation point have been
loaded, no accesses are made past that point until the next row. Neither pixel data or
clock need to be delivered for the rest of the current row, and the pass gates biock that
switching. The controlling FSMs simply watch for the column load enable token to pass
their position, and then turn off. Because the control FSMs take their own clock from the
local surroundings (which are isolated by the end of a row), the returning token from the
last column must be used as an asynchronous reset to force all the segmentation points

back on.

In the test chip, both pixel and EZW network backbones are segmented this way into 4
pieces. This reduces both data and clock power to 3. As shown in equation 5.1, the benefit
quickly saturates with the number of segments. For example, 8 segments would give %
of the original power. The limit is a factor of 2 in savings (not really, since equation 5.1
does not count the cost of the segmentation circuits, which is no longer negligible for large

numbers of them).

Power _n+1
Unsegmented Power =~ 2n

(6.1)

151

where n is the number of segments.

As already described, the vertical dimension of both networks is cut in two by the
backbone trench. This gives a full factor of 2 savings for the vertical wires. (The topology
is different, since the neither half is after the other, and equation 5.1 is not followed in this
case.) The vertical wires are not segmented further in the same way as the backbones. The
presence of the pass gates in the PE array would result in somewhat awkward layout, and
the gain would be smaller. For example, clock power per pixel is 128th that in the backbone

because of the 1st dimension of parallel conversion already performed.

5.5 Arithmetic Coder

No interesting circuits are used in the arithmetic coder. It is entirely constructed from

vanilla standard cells, albeit with near minimum device sizing, as described above.

5.6 Controller

The bulk of the controller and communication networks are also implemented with the
scaled down cell library, except the segmentation of the data busses and clocks, as de-

scribed above.

5.6.1 Word Line Up Conversion

One exception in the controller is the voltage up converter used to produce and buffer PE
write word lines and the bit line segment controls. Rather than using a charge pump to

produce a higher voltage, a separate supply, V..., is brought on chip for this purpose. It is

152

safe to assume that such a supply is available without further system cost, because the ex-
act voltage is not critical, and the supply imposes no special filtering requirements or noise
tolerances. Itis only important that the voltage is Vry higher than V;;. The as of both word
lines and pass controls are low enough to make the power inefficiency of too high a Vi,
unimportant. (It should be remembered that many intermediate PE results are shuffled
to and from the NEWS register cache, not memory.) Meanwhile, V;; would typically be
the smallest voltage produced by DC/DC conversion, as enabled by computational par-
allelism and the modest requirements of digital circuits. Therefore, it is likely that some
other system supply already exists which is adequately higher. If the only higher voltage
supplies used are noise sensitive, clean analog ones, for which bursty, high frequency in-
jection from word line switching would be bothersome, the plain battery voitage can be

used.

The up converter used is shown in Figure 5.12. This up converter has two small advan-
tages over the common differential amplifier design. No process sensitive ratioed circuits
are used, and no overlap current is lost from input switching to output settling. This is
achieved straightforwardly by the precharged, self resetting action of the 3 inverter feed-
back loop. After any input and output transition, the converter precharges itself in prepa-
ration for the opposite transition. The lower swing input and its complement are only re-
si:tonsible for controlling N-channel only pulldown devicés. {The common reference to V4
and V,,,, is ground.) The self timed action is demonstrated with the simulated waveforms
in Figure 5.13. The converter requires no special circuitry to impose a reset state, since the

feedback will always take the converter to a state consistent with its current inputs.

153

Vww

2.6/.6:] |L>-|

1.4/.i:| |-|

Vww Vww Vww Vww
| |
2606 —d[266 (] 816 '—a| 32/.6

R
| g
51 - = ®» OUT
IND| 3/6 IND{[36 T Y[46 |—| 16/.6
|

]]

3/.6 3/.6

~ ~

Figure 5.12: Low power word line voltage up converter and buffer. Self resetting up con-
verter avoids ratioed circuits and overlap current. /N and IN are smaller swing signals,
from V4. OUT is driven from V,,,,, the separate, higher voltage word line supply. (Some
weak anti-leakage keeper device are not shown.)

154

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.e 0.9 1

Figure 5.13: Voitage up converter waveforms.

155

5.7 Power Estimation

The power discipation of the test chip is estimated in a strictly back of the envelope fash-
ion, although the backs of several sheets of paper are required to do the accounting. The
information used in the estimation is the dimensions of the PE, device sizing, process worst
case wire and device parasitics, and hand tabulated statistics of microcode operations. As
shown in Chapter 7, these estimates are surprisingly accurate. Such simple and effective
modeling is possible because of the uniformity of the SIMD array, and the short microcode
used. As such, this architecture represents a fairly unusual case. This was taken advantage
of throughout the design to estimate where to invest attention, before the completion of

simulation ready designs.

Table 5.1 gives the chip peak power estimates by category, assuming V;; = 1.5V and
Viw = 2.5V. In addition, an indication of the scaling of each component with image resolu-
tion is given. This assumes that the process technology is not improved, but more area is

added by multiplying the number of PEs in the SIMD array.

The PE bit line and datapath power scale linearly with the total resolution (and number
of PEs) for obvious reasons. Somewhat less obvious is the linear scaling of the instruction
distribution power. It is clear that the amount of wiring and device loads grows linearly,
but it must also be kept in mind that the cost per wire doesn’t really change. The wire
RC time constants are more than 1 o;'der of magnitude lower than the chip rise/fall times,
so there is no bottle neck there. Further, with load to row buffer capacitance ratios of 40,
even for PE clocks as described above, there is no imminent explosion of buffering power

to keep up with load increases.

156

| Component Power (uW) | % of Total | Scaling |
SIMD instruction | 220 38 linear |
distribution
PE bit line 30 5 linear
PE datapath 180 32 linear
and NEWS
Pixel load [1z 2 quadratic
backbone
Pixel load 10 2 quadratic
vertical
EZW unload 60 10 quadratic
backbone
EZW unload 30 5 quadratic
vertical

[Arithmetic coder | 0.1 0 quadiratic |
Misc. Sequencer | 30 5 constant
Total 572

Table 5.1
Chip peak power estimate, broken down by category. V;4 = 1.5V The scaling column in-
dicates the hypothetical growth rate with increased video resolution (spatial), assuming
unlimited area in the same process technology.

The pixel load and EZW unload networks scale quadratically for obvious reasons (lia-
early more data, linearly longer distances). The miscellaneous sequencer circuitry includes
items such as program counter, DRAM refresh counters, microcode decode logic, etc ...,
which do not change with the number of PEs. Nor does the sequencer power change
with the clock frequency, which is most conveniently set to the pixel load rate. Because
of the pervasive use of gated clocks, the sequencer power is a function of the number of
microcode instructions executed (plus the number of DRAM refreshes scheduled), not the

incoming system clock cycles.

The arithmetic coder power also scales quadratically. There are linearly more data, and

157

i

the processing of that data would have to be carried out at higher operating voltage, to
keep up with throughput requirements. On the test chip, the arithmetic coder is oper-
ated from V. An obvious step up is Vi, which does not require another output from
the power supply. The choice of V44 on the test chip was a mistake on the part of the au-
thor. The power of the coder is negligible because it is tiny, and almost no capacitance is
switched. (The coder consists of a few 11 bit registers, an adder, incrementer, and a few
muxes.) However, because the coder operates serially at a frequency 10 times higher than
the controller and SIMD array, it turns out to be the bottleneck on voltage scaling. The
lowest operating voltage that chip functionality was verified at (1.5V, see Section 7.1) is an

artifact of this mistake.

158

Chapter 6

Implementation

6.1 Process Technology

The vital statistics of the test chip process technology are given in Table 6.1.

Vr 0.7-09V
Min. ch. len. 0.6u
| Min. metal pitch | 1.8u
- Min. contact pitch | 2.4u
| Min. via pitch 2.5u
| Well/diff. spacing | 1.8u
Metal layers 3
Silicide YES
Local interconnect | NO
Butting contacts | NO
Stacked vias NO

! Table 6.1
Process technology parameters.

6.2 PE

The name of the game inside the PE is bit slice pitch matching. All efforts are made to
keep both logic and memory pitch matched. The PE architecture largely avoids inter bit
communication. Most wires travel strictly within a bit slice, or to the neighboring bit po-
sition (adder and shifters). The exceptions are the special EZW logic and the conditional
register, which account for a small part of the PE. Pitch matching therefore benefits layout

convenience, area efficiency, and power (no extra wiring to line things up).

6.2.1 Bit Slice Pitch

The PE bit slice pitch is strategically chosen to fit a NEWS register flip-flop and an associ-
ated 2:1 mux (used to chcose input between NEWS network and ALU result). This choice
is a careful balance between the different cells used in the PE, with the dual goals of not
awkwardly breaking up local circuit blocks and not leaving sparsely utilized spaces else-
where. The resulting layout for the NEWS flip-flop and mux is shown in Figure 6.1. The
horizontal pitch determined from this cell is 22.4u. All other cells, some examples of which
are shown below, are forced to conform to this pitch. In the case of slightly smaller bit
' slices, an effort is made to absorb convenient chunks fr.om larger neighbors. In the case of
irregular circuitry, such as the special EZW state logic, EZW holding register, conditional
register, and global OR network, a large hammer was used to pound the layout until it fit

somewhere.

160

Figure 6.1: Layout of the NEWS register and an associated 2:1 mux determine the horizon-
tal bit slice pitch used throughout the PE (22.4u).

6.2.2 DRAM

Pitch matching the DRAM cells to the logic bit slices is very difficult. The DRAM cell area
is unfortunately large because of the logic only process used, however, spreading out that
area over the 22.4y pitch still tesult;s in an absurd aspect ratio. To alleviate that prcblem, .
cells are laid out side by side in pairs, straddling the bit line, as shown in Figure 6.2 (on
its side). The 4 word lines required for the pair are interleaved as shown, to ease layout

constraints. Pairs abut both vertically (after flipping) and horizontally, so that the 2 ground

161

by 7.7u. (Note the large area compared to real DRAM cells, which might typically be 1,7

Figure 6.2: Layout of DRAM cell pair, shown on its side. Total area of 2 cells is 22.4u
each.)

162

contacts and the substrate plug are shared with neighbors.

This results in reasonable cell aspect ratios, and allows optimal area efficiuncy. The hor-
izontal dimension for the pair is matched to the logic pitch, while the vertical dimension
is limited by the minimum metal pitch of the 4 word lines. Note that only 1 via spac-
ing is used for each 4 word line group. The 4 vias required per cell pair are horizontally

separated enough to allow the river routing of word lines around them.

Note that, no electrical problems result from the close spacing of read and write word
lines, which are operated from different supplies (V4 and V,,.,, respectively). First, there
is no forward biased diode/latchup danger, both because there are no N-wells in sight,
and the word lines touch only device gates, not diffusion. Second, parasitic estimates
and circuit simulation were used to verify that the lower swing read word lines cannot be

dangerously coupled into from the neighboring higher swing write word lines.

6.2.3 Bit Line Interleaving

An obvious alternative to the cell pairing scheme used to ease pitch matching is to in-
terleave bit lines from vertically adjacent PEs, as shown in Figure 6.3. In fact, the more
compelling advantage of bit line interleaving, compared to just a pitch matching aid, is
the possibility of reducing the number of word line wires. If cells from the two bit lines
which have the'same address can be placed next to each other, their word lines wires can
be merged. This might save area and some power (half the wiring capacitance, but the

same device loading).

This scheme is not used on the test chip because the pairing scheme already reduces cell

163

o o
Bit Line

PE Logic

Figure 6.3: Bit line interleaving to aid memory /logic pitch matching.

aspect ratios enough to enable efficient packing of total cell areas into the layout. Further,
and unfortunately, this scheme is fundamentally incompatible with bit line segmentation,
as shown in figure 6.4. Corresponding address cells cannot be lined up because of the
preferred position of frame buffers with respect to their PEs. For example, each current
frame buffer should be placed near its own PE, so same address cells end up on opposite

vertical ends of the layout. This presents problems for an encoder implementation in a

164

PE Logic

Ce

Ce

Next Frame

Current Frame

Cell

Next Frame

008 - DOEE

908 - 995

PE Logic

Figure 6.4: Mismatch in word line address positions due to bit line segmentation.

real DRAM process, whick would decimate cell area and place much more pressure on the
reduction of word line wires. In that case, bit line interleaving and segmen.tation would be
in contention, and some tradeoff would have to be worked out. It should be kept in mind
that bit line segmentation represents more power savings than half the word line wiring,

and that the segmentation provides the convenient pixel load port into the PE memories.

165

6.2.4 Bit Line Segmentation

Figure 6.5 shows the small layout impact of bit line segmentation. A pass gate and its
control wire is shown sandwiched between two adjacent DRAM cell pairs. The total layout

cost is one extra via pitch along the length of the bit line.

6.2.5 Adder

The layout of a PE adder bit slice is shown in Figure 6.6. The adder is too large to fit in
the prescribed pitch, so it is broken up into 2 rows of logic (each row is a strip of N and
P-channel devices). After the division, some extra space is available. This is used to absorb

2 muxes which select the ALU output.

166

Figure 6.5: Bit line segment pass gate and control, shown on its side. Pass gate is circled,
and the labeled control wire fits between neighboring word lines at minimum via pitch.

167

& W

EY ARV Y
& W
&ow

Figure 6.6: Layout of PE adder including 2 muxes which select the ALL output.

168

Function Height (1) | % Area

Memory 190 57

Pixel Load 13 4

Bit Line

Peripherals 15 4.5

and Addr ROM

NEWSReg + Net | 37 11

ALU Input Inv 15 45

<<, >>, concat

Adder 30 9

EZW Reg, Logic

Conditional Reg | 17 5

Global OR Net

ALU Reg, >> 16 5
Table 6.2

PE area usage by category. (All widths are the PE bit slice pitch - 22.4u.)

6.2.6 Area Usage

The PE occupies an area of 268.8u by 330.9y, and includes almost 3000 transistors (1752
memory, 1234 logic). Figure 6.7 shows the layout of 1 PE (just metal 1 and metal 3). Ta-
ble 6.2 gives statistics of how the vertical height is apportioned among the PE functions.
The PEs are designed to be directly abutted both vertically (after flipping) and horizon-
tally. The intervenirg trench in the middle of the chip compensates for the interruption

with feed through wiring that completes appropriate connections.

The coupling of this tiny granularity and the global nature of the SIMD array (instruc-
tion distribution), may seem like an .awkward combination of the worst of two domains.
On one hand, the price is being paid for global distribution of centrally decoded instruc-
tions. On the other, the tiny PEs seem like an inefficient payoff (compare the register files

to large commercial DRAM subarrays). Typically, low power design techniques try to min-

169

H
L
-
L
L
|
3

NEC i
T
B

NRop=

187] {1 1

4‘, .- P P
(Eaal I Ront l nal § Raat N R0 g

ST MR- 301

N}
i

SR, :
LN '
A

|

T

A 50 R
ERIREE IO IR 3O

Figure 6.7: PE layout (just metal 1 and metal 3). Area is 268.8u X 330.9u.

Bt

| 3ipe] B iy) B |
RS e

3l
Al

|

ik

170

0 |

L

r
J‘\J

[]
v

(

e

D

E

H
[FS A VIR TRNST RN T WY s

i
It
LRI

‘l 1
~ - g
T 1o
. N T
A NS afl RN
R R U R
p e AN S | L !
|w . -

' I Lo)

i.' 1 b H
. ! | A B 1 h
R)

L]

|4

i I mawaumg IXON

WPy SWeL] Add

imize global wiring in favor of local control and computation.

However, the layout of the PEs makes this a very different case. As already ciscussed,
aggressive custom layout makes individual bit slice cells very efficient in terms of wiring
per useful logic area. Within each PE, bit slices efficiently abut to form the 12 bit wide
datapaths, and this abutment carries over to the inter PE boundaries. In fact, it becomes
very difficult to distinguish PE boundaries in the assembled arrays. The memories effec-
tively look (and act) like one wide subarray (384 bits) with large parallel throughput, all
of which is used locally to each bit line. The logic elements follow the same pattern of
efficiency. Macroscopically, each PE row looks as though it contains a 384 bit ALU. One
has to look carefully to notice that the carry chain happens to be interrupted every 12 bits.
The row instruction wires and word lines are thus very densely loaded and experience no
wasted overhead. The central instruction decoding, sequencing, and timing, is therefore

efficiently amortized over a large number of small consumers.

6.3 Sequencer and Arithmetic Coder

Both the arithmetic coder and sequencer contain little logic. However, as hinted at in the
previous chapter, the laycut of both is of some concern. Each component is placed next to
the uniform SIMD array, which leaves no nooks or crannies to absorb the peripheral cir-
cuitry. To minimize die area, an effort was made to flatten out the layouts against the sides
of the PE array. This was done by hand placement of the library cells used. The resulting

dimensions are 160u by 41704 for the sequencer, and 140y by 2070u for the arithmetic coder.

The area of the sequencer does not include the vertical bus which distributes decoded

171

instructions and word lines to PE rows, or the row buffers which drive the horizontal dis-
tribution. The buffering of instructions is split into 2 stages {(as opposed to just shorting
the row wires to the vertical bus) to avoid unacceptable RC time constants on the vertical
wires. The row buffers are staggered 4 deep to pitch match their outputs to the row in-
struction wires, and are placed underneath the vertical distribution bus. Both row wires
(metal 2) and the vertical bus (metal 3) are at minimum via pitch (some care was required
to avoid collisions routing both buffer inputs and outputs, given the overhead bus). The
row buffers and vertical bus occupy an additional 185 wide strip, running the height of

the SIMD array.

6.4 Microcode Memory

For actual use, the microcode memory could be implemented as a small ROM in the se-
quencer. For debugging purposes, the test chip relies on external EPROMs. An 11 bit
program address is output, and a 20 bit instruction word is input. This external memory
is not counted in the chip power dissipation. However, due to the small size, 20 bits by
1.5K words, and low throughput, 3.3K instructions per frame, the unaccounted power of

the missing on chip ROM would be negligible (a fraction of 1%).

65 1O

Similarly, the chip I/O is designed with debugging in mind. No attempt is made to predict
system integration or the form of inter component communication. Instead, the chip 1/Os

are designed to interface to 5V off the shelf parts used for testing. Voltage up conversion

172

Function Transistors | % Area
SIMD Array 3.06M 79
Trench 6.2K 1.2
Inst Row Buffers | 3.7K 1.7
and Vert Wires
Arithmetic Coder | 3.5K 0.25
Sequencer 6.4K 0.58
10 1K 15.5
Total 3.08M 98.23
Table 6.3

Test chip transistor and area statistics by category. Transistor numbers are for logical de-
vices. Parallel layout fingers are not counted separately. Total chip area is 9980u by 11580p.

is performed in output pads with the same circuit used on chip for DRAM word lines. A
third, separate, 5V supply, Vi, is used to drive external pins. Power drawn from Vj,, is not
counted in the chip dissipation. (Not only would a real implementation not use 5V, and
possibly be integrated with other components, most of the test chip 1/Os, such as external

EPROM address and data, would not even exist.)

6.6 Chip Statistics

Table 6.3 gives some overall chip statistics. Note that between the uniformity of the SIMD
array and the flattened coder and sequencer layouts, useful area utilization is higher than
98%. The remaining 1.7% (above and below the coder and sequencer, inside the corners
of the pad ring) is filled with V4 and V.., to GND bypass capacitance, which cannot hurt,

given the bursty nature of the currents drawn from these supplies.

The bypass capacitance is made from N-channel device gate oxide. An example cell is

shown in Figure 6.8. Channel length is kept short to minimize the series resistance. On

173

the other hand, the cross hatched poly pattern is used to maximize the fill ratio, which
determines the density of capacitance obtained. Sources, drains, and substrate contacts
are shorted to GND in continuous metal 1, and gates are regularly strapped to V;, or V.,

with metal 2 running overhead.

Figure 6.8: Layout of bypass capacitor cell used to fill up unused area.

174

Chapter 7
Testing and Results

7.1 Functional Verificaticn

Test chip functionality was verified by performing a binary comparison of the output
stream with that of the software emulator. Binary comparison was considered more re-
liable than mere visual inspection of the decoded output, since subtle errors cannot be

obscured by small or imperceptible visual effects.

Chip and emulator output streams were compared for entire 16 frame groups spanning
lead and differential frames, after reset, across 16 frame group boundaries, and for both

motion and no motion cases.

Note that, the no motion test cases do not refer to the kind of system wide power opti-
mizations discussed in Chapter 2 for pro.longed idle periods. In these tests, the encoder is
operated in isolation, without interactions with matching data converter, imager, or con-
trolling base station. Therefore, no image difference and threshold is performed at the

beginning of frames, no record is kept of the number of consecutive idle frames, and no

175

change is made to frame rates, image resolution, or pixel precision.

Rather, the same code is executed unconditionally each frame, including wavelet filter-
ing, frame differencing, EZW coding, and previous frame updating. In this case, the effect
of no motion in the video stream is that the arithmetic coder is exercised less, and some
portion of microcode instructions are bypassed each bit plane, after the PEs are polled re-
garding the presence of significant coefficients. It is evident from the microcode found in
Appendix C that a substantial portion of the instructions are still executed each bit plane,
especially considering that the executed instructions are more power intensive than those
bypassed, on average. Differences in the power cost of instructions are related to the num-

ber of instruction wires exercised, memory accesses made, and datapath nodes switched.

In order to keep the test setup simple, the video data is not taken from a camera. In-
stead, an EPROM is programmed with data from the test images used to report compres-
sion and PSNR performance in Chapter 3. The EPROM capacity fits 2 frames which are
repeatedly fed to the encoder. Tests with motion content consist of alternating between 2

frames of the sequence, while no motion tests use 2 copies of the same frame.

Chip functionality was verified down to V;,; of 1.5V. As noted before, circuit simulation
already indicated that the arithmetic coder is the bottleneck to further voltage scaling.
This is due to the arithmetic coder’s high operating frequency, which is required by its
serialized processing. However, the coder’s tiny physi.cal capacitance makes the efficiency
of its operation largely irrelevant. Unfortunately, the opportunity to take advantage of this,
by operating the coder from V,,, for example, was missed due to the author’s mistake. Note

that, the minimum corresponding operating value of V,,, was not explored. As expected,

176

power drawn from V,,,, is a small fraction of that from V4, and the word line voltage was

simply kept about 1V higher for all tests.

7.2 Power Dissipation

Chip power dissipation was measured with a lot of low pass filtering provided by the
measuring apparatus (a Keithley 2000 Multimeter). Low pass filtering is required because
of the bursty current spikes caused by suddenly active gated clocks used throughout the
chip. The meter was set to perform analog integration of supply currents over % of a
second (the line frequency), and to report averages digitally computed over 10 sample
windows. This gives averaging windows of } of a second, or 5 frame periods. This is more
than enough to average the bursty current spikes which occur over fractions of 1 frame
period.

Table 7.1 shows measured power numbers with V;4 = 1.5V, as a function of the number
of bit planes encoded. The power drawn from V,,,, always hovers around 4% of the V4
power, and is not shown separately. This ratio is in line with estimates based on the relative
frequency of memory writes in microcode instructions (vs. the sum of other instruction
signal activity). Table 7.1 shows power numbers for both motion and no motion cases,
with no motion as described above. The normalized bit rates correspond to the motion
case (the output bit rate for the no motion case is n bits/frame, n being the number of

planes, plus 8 extra image mean bits for the lead frame in every group of 16).

Note the following observations regarding the measured dissipations:

e The bit rate grows faster than linear with the number of planes encoded. However, as

177

Bit Normalized | PSNR Power(uW)
Planes | Bit Rate Motion | No Motion
4 .0087 335 492 488

5 0204 375 540 512

6 0420 409 590 561

7 0781 43.3 639 615

8 .1429 43 675 648

Table 7.1

Power drawn from V,, of 1.5V as a function of the number of encoded bit planes. Both
motion and no motion cases are taken from the head and shoulders sequence shown in
Figures 3.9 and 3.10. The normalized bit rate (output/input bit rate) and PSNR is for the
motion case. The power drawn from V,,,, of 2.2V always hovers around 4% of the V4
power.

068 ! ! i ! ! ! !
0.68
0.64
0.62

0.6

0.56
0.54
0.52

0.5

bit planes

Figure 7.1: Plot of power vs. bit planes for both motion and no motion cases. Both re-
lationships are roughly linear (within measurement accuracy), showing that power is a
weak function of bit rate and arithmetic coder activity.

178

seen clearly in Figure 7.1, the power dissipation does not. This shows that dissipation
is a very weak function of the arithmetic coder activity, as predicted from its small
physical capacitance. The roughly linear dissipation growth follows the number of
SIMD instructions executed, which is a constant for bit planes after the first 2 (the

first 2 benefit from extended 3 symbol alphabet regions, as described in Chapter 3).

e The no motion case exhibits somewhat lower dissipation. The difference is in line

with estimates based on the number and flavor of bypassed microcode instiuctions.

e Extrapolating toward no bit planes, the dissipation does not fall off to 0. This is in
line with estimates of the constant power costs/frame, which include wavelet filter-
ing, frame differencing, EZW symbol state setup, previous frame updating, DRAM

refresh, and pixel loading.

e The peak dissipation of 675uW, for 8 bit planes, compares very well with the 572uW

estimate given in Table 5.1.

7.3 Chip Die Photo

The test chip die photo is shown in Figure 7.2. The chip is packaged in a 208 pin PGA.
The package was chosen for its cavity size. Few of the pins are used for I/0. The 1/O
includes: 20 instruction bits, 11 address, 3 serial output, 8 pixel input, 1 clock, 1 reset, 1
start frame signal, 1 arithmetic coder clock speed selector, 1 sequencer clock speed selector.

The remaining pins are gratuitously divided among the 4 supply nets (GND, Va4, Viws Vi)

179

— = N e —]

2 [X. . K £y
AXAETXEELENTR O RAANRAT, "'E‘"J'L

8 NI UL EEELT

B

S i et ol IS AR It U K SR KR 0 2

Arith Coder

A

o i

e

ERIRARY]

.
s

CRR 3 PN

ANAALANNAD

- '-'TV :" .\"‘ ﬂ.'

mw - L L .
ﬂ- o : -
e AT ik 1

/534dd£dééllll?/lfPP???T?97?WTWUQW\WNYWN\\\\\\

Figure 7.2: Test chip die photo.

180

Chapter 8

Conclusions

Compared to the known previous work on low powe video compression, the resulis
achieved in this work are fairly surprising. While roughly maintaining the compression
performance of a known, competitive algorithm, this work has resulted in a test imple-
mentation which integrates the functionality of several other efforts, with total power dis-

sipation levels at least an order of magnitude lower than any single one of them.

This can be attributed to two principal factors. The design approach taken is very
broad, meaning that from the outser, the requirements of all necessary components are
considered together. This includes: memory capacity, data distribution/loading, motion
compensation, filtering/transformation, quantization, symbol coding, and entropy cod-
ing.

Second, thé design approach taken from the outset was a very deep,. vertical one, mean-
ing *hat consiqerations at all levels of design were taken into account and allowed to influ-
ence each other. These include: system, algorithmic, architectural, circuit, and layout. As

such, the design was much more an annealing process than a flow chart. For example, the

181

author was as likely to make an algorithmic change after being frightened by a transistor
schematic, as to devise an efficient circuit for a given job. (Note that the author scares easy

- a long wire is usually enough to do the trick.)

The following list summarizes the design ingredients which are used or developed in

this work to achieve low power operation:

e The underlying compression algorithm is picked with a laundry list of considera-
tions from other design levels in mind: compression performance and scalability for
system level; local communication patterns and modest computational throughput

for architectural; simple computational operators and easy parallelization for circuit.

e The algorithm is modified to further localize or reduce communication costs. For
example, the elimination of expensive sorting operations cater to architectural de-
mands for local, uniform communication. A myriad of both input and output data
reorderings either conform to the architectural SIMD model, or reduce circuit switch-

ing activity.

o Algorithmic tradeoffs are made to reduce computational complexity while mini-
mally impacting compression petformance. Examples can be seen in the choice of
wavelet filters, number of subband decomgosition levels used, and the approxima-

tion of symbol probabilities used for entropy coding.

¢ The algorithm is extended to the time dimension without incurring excessive mem-
ory requirements. Resynchronization hooks are inserted to deal with high bit error

rates at the system level.

182

o Proposals are made for future work to tailor motion compensation to the SIMD ar-

chitectural model with the use of limited, global motion vector sets.

e A fine granularity SIMD architectural model is adopted which matches most of the
algorithmic and circuit opportunities and needs very well: the data parallelism of the
algorithm is utilized with efficient, well amortized instruction distribution costs; total
memory bandwidth is huge, with the memory broken into small, power efficient

subarrays, whose outputs are always localized to the consumers.

e A trivial one hop NEWS network meets the intra array communication needs, both
for the basic frame differencing algorithm and possible extension to motion compen-
sation. However, extra communication networks are superposed to meet algorithmic
requirements (serially operating arithmetic coder), and system requirements (evenly

spread out activity of imager and data converter).

e PE design takes a minimalist approach which takes into account operation frequen-
cies. For example, rare multiplies used in wavelet filtering are alloted few resources,
just the option of 1 position shifting, as opposed to a full barrel shifter or multiplier.
The precision of the entire PE is set to barely cover the upper bound algorithmic re-
quirements. On the other hand, much more frequent logical operations involved in
symbol coding are hardwired ir specialized logic (though the complexity is fairly

modest).

o Gated clocks are used extensively throughout the design to take advantage of bursty,
unpredictable, and highly data dependent activity. Such bursty activity may be ex-

perienced in the SIMD array during arithmetic coder passes, or start of frame syn-

183

chronization waiting. The arithmetic coder may experience large idie periods due to

low output bit rates, especially during periods of no motion.

o The small PE memory size determined at the architectural level presents an unusual
circuit design point. This opportunity is taken advantage of by employing large
voltage swing on bit lines, which emphasizes bit line peripherali circuit power (like

that of bit line sense) over the bit line power.

o The operating efficiency provided by parallelism, locality, and layout efficiency is
used to reduce power by several techniques other than the obvious voltage scal-
ing one. These include: pervasive use of small device sizes; minimization of buffer
strength used to drive SIMD instruction wires; use of circuits, such as the PE adder,

which emphasize low physical capacitance over circuit speed.

¢ Communication and memory access patterns established by the algorithm and ar-
chitecture are used at the circuit level in a variety of ways: bit lines are segmented
according to access frequency; a free second memory port is made available to pixel
loading; DRAM refresh times are extended for given storage node sizes by special
treatment of bit lines during extended idle periods; data and clock wires in the load

and unload communication networks are segmented to reduce switched capacitance.

o Aggressive custom layout of PEs is used to fulfill the efficiency promise of the fine

granularity SIMD architecture.

184

Bibliography

[1] W. Namgoong, M. Devenport, and T. Meng. A low-power encoder architecture for
pyramid vector quantization of 2D subband coefficients. In VLSI Signal Processing
VIII, pages 391-400, 1995.

[2) B.Gordon and T. Meng. A 1.2 mW video-rate 2D color subband decoder. IEEE Journal
of Solid State Circuits, 30:1510-1516, December 1995.

[3] A.Chandrakasan et al. A low power chipset for portable multimedia applications. In
IEEE International Solid-State Circuits Conference, pages 82-83, 1994.

[4] T.Kurodaetal. A .9V 150MHz 10mW 4mm?2 2D discrete cosine transform core ... In
IEEE International Solid-State Circuits Conference, pages 166-167, 1996.

[5] T. Xanthopoulos. Low Power Data-Dependent Transform Video and Still Image Coding.
PhD thesis, Massachusetts Institute of Technology, 1999.

[6] G. Yeh, Y. Lu, and J. Burr. A low-power video motion estimation array processor. In
1996 Symposium on VLSI Circuits, pages 162-163, 1996.

[7] S. Molloy, R. Jain, and K. Nishibori. A video CODEC chipset for wireless multimedia
networking. In VLSI Signal Processing VIII, pages 381-390, 1995.

[8] M. Harrand et al. A single chip videophone video encoder/decoder. In IEEE Interna-
vional Solid-State Circuits Conference, pages 292-293, 1995.

[9] M. Bopp et. al. A DECT transceiver chip set using SiGe technology. In IEEE Int.
Solid-State Circuits Corf., vol 42, pages 68-69, 1999.

[10] A. Abidi et. al. The future of CMOS wireless transceivers. In IEEE Int. Solid-State
Circuits Conf., vol 40, pages 118-119, 1997. '

[11] M. Perrott, T. Tewksbury, and C. Sodini. A 27 mW CMOS fract'onal-N synthesizer
using digital compensation for 2.5 Mb/s GFSK modulation. IEEE Journal of Solid State
Circuits, 32:2048-2060, December 1997.

[12] I. Fujimori. A differential passive pixel image sensor. Master’s thesis, Massachusetts
Institute of Technology, 1997.

185

[13] O. Schrey et. al. A locally adaptive CMOS image sensor with 90dB dynamic range. In
IEEE Int. Solid-State Circuits Conf., vol 42, pages 310-311, 1999.

[14] T. Simon. Self communings in the bathroom. Unpublished, Massachusetts Institute
of Technology, 1999.

[15] T. Simon. Low power, high speed analog-to-digital converters. Area Examination,
Massachusetts Institute of Technology, 1999.

[16] J. Goodman and A. Chandrakasan. A 1Mb/s energy/security scalable encryption
processor using adaptive width and supply. In IEEE Int. Solid-State Circuits Conf., vol
41, pages 110-111, 1998.

[17] A. Dancy and A. Chandrakasan. A reconfigurable dual output low power digital
PWM power converter. In IEEE/ACM International Symposium on Low-Power Electron-
ics and Design, pages 191-196, 1998.

[18] A.Dancy and A. Chandrakasan. Ultra low power control circuits for PWM convert-
ers. In IEEE Power Electronics Specialists Conference, pages 21-27, 1997.

[19] J. Bretz. DC-DC converters with high efficiency over wide load ranges. Master’s
thesis, Massachusetts Institute of Technology, 1999.

[20] A.N.Netravali and B.G. Haskell. Digital Pictures: Representation, Compression and Stan-
dards, Sec. Ed. Plenum, 1995.

[21] W. B. Rabiner and A. P. Chandrakasan. Network-driven motion estimation for wire-
less video terminals. IEEE Transactions on Circuits and Systems for Video Technology,
7:644-653, August 1997.

[22] S. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery
Logic. PhD thesis, Massachusetts Institute of Technology, 1994.

[23] S. Younis and T. Knight. Practical implementation of charge recovering asymptoti-
cally zero power CMOS. In Symposium on Integrated Systems, MIT Press, pages 234
250, 1993.

[24] W. Athas, J. Koller, and L. Svensson. An energy efficient CMOS line driver using
adiabatic switching. In IEEE Great Lakes Symposium on VLSI, 19%94.

[25] R. Landauer. Uncertainty principle and minimal energy dissipation in a computer.
International Journal of Theoretical Physics, 21:283-297, 1982.

[26] C. Bennett. The tl{ermodynamics of computation - a review. International Journal of
Theoretical Physics, 21:905-940, 1982.

[27] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics,
21:219-253, 1982.

[28] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41:3445-3462, December 1993.

186

[29] J. W. Woods Ed. Subband Image Coding. Kluwer, 1991.

[30] G.K. Wallace. The JPEG still picture compression standard. Communications of the
ACM, 34(4):30-44, April 1991.

[31) 1. Daubechies. Orthonormal bases of compactly supported wavelets. Communications
Pure Applied Math, 41:909-996, 1988.

[32] I. Daubechies. The wavelet transform, time-frequency localization and signal analy-
sis. IEEE Transactions on Information Theory, 36:961-1005, Sept 1990.

[33] S. Mallat. Multifrequency channel decompositionc of images and wavelet modeis.
IEEE Transactions on Acoustics, Speech and Signal Processing, 37:2091-2110, Dec 1990.

[34] O.Rioul and M. Vetterli. Wavelets and signal processing. IEEE Signal Processing Mag.,
8:14-38, Oct 1991.

[35] E. Adelson, E. Simoncelli, and R. Hingorani. Orthogonal pyramid transforms for
image coding. In SPIE Visual Communications and Image Processing II, pages 50-58,
1987.

[36] W. Zettler, J. Huffman, and D. Linden. Applications of compactly supported wavelets
to image compression. In SPIE Image Processing Algorithms, 1990.

[37] 1. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression. Communi-
cations of the ACM, 30:520-540, June 1987.

{38] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[39] M. Sezan and R. Lagendijk Eds. Motion Analysis and Image Sequence Processing. Kluwer,
1993.

[40] H. M. Hang, A. Puri, and D. Scilling. Motion-compensated transform coding based
on block motion-tracking algorithm. In IEEE Int. Conf. Communications’87, vol 1, pages
136-140, 1987.

[41] R. M. Armitano and R. W. Schafer. Motion vector estimation using spatio-temporal
prediction and its application to video coding. In SPIE Proceedings, vol 2668, pages
290-301, 1996.

{42] S. Kim and C. C. Kuo. A stochastic approach for motion vector estimation in video
coding. In SPIE Proceedings, vol 2304, pages 111-122, 1994.

[43] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design. Kluwer
Academic Publishers, Norwell, Massachusetts, 1995.

[44] A. Bhavnagarwala, B. Austin, and J. Meindl. Minimum supply voltage for bulk Si
CMOS GSI. In International Symposium on Low Power Electronics and Design, 1998.

[45] N. Weste and K. Eshrzghian. Principles of CMOS VLSI Design, Sec. Ed. Addison-
Wesley, 1993.

187

[46] G.Neudeck and R. Pierret Eds. Modular Series on Solid State Devices, 2nd ed. Addison-
Wesley, 1989.

188

Appendix A

Compression Algorithm C Code

A.1 Encoder

g¢include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ezw_common.c>

int ***image_anl;
int bits_to_follow;
int sub_poss;

void output_bit(int bit) (
if (bit) fputc(’l’, outFile);
else fputc(’0’, outFile);

}

void bit_gplus_follow(int bit) (

output_bit(bit);

while (bits_to_follow) {output_bit(!bit); bits_to_follow--; }
}

void flush_arith_encode() (
bits_to_follow++;
if (low < first_qtr) bit_plus_follow(0);
else bit_plus_follow(l);

}

void encode_sym(int sym, int table) (
int neg_size = (“high + low) >> code[table];
if (places[table] "~ sym) high = low + “neg_size;
else low = low + "neg_size + 1;
for (; 1;) (
if (high < half) bit_plus_follow(0);
elge if (low >= half) (
bit_plus_follow(l);
low -= half;
high -= half;

189

}

else if ((low >= first_qtr) && (high < third_gtr)) (

bits_to_follow++;
low -= first_qtr;
high -= firsc_qtr;
}
else break;
low = 2 * low;
high = (2 * high) + 1;
}
if (table) update_model (sym, table);
}

void encode_sig(int sign) {
if (zero_poss) encode_sym(0, 1);
encode_sym(1l, 2);
encode_sym(sign, 0);

}

void encede_root () (
if (zero_poss) encode_sym(0, 1);
encode_sym(0, 2);

}

void encode_zero() (
encode_sym(1l, 1);
)}

void encode_sub_bit (int bit) (
if (bit) bit = 1;
encode_sym(bit, 0);

}

void code_pass(int bit) {
int row, col, 1lvl, rows, cols, x, y, rowy, colx;

int **part_of_tree = make2dintarray(imagecols, imagerows) ;
int **zero_root = make2dintarray(imagecols, imagerows) ;

int sub_bit = bit >> 1;
sub_poss = sub_bit;

rows = imagerows >> 1;
cols = imagecols >> 1;
for (row = 0; row < rows; row++)
for (col = cols; col < imagecols; col++)

zero_root[col] [row] = ((mags[col][row] & bit)

. found(col] [row];
for (row = rows; row < imagerows; row++)
for (col = 0; col < cols; col++)

zero_root[col] [row] = ((mags{col][row] & bit)

found[col] [row]);
for (row = rows; row < imagerows; row++)
for (col = cols; col < imagecols; col++)

zero_root[col]}[row] = ((mags{col])[row] & bit)

found(col] [row];

190

0)

0)

0)

for (lvl = 2; 1lvl <= sblvls; lvl+s+)
rows = imagerows >> 1lvl;
cols = imagecols >> lvl;
for (row = 0; row < rows; row¢+)
for (col = cols; col < (cols << 1); col++)
zero_root[col]) [row] = (((mags(col}([row] & bit) == 0) ||
found([col) [row)) &&
zero_rxoot[col << 1) [row << 1] &&
zero_root[(col << 1) + 1](row << 1] &&
zero_root[col << 1][(row << 1) + 1] &&
zero_root[(col << 1) + 1) [(row << 1) + 1];
for (row = rows; row < (rows << 1); row++)
for (col = 0; col < cols; col++)
zero_root(col] (row] = (((mags(ccl](row] & bit) == 0) ||
found(col] [row]) &&
zerc_root[col << 1) {row << 1] &&
zero_root[(col << 1) + 1)([row << 1] &&
zero_root[col << 1] [(row << 1) + 1] &&
zero_root[(col << 1) + 1l)[(row << 1) + 1];
for (row = rows; row < (rows << 1); row++)
for (col = cols; col < (cols << 1); col++)
zero_root[col) [row]) = (((mags[col)[row]) & bit) == 0) ||
foundicol) [row]) &&
zero_root{col << 1]({row << 1] &&
zero_root[(col << 1) + 1][row << 1] &&
zero_root[col << 1] [(row << 1) + 1] &&
zero_root[(col << 1) + 1l][(row << 1) + 1];
}
rows = imagerows >> sblvls;
cols = imagecols >> sblvls;
init_arith_model();
zero_poss = 1;
for (row = 0; row < rows; row++)
for (col = 0; col < cols; col++) (
if (found([col][row] == 0)
if (mags{col][row] & bit) {
for'ndlcol) [row] = 1; encode_sig(signs(col][row]); }
elsc if (zero_root[col + cols][row] &&
zero_root[col] [row + rows) &&
zero_root(col + cols][row + rows]) {
encode_root () ;
flag_dscndnts(col + cols,row ,8blvls,part_of_tree);
flag_dscndnts (col ,XOowW + rows,sblvls,part_of_tree);
flag_dscndnts(col + cols,row + rows,sblvls,part_of_tree);)
else encode_zero();
if (sub_bit && found[coll] {rowl)
encode_sub_bit (mags(col] [row] & sub_bit);
H
init_arith_model () ;
if (bit == (1 << (alu_bits - 2 - enc_renorm[2} -~ bottom_bit)))
zero_poss = 0;
for (row = 0; row < rows; row++) (
for (col = 0; col < cols; col++) {
if ((found[col + cols)[row] == 0) &&
(part_of_treel[col + cols]lrow] == 0)) (

191

if (mags([col + cols](row] & bit) (
found(col + cols][row] = 1; encode_sig(eigns[col + cols][row]); }
else if (zero_root(col + cols][row]) (
encode_root (); flag_dscndnts(col + cols,row,sblvls,part_of_tree); }
else encode_zero();)}
if (sub_bit && found[col + cols]([row])
encode_sub_bit (mags[col + cols] [row] & sub_bit);
}
for (col = 0; col < cols; col++) (
if ((found[col][row + rows)] == 0) &&
(part_of_tree(col] [row + rows] == 0)) (
if (mags(col](row + rows] & bit) (
found[col] [row + rows] = 1; encode_sig(signs[col] [row + rows]); }
else if (zero_root[col)(row + rows]) {
encode_root (); flag_dscndnts(col,row + rows,sblvls,part_of_tree); }
else encode_zero(); }
if (sub_bit && found(col] [row + rows])
encode_sub_bit (mags(col) [row + rows] & sub_bit);
if ((found(col + cols][row + rows] == 0) &&
(part_of_tree[col + cols][row + rows] == 0)) {
if (mags[col + cols])[row + rows] & bit) {(
found[col + cols]{[row + rows] = 1;
encode_sig(signs{col + colg]}{row + rows]); }
else if (zero_root[col + cols])(row + rows]) (
encode_root () ;
flag_dscndnts(col + cols,row + rows,sblvls,part_of_tree); }
else encode_zero();)}
if (sub_bit && found[col + cols][row + rows])
encode_sub_bit (mags[col + cols][row + rows] & sub_bit);
}
}
init_arith_model () :;
if (bit == (1 << (alu_bits - 2 - enc_renorm{l) - bottom_bit)))
zero_poss = 0;
if (bit < (1 << (alu_bits - 1 - enc_renorm[l] - bottom_bit)}) (
rows = imagerows >> 2;
cols = imagecols >> 2;
for (row = 0; row < rows; row++)
for (col = cols; col < (cols << 1); col++) {
if ((found[col] [row] == 0) && (part_of_tree[col][row] == 0)) (
if (mags(col]{row] & bit) {
found(col] [row] = 1; encode_sig(signs(col][row]); }
else if (zero_root[coll[row]) (
encode_root (); flag_dscndnts(col,row,2,part_of_tree); }
else encode_zero(); }
if (sub_bit && found(col] (rowl])
encode_sub_bit (mags(col) [row] & sub_bit);
}
for (row = rows; row < (rows << 1l); row++)
for (col = 0; col < cols; col++) {
if ((found[col] [row] == 0) && (part_of_tree[col](row] == 0)) |
if (mags[col](row] & bit) (
found(col] [row] = 1; encode_sig(3igns([col] (row]); }
else if (zero_root([col][row]) (
encode_root(); flag_dscndnts(col,row,2,part_of_tree); }

192

else encode_zero();)
if (sub_bit && found(col] [row])

encode_sub_bit (mags([col) [row] & sub_bit);

}

for (row = rows; row < (rows << 1); row++)
for (col = cols; col < (cols << 1); col++) |
if ((found{col][row] == 0) && (part_of_tree(col] (row] == 0)) (

if (mags(col)[row] & bit) (

found(col) [row] = 1; encode_sig(signs[col]([row]); }

else if (zero_root([col]([row]) (

encode_rcot(); flag_dscndnts(col,row,2,part_of_tree);)}

else encode_zero(); }
if (sub_bit && found[col]}(row])

encode_sub_bit (mags([col) [row] & sub_bit);

}
}
init_arith_model():
zero_poss = 0;

if (bit < (1 << (alu_bits - 1 - enc_renorm{0] - bottom_bit)))

rows imagerows >> 1;
cols imagecols >> 1;
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++}

for (rowy = 0; rowy < rows; rowy += 2)
for (colx = cols; colx < (cols << 1); colx += 2)

YOW = rowy + y:
col = colx + Xx;

if ((found(col]([row] == 0) && (part_of_treel[col}[row] == 0})

if (mags(col]([row] & bit) (

found(col] [row] = 1; encode_sig(signs[col] [row]):;

else if (zero_root(col]ll[row]) (

ericode_root(); flag_dscndnts(col,row,l,part_of_tree); }

else encode_zero(); }
if (sub_bit && found([col] lrow])

encode_sub_bit (mags[col]l [row] & sub_bit);

)
for (y
for (x

0; Y < 2; y++)
0; x < 2; X++)

for (rowy = rows; rowy < (rows << 1l); rowy += 2)
for (colx = 0; colx < cols; colx += 2) (

TOW = Xrowy + Y;
col = colx + x;

if ((found[col])[row] == 0) && (part_of_treelcol][row] == 0))

if (mags(col]({row] & bit) ({

found{col] (row] = 1; encode_sig(signs{col] (row]):;

else if (zero_root|col] [row]) {(

encode_root (); flag dscndnts(col,row,1l,part_of_tree); }

else encode_zero(); }
if (sub_bit && found([col](row])

encode_sub_bit (magscol] [row) & sub_bit);

}
for (y = 0; y < 2; y++)
for (x = 0; x < 2; xX++)

for (rowy = rows; rowy < (rows << 1); rowy += 2)
for (colx = cols; colx < (cols << 1); colx += 2)

{

{

{

row = rowy + Yy;
col = colx + x;
if ((found[col]) [row] == 0) && (part_of_tree[col][row] == 0)) (
if (mags[col)[row] & bit) {
found(col] [row) = 1; encode_sig(signs[col] [row]); }
else if (zexo_root[col]([row]) (
encode_root (); flag_dscndnts(col,row,1l,part_of_tree); }
else encode_zero(); }
if (sub_bit && found(col] [row])
encode_sub_bit (mags[col] [row] & sub_bit);
}
)
}

void loadimage() {
unsigned char temp_char;
int row, col;
image_mean = 0;
fscanf (inFile, °"P5 %4 %4 255°, &imagecols, &imagerows);
fread(&temp_char,1,1,inFile);
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++) {
fread(&temp_char,1,1,inFile);
if (feof(inFile)) (printf("ERROR: too few pixels\n"); exit(0); }
image_anl(col) {row] [0] = (int) temp_char;
image_mean += image_anl(col] [row] [0];
)
fread(&temp_char,1,1,inFile);
if (feof(inFile) == 0) {printf("ERROR: too many pixels\n®"); exit(0); }
image_mean = image_mean / imagerows;
image_mean = image_mean / imagecols;
for (row = 0; row < imayerows; row++)
for (col = 0; col < imagecols; col++)
image_anl[col] [row] [0] = image_anl[col] [row] [0] - image_mean;

}

void analyze_image(int 1lvl) {
int row, col, coef, index, cols, rows;
cols = imagecols >> (lvl - 1);
rows = imagerows >> (lvl - 1);
for (row = 0; row < rows; row++)
for (col = 0; col < (cols / 2); col++) (
for (coef = 0; coef < enc_filter_len; coef++) {
index = (col * 2) + (enc_filter_len / 2) - coef;
filter_args(coef) = image_anl[reflect(index, cols)][row][0];
}
image_anl([col] (row] [1] = (*(enc_lo_pass)) (});
for (coef = 0; coef < enc_filter_len; coef++) {
index = (col * 2) + (enc_filter_len / 2) - coef + 1;
filter_args(coef] = image_anl[reflect(ind2x, cols)][rowl([0];
}
image_anl[col + (cols / 2)][row][1l] = (*(enc_hi_pass)) ();
}
for (row = 0; row < (rows / 2); row++)
for (col = 0; col < cols; col++) {

194

for (coef = 0; coef < enc_filter_len; coef++) {
index = (row * 2) + (enc_filter_len / 2) - coef;
filter_args[coef] = image_anl[col][reflect(index, rows)][1];
}
image_anl([col] [row] [0] = (*(enc_loc_pass))();
for (coef = 0; coef < enc_filter_len; coef++) {
index = (row * 2) + (enc_filter_len / 2) - coef + 1;
filter_args([coef] = image_anl[col] [reflect(index, rows)](1];
}
image_anl(col] [row + (rows / 2))(0] = (*(enc_hi_pass))();
}
}

main (int argc,char *argv(]) (
int row, col, 1lvl, bit, frame, grp, rows, cols, renorm, tmp;
argc--;
argv++;
if(argc != 1) (printf(*"Invalid number of arguments.\n"); exit(0); }
imagecols = 128;
imagerows = 128;
alu_bits = 12;
sblvls = 3;
group_size = 16;
groups = 1;
sscanf (*argv++, "%d", &ezw_passes);
bottom_bit = 8 - ezw_passes;
sign_bits_mask = 0 - (1 << (alu_bits - 1));
filename_in = "infrm*;
filename_out = *rf";

image_anl = make2dintarray(imagecols, imagerows,2);
signs = make2dintarray(imagecols, imagerows) ;

mags = make2dintarray(imagecols, imagerowvs) ;

found = make2dintarray(imagecols, imagerows) ;
prev_frame = make2dintarray(imagecols, imagerows) ;

for (grp = 0; grp < groups; grp++) (
outFile = fopen(make_frm_name(filename_out, grp), "w*");
bits_to_follow = 0;
low = 0;
high = top_value;
init_arith_model();
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++)
prev_frame({col] [row] = 0;
for (frame = 0; frame < group_size; frame++)
inFile =. fopen(make_£frm_name (filename_in,
(grp * group_size) + frame),
lrl);
loadimage () ;
fclose(inFile);
if (frame == 0)
for (bit = 7; bit >= 0; bit--)
encode_sym((image_mean >> bit) & 1, 0);
for (row = 0; row < imagerows; row++)

195

for (col = 0; col < imagecols; col++)
image_anl([col] [row]) [0] = image_anl([col] [row] [0] << 3;
for (1lvl = 1; 1lvl <= sblvls; lvl++) analyze_image(lvl);
for (lvi = 1; lvl <= sblvls; 1lvl++) {
rows imagerows >> 1lvl;
cols = imagecols >> 1lvl;
renorm = enc_renorm{lvl - 1];
bit = 0;
if ((bottom_bit - 1 + renorm) > 0)
bit = 1 << (bottom_bit - 2 + renorm);
if (lvl == sblvls)
for (row = 0; row < rows; row++)
for (col = 0; col < cols; col++) (
tmp = prev_frame{col] [row] << renorm;
tmp = image_anl{[col] [row] [0] - tmp;
signs[col] {row] = tmp < O;
mags(col]l [row] = (mag(tmp) + bit) >> (bottom_bit + renorm);
}
for (row = 0; row < rows; row++)
for (col = cols; col < (cols << 1); col++)
tmp = prev_frame[col] [row] << renorm;
tmp = image_anl[col) [row]} [0] - tmp;
signs{col] [row] = tmp < 0;
mags[col]l [row] = (mag{tmp) + bit) >> (bottom_bit + renorm);
}
for (row = rows; row < (rows << 1l); row++)
for (col = 0; col < cols; col++) {
tmp = prev_frame[col] [row] << renorm;
tmp = image_anl[col] [row] (0] - tmp;
signs[col] [row] = tmp < 0;
mags(col] [row] = (mag(tmp) + bit) >> (bottom_bit + renorm);
}
for (row = rows; row < (rowes << 1); row++)
for (col = cols; col < (cols << 1); col++) {
tmp = prev_frame[col] [(row] << renorm;
tmp = image_anl([col] [row] [0] - tmp;
signs[col] {row] = tmp < O;
mags[col] [row] = (mag(tmp) + bit) >> (bottom_bit + renorm);

}

bit = 0;

for (row = 0; row < imagerows; row++)

for (col = 0; col < imagecols; col++) {
bit |= mags[col] [row];
found{col]l [row] = 0;
tmp = mags{col] [row] << bot_om_bit;
if (signs(col] [row])
prev_frame{col] [row] = prev_frame(col] (row] - tmp;

else prev_frame[col]) [row] = prev_frame([col] [row] + tmp;

for (top_bit = 1 << (9 - bottom bit);
top_bit && ! (top_bit & bit);
top_bit = (top_bit >> 1))
encode_sym(0, 0);
if (top_bit) encode_sym(l, 0);

196

for (bit = top_bit; bit; bit = (bit >> 1)) code_pass(bit);
if (top_bit && frame)
for (bit = 7; bit >= 0; bit--)
encode_sym((image_mean >> bit) & 1, 0);
}
flush_arith_encode();
fclose(outFile);

197

A.2 Decoder

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ezw_common.c>

double ***image_syn;
int value;

#define root_sym 0
#define pos_sym 1
#define neg_sym 2
#define zero_sym 3

int input_kit() (
int next_bit = fgetc(inFile);
if (next_bit == ’‘1l’) return 1;
else return O;

}

void init_arith_decode() (
int i;
value = 0;
for (i = 0; 1 < value_bits; i++)
value = (value << 1) + input_bit();
}

int decode_sym(int table) {
int range = high - low + 1;
int neg_size = (- range) >> code[table];
int trunc = ((- range) & ((1 << code[table]) - 1)) > 0;
int place = (1 << (8 - codel[table])) >
((((value - low + !trunc) << 8) - 1) / range);

int sym = places[table] "~ place:
if (place) high = low + "“neg_size;
else low = low + “neg_size + 1;
for (; 1;) (

if (high < haif) ;

else if (low >= half) {

value -= half;
low -= half;
high -= half;

1

’

else if ((low >= first_qgtr) && (high < third_qtr)) {

value -= first_qtr;

low -= first_qtr;

high -= first_qtr;
}

else break;

low = 2 * low;

high = (2 * high) + 1;

value = (2 * value) + input_bit();
}
if (table) update_model (sym, table);

198

return sym;

}

int decode_dom_sym() {(
int syml = 0;
if (zero_poss) syml = decode_sym(1l);
if (syml) return zero_sym;
if (decode_sym(2))
if (decode_sym(0)) return neg_sym;
else return pos_sym;
return root_sym;
}

int decode_sub_bit() {
return decode_sym(0) ;
}

void decode_pass{int bit) (
int row, col, 1lvl, sym, x, y, rowy, colx;
int **part_of_tree = make2dintarray(imagecols, imagerows) ;
int rows = imagerows »>> sblvls;
int cols = imagecols >> sblvls;
int sub_bit = bit >> 1;

init_arith_model();
zero_poss = 1;
for (row = 0; row < rows; row++)
for (col = 0; col < cols; col++) (
if (found{col]([row] == 0} {
sym = decode_dom_sym() ;
if (sym == pos_sym) (found{col][row] = 1; magsicol] [row] = bit;
else if (sym == neg_sym) (
found([coll[row]} = 1;
signs(col]) [row] = 1;
mags[col] [row] = bit; }
else if (sym == root_sym) (
flag_dscndnts(col + cols,row ,Sblvls,part_of_tree);
flag_dscndnts(col ,row + rows,sblvls,part_of_tree);
flag_dscndnts(col + culs,row + rows,sblvls,part_of_tree); }
}
if (sub_bit && found[col] {row])
if (decode_sub_bit()) mags(col] [row] = mags[col][row] | sub_bit;
}

init_arith_model();
if (bit == (i1 << (alu_bits - 2 - enc_renorm([2] - bottom_bit)))
zero_poss = 0;
for (row = 0; row < rows; row++) (
for (col = 0; col < cols: col++) {
if ((found(col + cols][row] == 0) &&
(part_of_tree[col + cols][row] == 0)) {
sym = decode_dom_sym() ;
if (sym == pos_sym) {(
found{col + cols][row] = 1;
mags[col + cols]([row] = bit; }

199

}

else if (sym == neg_sym) {(
found{col + cols] [row] 1;
signs([col + cols] [row]) 1;
mags{col + cols)[row] = bit; }
else if (sym == root_sym)
flag_dscndnts(col + cols,row,sblvls,part_of_tree);

}
if (sub_bit && found[col + cols] [row])
if (decode_sub_bit())
mags[col + cols]{row] = magsicol + cols])[row] | sub_bit;

}
for (col = 0: col < cols; col++) {
if ((found[col] [row + rows] == 0) &&
(part_of_treelcol) [row + rows] == 0)) {
sym = decode_dom_sym() ;
if (s == pos_sym) {
found{col] [row + rows] = 1;

mags[col] [row + rows] = bit; }
else if (sym == neg_sym) {
found([col} [row + rows] 1;
signs{col] [row + rows] 1;
mags [col] [row + rows] = bit; }
else if (sym == root_sym)
flag_dscndnts(col,row + rows,sblvls,part_of_tree);

}
if (sub_bit && foundicol) [row + rows])
if (decode_sub_bit())
mags[col]) [row + rows] = mags([col][row + rows] | sub_bit;
if ((found[col + cols)[row + rows] == 0) &&
(part_of_tree[col + cols][row + rows] == 0}) (
sym = decode_dom_sym() ;
if (sym == pos_sym) {
found[col + cols)[row + rows] = 1;
mags [col + cols](row + rows] = bit; }
else if (sym == neg_sym) {
found[col + cols][row + rows]) 1;
signs[col + cols][row + rows] 1;
mags[col + cols][row + rows] = bit;)}
else if (sym == root_sym)
flag_dscndnts{col + cols,row + rows,sblvls,part_of_tree);

}
if (sub_bit && found([col + cols][row + rows])
if (decode_sub_bit())
mags[col + cols][row + rowsl =
mags {col + cols)[row + rows) | sub_bit;

}
} .
init_arith_model () ;
if (bit == (1 << (alu_bits - 2 - enc_renorm[1l] - bottom bit)))

zero_poss = 0;
if (bit < (1 << (alu_bits - 1 - enc_renorm{l] - bottom bit))) ({
int rows = imagerows >> 2;
int cols = imagecols >> 2;
for (row = 0; row < rows; row++)
for (col = cols; col < (cols << 1); col++) {

200

if ((found[col][row) == C) && (part_of_tree[col][row] == 0)) {
sym = decode_dom_sym() ;
if (sym == pos_sym) (found[col][row] = 1; mags(col](row] = bit;)}
else if (sym == neg_sym) (
found[col] [row] = 1;
signs(col]l {row] = 1;
mags [col]) (row)] = bit; }
else if (sym == ronot_sym) flag_dscndnts(ccl,row,2,part_of_tree);
}
if (sub_bit && found[col] [row])
if (decode_sub_bit()) magsicoll [row] = mags[col)!row] | sub_bit;
}
for (row = rows; row < (rows << 1l); row++)
for (col = 0; col < cols; col++) {
if ((found[col][row] == 0) && (part_of_tree([col] [row] == 0)) (
sym = decode_dom_sym() ;
if (sym == pos_sym) {found[col](row] = 1; mags([col)[row] = bit;)}
else if (sym == neg_sym) (

found[col] [row) = 1;
signs[col]l (row] = 1;
mags[col] [row] = bit; }
else if (sym == root_sym) flag_dscndnts(col,row,2,part_of_tree);

}
if (sub_bit && found[col] [row])
if (decode_sub_bit()}) mags{col] (row] = mags[col][row] | sub_bit;
}
for (row = rows; row < {rows << 1l); row++)
for (col = cols; col < (cols << 1); col++) {
if ((found[col][row] == 0) && (part_of_tree[col][row] == 0)) {
sym = decode_dom_sym() ;
if (sym == pos_sym) {found[col]([row] = 1; mags(col][row] = bit;)}
else if (sym == neg_sym) {
found(col] [row] = 1;
signs([col] [row] = 1;
mags[col) [row]) = bit; }
else if (sym == root_sym) flag_dscndnts(col,row,2,part_of_tree);
}
if (sub_bit && found[col] [row])
if (decode_sub_bit()) mags{col] (row] = mags{coll(row] | sub_bit;
}
}
init_arith_model();
zero_poss = 0;
if (bit < (1 << (alu_bits - 1 - enc_renorm{0] - bottom_bit))) {
int rows = imagerows >> 1;
int cols = imagecols >> 1;
for (y = 0; y < 2; y++)
for (x = 0; X < 2; xX++)
for (rowy = 0; rowy < rows; rowy += 2)
for (colx = cols; colx < (cols << 1); colx += 2) (
TOW = rowy + Y:
col = colx + x;
if ((found[col]([row] == 0) && (part_of_tree(col)(row] == 0)}) {
sym = decode_dom_sym();
if (sym == pos_sym) {(foundicol)[row] = 1; mags[col]{row] = bit;)

201

else if (sym == neg_sym) {
found[col) [row] 1;
signs([col] [row] 1;
mags(col] [row] = bit; }
else if (sym == root_sym) flag dscndnts(col,row,1l,part_of_tree);
}
if (sub_bit && found([col](row])
if (decode_sub_bit()) mags([col] [row] = mags[col] [row] | sub_bit;
}
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++)
for (rowy = rows; rowy < (rows << 1l); rowy += 2)
for (colx = 0; colx < cols; colx += 2) {
YOW = Xowy + Y
col = colx + x;
if ((found[col] [row] == 0) && (part_of_tree[col][row] == 0)) (
sym = decode_dom_sym() ;
if (sym == pos_sym) {found[col])[row} = 1; mags([col] [row] = bit; }
else if (sym == neg_sym) {(
found[col] [row] 1;
signs[col] [row] 1;
mags {col] (row] = bit; }
else if (sym == root_sym) flag_dscndnte(col,row,l,part_of_tree);
}
if (sub_bit && found(col] [row])
if (decode_sub_bit()) mags{col] [row] = mags([col] [row] | sub_bit;
}
for (y 0; ¥y < 2; y++)
for (x = 0; x < 2; x++)
for (rowy = rows; rowy < (rows << 1l); rowy += 2)
for (colx = cols; colx < (cols << 1); colx += 2) (
row = Yrowy + Y;
col = colx + x;
if ((found[col] [row] == 0) && (part_of_tree([col][row] == 0)) {
sym = decode_dom_sym() ;
if {sym == pos_sym) {foundfcol])[row] = 1; mags(col] [row] = bit; }
else if (sym == neg_sym) (
found(col] [row] 1;
signs([col] [row] 1;
mags [col] [row] = bit;)
else if (sym == root_sym) flag_dscndnts(col,row,l,part_of_tree);
}
if (sub_bit && found(col] [row]))
if (decode_sub_bit()) mags(col) [row] = mags{col](row] | sub_bit;
}

)
}

void dumpimage() {
unsigned char temp_char;
int row, col;
fprintf (outFile, "P5 %d %4 255\n®, imagecols, imagerows) ;
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++) {
image_syn(col] [row] [0) += image_mean;

202

temp_char = (char) image_synl(col] [row] {0];

if (image_syn[col][row] [0] < 0) temp_char = 0;
if (image_syn[col]{row] [0] > 255) temp_char =
fwrite (&temp_char,1,1,0utFile);

)

int even(int arg) {
return 1 - (arg & 1);
}

void synthesize_image(int 1vl) {
int row, col, coef, index, cols, rows;
cols = imagecols >> (lvl - 1);
rows = imagerows >> (lvl - 1);
for (row = 0; Xow < Xows; XOow++)
for (col = 0; col < cols; col++) (
image_syn{col] [row] [1] = O;
for (coef = 0; coef < dec_filter_len; coef++) {
index = reflect(row + (dec_filter_len / 2) - coef, rows);
if (even(index))
image_syn[col] [row]} [1] +=
dec_lo_pass[coef] * image_syn([col][index / 2][0];
index = reflect(row + (dec_filter_len / 2) - coef - 1, rows);
if (even(index))
image_syn([col] [row] [1] +=
dec_hi_pass([coef] * image_syn{col][(index / 2) + (rows / 2)1[0]);
}
}
for (row = 0; row < rows; row++)
for (col = 0; col < cols; col++) (
image_syn[col] [row] [0] = 0;
for (coef = 0; coef < dec_filter_len; coef++) {
index = reflect(col + (dec_filter_len / 2) - coef, cols);
if (even(index))
image_syn{col] (row] [0]) +=
dec_lo_pass([coef] * image_syn([index / 2][row][1];
index = reflect(col + (dec_filter_len / 2) - coef - 1, cols);
if (even(index))
image_syn(col] [row] [0]) +=
dec_hi_pass[coef] * image_syn{(index / 2) + (cols / 2)])I[row][1l];
}
}
}

main (int argc,char *argv(]) (
Aint row, col, 1lvl, bit, frame, grp:
argc--;
argv++;
if (argc != 1) {(printf("Invalid number cf arguments.\n"); exit (0);)
filename_in = *"rf*;
filename_out = "outfrm";
imagecols = 128;
imagerows = 128;
alu_bits = 12;

203

sblvls = 3;

group_size = 16;

groups = 1;

sscanf (*argv++, "%d", &ezw_passes);

bottom_bit = 8 - ezw_passes;

image_syn = make3ddblarray(imagecols, imagerows,2);
signs = make2dintarray(imagecols, imagerows) ;

mags = make2dintarray(imagecols, imagerows) ;

found = make2dintarray(imagecols, imagerows) ;
prev_frame = make2dintarray(imagecols, imagerows) ;

for (grp = 0; grp < groups; grp++) {
inFile = fopen(make_frm_name(filename_in, grp), °r");
low = 0;
high = top_value;
init_arith_decode();
init_arith_model () ;
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++)
prev_frame[col] [row] = 0;
image_mean = 0;
for (bit = 0; bit < 8; bit++)
image_mean = (image_mean << 1) + decode_sym(0);

for (frame 0; frame < group_size; frame++) {
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++) {
mags[col} [row] = 0;
signs[col) [row] = 0;
found{col] [row] = 0;
)
for (top_bit = 1 << {9 - bottom_bit);
top_bit && !decode_sym(0);
top_bit = top_bit >> 1);
for (bit = top_bit; bit; bit = (bit >> 1)) decode_pass(bit) ;
if (top_bit && frame) (
image_mean = 0;
for (bit = 0; bit < 8; bit++)
image_mean = (image_mean << 1) + decode_sym(0);
}
for (row = 0; row < imagerows; row++)
for (col = 0; col < imagecols; col++) (
if (found[col][row]) {
if (signs[coll([row])
prev_frame([col] [row] -= mags[col] [row] << (bottom bit + 1):
else prev_frame[col) [row] += mags[col][row] << (bottom_ _bit + 1);
} .
image_syn([col] [row] [0] = (double) prev_frame[col] (row];
}
for (ivl = sblvls; 1lvl > 0; 1lvl--) synthesize_image(lvl);
outFile = fopen(make_frm name(filename_out,
(grp * group_size) + frame),
lwI) '.
dumpimage () ;
fclose(outFile);

204

}
fclose(inFile);
}
}

205

A.3 Common Subroutines

FILE *inFile;

FILE *outFile;

char *filename_in;

char *filename_out;

int **signs;

int **mags;

int **found;

int **prev_frame;

int imagecols, imagerows, sblvls,

top_bit, image_mean;

int group_size, groups, bottom_bit, ezw_passes;
int alu_bits, sign_bits_mask, zero_poss;

int filter_args({5) = {0, 0, 0, O,

/* arithmetic coder defs */
#define value_bits 11

0};

#define top_value ((1 << value_bits) - 1)
#define first_gtr ((top_value >> 2) + 1)

#define half (first_gtr << 1)

#define third_qtr (first_gtr + half)

#define max_freq 255
int low, high;

#define tbls 3
int freq(tbls](2];
int places(tbls];
int code{tbls];

/* 5 x 5 wavelet filter */
double dec_lo_pass5[] = (-0.0761,
double dec_hi_pass5(] = {-0.0761,

int enc_lo5() (
int a;

= a - filter_args{2];

(a >> 3) - a;

(a >> 1) + filter_args(1];
(a + filter_args[3)) >> 1;
a = (a + filter_args(2]) >> 1;
return a;

[C I
|

)

int enc_hi5() {(

0.3536, 0.8593, 0.3536, -0.0761};
-0.3536, 0.8593, -0.3536, -0.0761};

= (filter_args([0]) + filter_args(4]) >> 1;

int a, b;

a = (filter_args(0] + filter_args([4]}) >> 1;
a = (a > 1) - (filter_args([2] >> 1);

a = (a > 3) - a;

a = (a> 1) - (filter_args(1l] >> 1);

a = a - (filter_args(3] >> 1);

a = (a + filter_argsl(2)) >> 1;

return a;

206

int dec_filter_len 5;
double *dec_lo_pass dec_lo_passS5;
double *dec_hi_pass = dec_hi_pass5;

typedef int (*PROC) ();

int enc_filter_len = 5;

int enc_renorm(] = (3, 2, 1, 0};
PROC enc_lo_pass = enc_lo5;

PROC enc_hi_pass = enc_hi5;

char *strappend(char *strl,char *str2) {
char *result;
result = calloc((strlen(strl) + strlen(str2) + 1), sizeof(char));
strcpy (result, strl);
strcat(result, str2);
return result;
}

char *make_frm_name(char *name, int frnum) (
char *ans;
ans = calloc(5, sizeof(char));
if (frnum < 10) sprintf(ans, °.00%d", frnum);
else if (frnum < 100) sprintf(ans, *.0%d", frnum);
else sprintf({ans, ®".%d*, frnum);
return strappend(name, ans);
}

int **make2dintarray(int d1, int d2) {
int **array;
int index;
array = calloc(dl, sizeof(int *));
for (index = 0; index < dl; index++)
array(index]) = (int *) calloc(d2,sizeof(int));
return array;
}

double **make2ddblarray(int dl, int d2) (
double **array;
int index;
array = calloc(dl, sizeof(double *));
for (index = 0; index < dl; index++)
array[index] = (dcuble *) calloc(d2,sizeof (double));
return array;
}

int ***make3dintarray(int dl, int d2, int d3) {(
int ***array;
int index:
array = calloc(dl, sizeof(int **));
for (index = 0; index < dl; index++)
array[index) = make2dintarray(d2,d3);
return array;

207

double ***make3ddblarray(int d1, int 42, int d3) (
double ***array;

int index;

array = calloc(dl, sizeof (double **));

for (index = 0; index < dl; index++)

)

arxay[index] = make2ddblarray(d2,d3);

return array;

int mag(int arg) {(
if (axg < 0) arg = 0 - arg;
return arg;

}

int reflect(int arg,int bound) (

arg = mag(arg);

if (arg >= bound) arg = (2 * (bound - 1)) - arg:;
return arg;

)

void flag_dscndnts(int cecl,int row,int lvl,int **part_of_tree) (
if (1vl > 0) {

}

}

part_of_treef[cn'][row] = 1;

flag_dscndnts (..ol << 1) , (row << 1) vl -
flag_dscndnts((col << 1) + 1, (row << 1) J1lvl -
flag_dscndnts((col << 1) ,(row << 1) + 1,1vl -

flag_dscndnts((col << 1) + 1, (row << 1) + 1,1lvl -

void update_model (int sym, int table) {(

int cums0, cumsl, total;

freqg[table] [sym] ++;

places[table] = freg(table][1l] > freqg[table] [0];
total = freg(table] [0] + freq[table][1l];

for (cums0 = value_bits - 4; ((1 << cums0) & total)

}

for (cumsl
({1 << cumsl) & freqitable} [l - places(table]])

value_bits - 4;

cumsl--);

code(table] = cums0 - cumsl;
if (codel[table] < 1) code[table] = 1;
if (total == max_freq) {(

)

freq(table] [0] = (freq[table]([0) >> 1) | 1;
freq{table]) [1] = (freg[table]l([1l] >> 1) | 1

void init_arith_model() {(
int j;
for (j = 0; j < tbls; j++) {

code(]j] = 1;
places([j] = O;
freq(jl (0] = 1;
freq(jl(1l] = 1;

208

1,part_of_tree);
1,part_of_tree);
1,part_of_tree);
1,part_of_tree);

== 0; cums0--);

== O;

)

/i
;Alternate probability approximation with better
;rounding (worth < 1.5%).

int cum_freq(tbls]{3];

void update_model (int sym, int table) {
int i;
int cums([2];
int rounding_bits([2];
int place = places(table] " sym;
if (cum_freq[table] (0] == max_freq)
for (i = 1; i >= 0; i--) (
freq[table] i) = (freq(table][i] >> 1) | 1;
cum_freqgitable][i] = cum_freqgltable] (i + 1) + freg{table][i}:
}
freg[table] [place] ++;
for (i = 0; i <= place; i++) cum_freqltable] [i]++;
if (freq(table][1] > freqg[table] [0]) (
int tmp = freq(table] [0]);
freg(table] [0) = freg[table][1];
freg(table] [1] = tmp;
cum_freq[table] [1] = tmp;
places[table] = 1 - places[table];
}
for (1 = 0; i < 2; i++) (
for (cums(i] = value_bits - 4;
((1 << cums([i])) & cum_freq[table][i]) == 0;
cums([i)--);
rounding_bits(i] = 0;
if (cums[i])
if ((1 << (cums[i] - 1)) & cum_freg[table][i])
rounding_bits[i] = 2;
if (cums[i] > 1)
if ((1 << (cums[i] - 2)) & cum_freqg(table][i])
rounding_bits[i] += 1;
}
if ((rounding_bits{0] + (rounding bits[1l] > 1)) > 1) cums{0]++;
if ((rounding_bi%s[1l] + (rounding_bits([0] > 1)) > 1) cums([1l]++;
codef{table} = cums[0} - cums[l];
if (code[table] < 1) code[table] = 1;
}

void init_arith_model () {
int i, 3;
for (j = 0; j < tbls; j++) {
cum_freqljl (2] = 0;
code(j] = 1;
places(j] = 0;
for (i = 0; 1 < 2; i++) {(
freql(jl[i) = 1; cum_freq[jl[i] = 2 - i;)}

209

210

Appendix B

Microcode Assembler C Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE *inFile;

FILE *ocutFile;

FILE *epromFileH;

FILE *epromFileM;

FILE *epromFileL;

int ezw_passes, eprom_block;

#define labels 40

char *1lbl_names[labels];
int 1bl_addr[labels];
char *line, *line_ptr;
int pc, next_1bl;

int inst_bit(20];

int src_addr, 1ld_addr;

#define cntrl_num 12

char *cntrl_name([cntrl_num]
dec_counter\n",

= {

load_counter (bottom _bit)\n,
*load_counter (ezw_passes)\n",

*do_ezw_slot\n",
*halt_till_new_frame\n",
"pre_top_bit\n",
*clr_sub_OK_bit\n-",
*set_sub_OK_bit\n"°,
*clr_zero_possible\n",
"set_zero_possible\n",
"init_arith_tables\n®,
"init_arith_coder\n"

};

char *cntrl_bits{cntrl_num]

211

*0000",
“0010",
"0011",
"0110",
“0111-,
*1001",
=1010",
"1011",
*1100",
*1101°",
“1110",
"1111*"
}:

int cntrl_vals([cntrl_num] = {
Ol
2,
3!
6‘
7,
9,
10,
11,
12,
13,
14,
15,
};

void first_pass() (
fgets(line, 80, inFile);
if (!feof(inFile)) {(
if ((strlen(line) == 1) || (strncmp(line, *;", 1) == 0))
first_pass();
else if (sscanf(line, "label %s*, 1bl_names[next_1lbl]) == 1) {
1bl_addr[next_1bl] = pc;
next_lbl++;
first_pass();
}
else (pc++; first_pass();)}
}
}

int cntrl_inst(int index) (
if (index == cntrl_num) return 0;
else if (strcmp(line, cntrl_name(index]))
return cntrl_inst(index + 1);
else {(
fprintf (outFile, "00%s00000000000%d%dsd\n", cntrl_bits[index],
ezw_passes >> 2, (ezw_passes >> 1) & i, ezw_passes & 1);
fprintf (epromFileH, ®*:01%.4X00%.2X%.2X\n", pc,
(cntrl_vals[index] >> 2),
((- ((cntrl_vals(index] >> 2) + 1 + (pc >> 8) + (pc & 255)))
& 255));
fprintf (epromFileM, ":01%.4X00%.2X%.2X\n", pc,

212

({cntrl_vals[index] & 3) << 6),
((- (({cntrl_vals(index] & 3) << 6) +
1 +
(pc >> 8) +
(pc & 255)))
& 255));
fprintf (epromFileL, ®:01%.4X00%.2X%.2X\n", pc, ezw_passes,
({- (ezw_passes + 1 + (pc >> B8) + (pc & 255))) & 255));
pCc++;
return 1;
}
)

int f£find_1lbl(int index) {
if (index == next_lbl)
{printf ("Label not found: %s\n®, lbl_names[next_1bl]); exit(0);}
if (strcmp(lbl_names({index], lbl_names[next_lbl]))
return f£find_1lbl (index + 1);
else return lbl_addr[index];
}

int jmp_inst() (
int i, addr;

if (sscanf(line, "jmp_if_counter %s®, lbl_names([next_1bl])} == 1) {
addr = find_1bl(0);
fprintf (outFile, *001000100");
for (i = 10; i >= 0; i--) fprintf(outFile, *%d4*, (addr >> i) & 1);
fprintf (outFile, *\n*";;
fprintf {(epromFileH, ":01%.4X0002%.2X\n", pc,
((- (3 + (pc >> 8) + (pc & 255))) & 255));
fprintf (epromFileM, ":01%.4X00%.2X%.2X\n", pc, (32 + (addr >> 8)}),
((- (32 + (addr >> 8) + 1 + (pc >> 8) + (pc & 255)))
& 285));
fprintf (epromFileL, ®:01%.4X00%.2X%.2X\n", pc, (addr & 255),
((- ((addr & 255) + 1 + (pc >> 8) + (pc & 255))) & 255));
pc++;
return 1;
}
if (sscanf(line, "jmp_if_not_mean_msb %s®, lbl_names[next_1bl]) == 1)
{
addr = f£ind_1bl(0):
fprintf (outFile, "001000101°);
for (i = 10; i >= 0; i--) fprintf(outFile, "%d", (addr >> i) & 1);
fprintf (outFile, *\n");
fprintf (epromFileH, ":01%.4X0002%.2X\n", pc,
((- (3 + (pc >> 8) + (pc & 255))) & 255));
fprintf (epromFileM, ":01%.4X00%.2X%.2X\n", pc, (40 + (addr >> 8)),
((- (40 + (addr >> 8) + 1 + (pc >> B) + (pc & 255)))
& 255));
fprintf (epromFileL, ":01%.4X00%.2X%.2X\n", pc, (addr & 255),
((- ((addr & 255) + 1 + (pc >> 8) + (pc & 255))) & 255));
pPC++;
return 1;
}

213

if (sscanf(line, "jmp_if_new_group %$s"®, lbl_names[next_lbl]) == 1) (
adédr = find_1bl(0);
fprintf (outFile, "001000110");
for (i = 10; i >= 0; i--) fprintf(outFile, "%d", (addr >> i) & 1);
fprintf (outFile, *\n*");
fprintf (epromFileH, ":01%.4X0002%.2X\n", pc,
((- (3 + (pc >> 8) + (pc & 255))) & 255));
fprintf (epromFileM, ":01%.4X00%.2X%.2X\n", pc, (48 + (addr >> 8)),
((- (48 + (addr >> 8) + 1 + (pc >> B) + (pc & 255)))
& 255));
fprintf (epromFileL, ":01%.4X00%.2X%.2X\n", pc, (addr & 255),
((- ((addr & 255) + 1 + (pc >> 8) + (pc & 255))) & 255));
pC++;
return 1;
}
if (sscanf(line, "jmp_if_not_top_bit %s*, 1lbl_names[next_lbl]) == 1)
addr = find_1bl(0);
fprintf (outFile, ®001000111");
for (i = 10; i >= 0; i--) fprintf(outFile, *%d", (addr >> i) & 1);
fprintf (outFile, *\n");
fprintf (epromFileH, ":01%.4X0002%.2X\n", pc,
((- (3 + (pc >> 8) + (pc & 255))) & 255));
fprintf (epromFileM, ":01%.4X00%.2X%.2X\n", pc, (56 + (addr >> 8)),
((- (56 + (addr >> 8) + 1 + (pc >> 8) + (pc & 255)))
& 255));
fprintf (epromFilel, *:01%.4X00%.2X%.2X\n"*, pc, (addr & 255),
((- ((addr & 255) + 1 + (pc >> 8) + (pc & 255))) & 255));
pc++;
return 1;
}
if (strncmp(line, ®"debug®, 5) == 0) (
fprintf (outFile, "001€2000100000000000\n");
return 1;
}
return 0;

}

void array_inst() (
int value = 0;
int index;

inst_bit[19] = 1;
inst_bit[18] = 1;
inst_bit[17) = 0;

sxc_addr = 49;
1d_addr = 55;
inst_bit([4] = 0;

inst_bit([3] = 0;
inst_bit([2] = 0;
ingt_bit (1] = 0;

inst_bit[0] = 0;

line_ptr = line;

if (check_and_adv("mem([")) {
sscanf (line_ptr, "$d]*®, &ld_addr);
line_ptr = strchr(line_ptr, ‘1’);

214

checl:_and_adv(®] = *);

}
if (check_and_adv("cond_load_l = *)) 1d_addr = 48;
if (check_and_adv(®"cond_or_1 = ")) 1d_addr = 49;
if (check_and_adv(®*cond_load_10 = *)) 1d_addr = 50;
if (check_an¢_adv{"cond_and_10 = ")) 1d_addr = 51;
if (check_and_adv("news = ")) ld_addr = 52;
if (check_and_adv("news_if = ")) 1ld_addr = 53;
if (check_and_adv/®"reg = ")) ld_addr = 54;

if (check_and_adv("add(")) {
inst_bit[4] = 1;
}

if (check_and_adv(®*addh(")) (
inst_bit(19] = 0;

inst_bit[4] = 1;
inst_bit[3] = 1;
}

if (check_and_adv(®*sub(®")) {
inst_bit{17] = 1;
inst_bit(4] = 1;
}

if (check_and_adv{(*subh(")) {
inst_bit([19] = 0;

inst_bit([17] 1;
inst_bit[4] = 1;
inst_bit[3] = 1;

}

if (check_and_adv("inv(")) {
inst_bit(17] = 1;
}

if (check_and_adv("ezw(")) {
inst_bit[3] = 1;
}

if (check_and_adv("concat_cond(")) (
inst_bkit(0] = 1;
}

if (check_and_adv("reg >> 1, *)) (
inst_bit([3] = 1;
)

if (check_and_adv("news")) {
src_addr = 51;
}

if (check_and_adv("mem([")) {
sscanf (line_ptr, “%d]", &src_addr);
line_ptr = strchr(line_ptr, ’'1’);
line_ptr++;
}

if (check_and_adv(® >> 1"}) (
inst_bit([19] = 0;
}

if (check_and_adv(®" << 1%)) {

inst_bit(18) = 0;
}

while (check_and_adv(® ") ||
check_and_adv(",") ||
check_and_adv(")")) :

if (check_and_adv("news_up")) {(inst_bit(2] = 1; inst_bit(1l] = 1;)}
1f (check_and_adv(*news_down")) inst_bit[2] = 1;
if (check_and_adv(®"news_left")) {(inst_bit([2] = 1; inst_bit[0] = 1;}
if (check_and_adv("news_right*®))

{inst_bit[2] = 1; inst_bit[l] = 1; inst_bit[0} = 1;)}

if (*line_ptr != ’'\n’)
{printf ("ERROR: bogus inst: %s", line); exit(0);)}

for (index = 5; index >= 0; index--) (
inst_bit[index + 11] = (src_addr >> index) & 1;
inst_bit[index + 5] = (ld_addr >> index) & 1;
}
for (index = 19; index >= 0; index--) {
value = value + (inst_bit[index] << index);
fprintf (outFile, "%d", inst_bit[index])};
}
fprintf (outFile, *\n");
fprintf (epromFileH, ":01%.4X00%.2X%.2X\n", pc, (value >> 16),
((- ((value >> 16) + 1 + (pc >> 8) + (pc & 255))) & 255));
fprintf (epromFileM, *:01%.4X00%.2X%.2X\n", pc, ((value >> B) & 255),
((- (((value >> B) & 255) + 1 + (pc >> B) + (pc & 255))) & 255));
fprintf (epromFileL, *:01%.4X00%.2X%.2X\n", pc, (value & 255),
((- ((value & 255) + 1 + (pc >> B) + (pc & 255))) & 255));
pC++;

}

int check_and_adv(char *str) {
if (strncmp(line_ptr, str, strlen(str))) return 0;
line_ptr += strlen(str);
return 1;

}

void second_pass() (
fgets(line, 80, inFile);
if (!feof (inFile)) (
if ((strlen(line) == 1) ||
(strncmp (line, *;*, 1) == 0) ||
(strncmp(line, "label®, 5) == 0) ||
cntrl_inst(0) ||
jmp_inst ()) second_pass();
else {array_inst(); second_pass();}
}
else {
fprintf (epromFileH, ":00000001FF\n");
fprintf (epromFileM, ":00000001FF\n");
fprintf (epromFileL, *":00000001FF\n");
}

216

)

main (int argc,char *argv(]) {
int index;
argc--;
argv++;
if (axrgc !'= 2) {printf("Invalid number of arguments.\n"); exit(0);}
sscanf (*argv++, "%d", &ezw_passes);
sscanf (*argv++, "%d", &eprom_block);

for (index = 0; index < labelsg; index++)
1bl_names{index] = calloc (30, sizeof(char));

line = calloc(80, sizeof(char));

next_1lbl = 0;

pc = 0;
inFile = fopen(®*micro.c", °"r*");
first_pass();

fclose(inFile);

printf(*%d4d instructions\n®", pc);

pc = eprom_block << 11;

inFile = fopen("micro.c®", °r-);
outFile = fopen("micro.dat", "w");
epromFileH = fopen("microH.83", "w");
epromFileM = fopen("microM.83", "w");
epromFileL = fopen("microL.83*, "w");
second_pass() ;

fclose(epromFileH) ;

fclose (epromFileM) ;
fclcse(epromFileL) ;

fclose(inFile);

fclose(outFile);

217

218

Appendix C

Example Microcode

C.1 5 Tap Filter Microcode

;;; 4x4 PE, 5 tap, sblvls = 3

;:; mem[0:15] = new frame
;;; mem{16:31] = work space, ezw flags
;:; mem[32:47) = prev frame

7 6 5 4 3 2 1 0
? ? ? ? ? up y-odd down

HHH bit 11 10 9
HFH right x-odd left

;;; mem[48] read only = flags:
8
?
;i;i from reset
news = mem([48])
label new_group

init_arith_coder

reg = news
news = sub(news)

mem{32] = news
mem([33] = news
mem([34] = news
mem(35] = news
mem([36] = news
mem([37] = news
mem[38] = news
mem({39] = news
mem(40) = news
mem(41] = news
merl42] = news
mem[43] = news
mem(44] = news
mem(45] = news
mem(46) = news
mem[47) = news

219

label start_frame
;ii cond = 1 during halt to keep global or low z = 0

news = news << 1
cond_load_1 = inv(news << 1)
halt_till _new_frame

;i:; assemble image mean with MSB at bit 10

news = news << 1
jmp_if_not_mean_msb mean_bit2
news = concat_cond (news)

label mean_bit2

news = news << 1l
jmp_if_not_mean_msb mean_bit3
news = concat_cond(news)

label mean_bit3

news = news << 1
jmp_if_not_mean_msb mean_bit4
news = concat_cond(news)

label mean_bit4

news = news << 1
jmp_if_not_mean_msb mean_bit5
news = concat_cond(news)

label mean_bit5

news = news << 1
jmp_if_not_mean_msb mean_bit6
news = concat_cond (news)

label mean_bité6

news = news << 1
jmp_if_not_mean_msb mean_bit7
news = concat_cond(news)

label mean_bit?7

news = news << 1
jmp_if_not_mean_msb mean_bits
news = concat_cond(news)

label mean_bit8

news = news << 1
jmp_if_not_mean_msb mean_done
news = concat_cond (news)

label mean_done

news = news << 1
news = news << 1
reg = news

reg = sub(news)

220

reg = sub(news << 1)

mem{16)] = add(mem([0])
mem[17] = add(mem(1])

news = add(mem[2])
mem[18] = news
mem(19] = add(mem(3]),
mem(20]) = add(mem({4]),
mem(21] = add(mem[S]),
mem(22] = add(mem[6]),
mem([23] = add(mem(7])
mem{24] = add(mem(8])
mem([25] = add(mem({9])
mem([26]) = add(mem[10])
mem[27] = add(mem{11]))
mem(28] = add(mem([12])
mem([29] = add(mem[13])
mem[30] = add(mem[14])
mem[31] = add(mem[15])

;;; filter 1vl O

;i; filter x

;:: left edge
cond_load_10 = mem[48]

;i: row O

low pass left edge

news_if = mem[18]
reg = news
news = mem(19]

reg = addh(mem([18]),
mem([14] = sub(mem[16]),
mem[15] = mem{14] >> 1,
reg = mem(15] >> 1,

news_right
news_right
ewe_right
news_right

<< 1

news_right
news_right
news_right
news_right

reg = sub{reg >> 1, mem([14])
news_if = mem(17]

reg = add(reg >> 1, news)
reg = addh(mem[17])

mem(0] = addh(mem([16])

;::; high pass left edge
reg = news
reg = addh(mem[19])

mem([14] = subh(mem[17])

news = mem([14] >> 1

reg = news >> 1

news = mem(22]

reg = sub(reg >> 1, mem([14]),
reg = subh(mem(16]),

reg = sub(mem(18] >> 1),
mem([2] = addh(mem([17}),

news_right
news_right
news_right
news_right

221

is; row 1

i;: low pass left edge

news_if = mem([22)

reg = news

news = mem([23]

reg = addh{mem[22]), news_right
mem(14] = sub(mem[20]), news_right
mem([15] = mem[14] >> 1, news_right
reg = mem(15] >> 1, news_right
reg = sub(reg >> 1, mem{14]))
news_1if = mem[21)

reg = add(reg >> 1, news)

reg = addh(mem[21])

mem(4] = addh(mem([20])

;:: high pass left edge
reg = news

reg = addh(mem[23])
mem(14] = subh(mem[21])
news = mem[14] >> 1
reg = news >> 1

news = mem{26]

reg = sub(reg >> 1, mem([14]), news_right
reg = subh(mem([20]), news_right
reg = sub(mem[22] >> 1), news_right
mem[6] = addh(mem[21]), news_right
ii: row 2

i:: low pass left edge

news_if = mem([26]

reg = news

news = mem([27])

reg = addh(mem([26]), news_right
mem([14] = sub(mem([24]), news_right
mem[15] = mem[14]) >> 1, news_right
reg = mem{15] >> 1, news_right
reg = sub(reg >> 1, mem([14])
news_if = mem{25]

reg = add(reg >> 1, news)

reg = addh(mem([25])

mem(8] = addh(mem[24]))

;:; high pass left edge
reg = news

reg = addh(mem([27])
mem[14] = subh(mem[25])
news = mem[1l4] >> 1

reg = news >> 1

news = mem(30]

reg = 3ub(reg >> 1, mem[14]), news_right
reg = subh(mem([24]). news_right
reg = sub(mem([26] >> 1), news_right
mem[10] = addh(mem[25]), news_right

222

;i; row 3

ii: low pass left edge

news_if = mem([30)

reg = news

news = mem(31)

reg = addh(mem(30]), news_right
mem{14) = sub(mem(28]), news_right
mem{15]) = mem[14] >> 1, news_right
reg = mem(15] >> 2, news_right
reg = sub(reg >> 1, mem[14])
news_if = mem(29)

reg = add(reg >> 1, news)

reg = addh(mem(2%])

mem(12] = addh(mem([28])

:::; high pass left edge
reg = news

reg = addh(mem([31])
mem(14] = subh(mem(29))
news = mem([14] >> 1

reg = news >> 1

news = mem(17]

reg = sub(reg >> 1, mem[14])), news_left
reg = subh(mem[28]), news_left
reg = sub(mem[30] >> 1), news_left
mem([14] = addh(mem[29]), news_left
::: right edge

cond_load_10 = mem[48] >> 1
;i row O

;:; high pass right edge

news_if = mem([17]

reg = news

news = mem([16]

reg = addh(mem[17]), news_left
mem([1l1l] = subh(mem(19]), newsa_left
mem[15] = mem([11l] >> 1, news_left

reg = mem[15] >> 1, news_left
reg = sub(reg >> 1, mem[11])
reg = subh(mem{18])

news_if = mem{18]
reg = sub(news >> 1)
mem([3] = addh(mem[19]))

;ii low pass right edge
reg = news

reg = addh(mem(16])
mem[ll] = sub(mem([18])
news = memf{11l) >> 1

reg = news >> 1

news = mem([21]

reg = sub(reg >> 1, mem{ll]),
reg = add(reg >> 1, mem(17}),

reg = addh(mem([19])),
mem(l) = addh(mem[18]),

;i row 1

;;; high pass right edge
news_if = mem{21)

reg = news

news = men{20]

reg = addh(mem[21]),
mem(1l] = subh(mem[23]),
mem(15]) = mem(11] >> 1,
reg mem[15] >> 1,

reg
reg subh (mem(22])
news_1if = mem{22])

reg = sub(nevs >> 1)
mem([7] = addh(mem[23])

;;; low pass right edge
reg = news

reg = addh(mem(20])
mem(11l] = sub(mem[22])
news = mem[11l] >> 1

reg = news >> 1

news = mem(25]

reg
reg
reg addh (mem([23]),
mem(5] = addh(mem[22]),

1;: row 2

;;; high pass right edge
news_if = mem([25]

reg = news

news = mem{24)

reg = addh(mem(25]),
mem[18] = subh(mem[27]),
mem[19] = mem(18] >> 1,
reg mem(19] >> 1,

reg
reg = subh(mem[26])
news_if = mem(26]

reg = sub(news >> 1)
mem(11l] = addh(mem[27])

;:; low pass right edge
reg = news

reg = addh(mem([24])
mem{18] = sub(mem[26])
news = mem([18] >> 1

reg = news >> 1

sub(reg >> 1, mem[11]),
add(reg >> 1, mem[21]),

news_left
news_left

news_left
news_left

news_left
news_left
news_left
news_left

sub(reg >> 1, mem{11])

news_left
news_left

news_left
news_left

news_left
news_left
news_left
news_left

sub(reg >> 1, mem(18])

224

news = mem(29]
reg = sub(reg >> 1, mem{18]}),

news_left

reg = add(reg >> 1, mem[25)), news_left
reg = addh(mem([27)), news_left
mem([9] = addh(mem([26]), news_left
ii: row 3

;::; high pass right edge

news_1i£f = mem{29)

reg = news

news = mem(28]

reg = addh(mem(29]), news_left
mem{18] = subh(mem(31}), news_left
mem{19] = mem(18] >> 1, news_left

reg = mem{19) >> 1, news_left
reg = sub(reg >> 1, mem([18]))
reg = subh(mem([30]})

news_if = mem[30)
reg = sub(news >> 1)
mem([15] = addh(mem([31])

ii; low pass right edge
reg = news

reg = addh(mem(28])
mem([18)] = sub{mem(30])
news = mem([18] >> 1

reg = news >> 1

news = mem(8]

reg = sub(reg >> 1, mem([18]), news_down
reg = add(reg >> 1, mem[29])), news_down
reg = addh(mem[31]), news_down
mem[13] = addh(mem(30]), news_down
;i; filter y
;i; up edge

cond_load_1 = mem(48) >> 1
;i col O

;:: low pass up edge

news_if = mem([8]

reg = news

news = mem(12]

reg = addh(mem(81}), news_down
mem([27] = sub(mem([0])), news_down
mem({31] = mem([27] >> 1, news_down
reg = mem(31] >> 1, news_down
reg = sub(reg >> 1, mem(27]))
news_if = mem([4]

reg = add(reg >> 1, news)

reg = addh(mem(4])

mem(16] = addh(mem([0])

;::; high pass up edge
reg = news

reg = addh(mem(12]))
mem(27) = subh(mem(4])
news = mem(27] >> 1
reg = news >> 1

news = mem(9)

reg = sub(reg >> 1, mam(27)), news_down

reg = subh(mem(0]),
reag = sub(mem(8) >> 1),
mem(24) = addh(mem({4]),

;i; col 1

::: low pass up edge
news_3if = mem(9]

reg = news

news = mem{13}

news_down
news_down
news_down

reg = addh(mem(9]),
mem(27] = sub(mem(1]),
mem(31] = mem([27] >> 1,
reg = mem(31] >> 1,

news_down
news_down
naws_down
news_down

reg =

news_i
reg =
reg =
mem([17
;isi hi

sub(reg >> 1, mem(27])
f = mem(5]

add(reg >> 1, news)
addh (mem([5])

] = addh(mem([1])

gh pass up edge

reg = news

reg =
mem([27
news =
reg =
news =
reg
reg
reg =
mem{25

iii CO

news_i
reg =
news =
reg =
mem(27
mem(31
reg
reg
news_i
reg
reg

mem(31] >> 1,

addh (mem[13])

] = subh(mem([5])
mem(27) >> 1

news >> 1

mem([10]

sub(reg >> 1, mem([27]),
subh (mem({1}),
sub(mem(9] >> 1),

] = addh(mem(5]),

12

low pass up edge

f = mem(10)
news
mem([14]
addh (mem([10]),
] = sub(mem([2]),
] = mem{27] >> 1,

sub(reg >> 1, mem[27])
f = mem[6]

add(reg >> 1, news)
addh (mem{6])

news_down
news_down
news_down
news_down

news_down
news_down
news_down
news_down

226

mem({18] = addh(mem(2])

:;; high pass up edge

reg = news

reg = addh(mem(14])

mem([27] = subh(mem(6])

news = mem[27] >> 1

reg = news >> 1

news = mem{11)

reg = sub(reg >> 1, mem[27]), news_down

reg = subh(mem(2]). news_down
reg = sub(mem[10] >> 1), news_down
mem[26] = addh(mem(6]), news_down
;:: col 3

;:; low pass up edge

news_if = mem{1l1]

reg = news

news = mem(15]

reg = addh(mem(11]), news_down
mem(27] = sub(mem([3]), news_down
mem(31] = mem([27] >> 1, news_down
reg = mem[31] >> 1, news_down
reg = cub(reg >> 1, mem[27])
news_if = mem(7]

reg = add(reg >> 1, news)

reg = addh(mem([7])

mem[19] = addh(mem(3])

;:; high pass up edge
reg = news

reg = addh(mem[15])
mem[27] = subh(mem[7])
news = mem{27] >> 1
reg = news >> 1

news = mem([4]

reg = sub(reg >> 1, mem(27]), news_up
reg = subh(mem(3]). news_up
reg = sub(mem([11l] >> 1), news_up
mem[27]) = addh(mem[7]), news_up
;;; down edge

cond_load_1l = mem[48] << 1
;5 col O

;;; high pass down edge

news_if = mem{4}

reg = news

news = mem[0]

reg = addh(mem[4]), news_up
mem{30] = subh(mem{12]), news_up
mem(31] = mem({30] >> 1, news_up
reg = mem(31] >> 1, news_up

227

reg sub(reg >> 1, mem([30])
reg = subh(mem([8])

news_if = mem(8]

reg = sub(news >> 1)

mem({28] = addh(mem([12])

;:; low pass down edge
reg = news

reg = addh(mem[0])
mem(30] = sub(mem(8])
news = mem([30] >> 1
reg = news >> 1

news = nem(5S]

reg = sub(reg >> 1, mem[30]), news_up
reg = add(reg >> 1, mem(d4]), news_up
reg = addh(mem{12]), rews_up
mem([20] = addh(men(8]), news_up
;;: col 1

;;; high pass down edge

news_if = mem(5)

reg = news

news = mem(1]

reg = addh(mem[S5]), news_up
mem([30] = subh{mem(13]), news_up
mem([31] = mem(30} >> 1, news_up
reg = mem(31] >> 1, news_up
reg = sub(reg >> 1, mem([30])

reg = subh(mem[9])

news_if = mem(9]

reg = sub(news >> 1)

mem([29]) = addh(mem([13])

;:; low pass down edge
reg = news

reg = addh(mem[1})
mem(30] = sub(mem(9])
news = mem[30]} >> 1
reg = news >> 1

news = mem(6]

reg = sub(reg >> 1, mem([30]), news_up
reg = add{reg >> 1, mem(5}), news_up
reg = addh(mem(13]), news_up
mem(21] = addh(mem(91]), news_up
1::; col 2

;;: high pass down edge

news_if = mem([6]

reg = news

news = mem(2]

reg = addh(mem(6]), news_up
mem(8] = subh(mem([14]), news_up
mem(12] = mem(8] >> 1, news_up

reg = mem{12] >> 1, news_up

reg = sub(reg >> 1, mem(8])
reg = subh(mem(10])

rnews_if = mem([10]

reg = sub(news >> 1)
mem[30] = addh(mem{14])

ii: low pass down edge
reg = news

reg = addh(mem[2])
mem[8] = sub(mem([10])
news = mem(8) >> 1

reg = news >> 1

news = mem(7])

reg = sub(reg >> 1, mem([8]), news_up
reg = add(reg >> 1, mem(6)), news_up
reg = addh(mem(14]), news_up
mem(22] = addh(mem(10}), news_up
iii col 3

;:; high pass down edge

news_1if = mem(7]

reg = news

news = mem{3}

reg = addh(mem[7]), news_up

mem{8) = subh(mem[15]), news_up
mem[12] = mem(8] >> 1, news_up

reg = mem[12] >> 1, news_up
reg = sub(reg >> 1, mem[8])
reg = subh(mem[11])

news_if = mem([11]
reg = sub(news >> 1)
mem{31] = addh(mem([15])

;;:; low pass down edge
reg = news

reg = addh{mem([3])
mem(8] = sub(mem[11])
news = mem[8) >> 1

reg = news >> 1

news = mem(16]

sub(reg >> 1, mem([8!), news_left

reg =
reg = add(reg >> 1, mem[7]), news_left
reg = addh(mem{15]),

mem{23] = addh(mem([11]),

;:: filter 1vl 1
;:; filter x

;;; right edge
cond_load_10 = mem([48] >> 1

news_left
news_left

news_if = mem(16]

memi{ll] = news

news = mem([20])
news_left
news_left
news_left
news_left

news_ift mem(20])
mem{15] = news

news = mem{17])

news_right
news_right
news_right

cond_load_10 = mem[48)] << 1, news_right

ii; left edge

news_if = mem(17]

nmnem[10] = news

news = mem(21]
news_right
news_right
news_right
news_right

news_if = mem([21]

mem[14] = news

news = mem{16]
news_right
news_right
news_right
news_right

news_if = mem([11]

reg = news

reg = addh(mem([11])

mem(7) = sub(mem(16])

news = mem(7] >> 1

reg = news >> 1

news = mem[20]

reg = sub(reg >> 1, mem(7]), news_right

reg = add(reg >> 1, mem{10]), news_right

reg = addh{(mem([17]), news_right

mem({8] = addh(mem[16]), news_right

news_if = mem[15]

reg = news

reg = addh(mem(15])

mem([7] = sub(mem[201])

news = mem(7] >> 1

reg = news >> 1

news = mem(17]

reg = sub(reg >> 1, mem(7]), news_left

reg = add(reg >> 1, mem[14]), news_left

reg = addh(mem([21}), news_left

mem[12] = addh(mem[20]), news_left

;:;; right edge

230

cond_load_10 = mem(48] >> 1

news_if = mem([10]

reg = news

reg = addh(mem{10])

mem(7] = subh(mem[17]))

news = mem[7] >> 1
reg = news >> 1
news = mem(21)

reg = sub(reg >> 1, mem[7]), news_left
reg = gubh(mem([16]), news_left
reg = sub(mem(11] >> 1), news_left
mem[9] = addh(mem[17]), news_left
news_if = mem(14)
reg = news
reg = addh(mem([14])
mem([7] = subh(mem(21])
news = mem(7] >> 1
reg = news >> 1
news = mem(8)
reg = sub(reg >> 1, mem(7]), news_up
reg = subh(mem(20]), news_up
reg = sub(mem([15] >> 1), news_up
mem(13) = addh(mem([21]), news_up
ii; filter y
::; down edge
cond_load_1 = mem([48] << 1
news_if = mem(8]
mem{14] =
news = mem{9]
news_up
news_up
news_up
news_up
news_if = mem[9]
mem(15) = news
news = mem(12]
news_down
news_down
news_down

cond_load_1
;i up edge
news_if = mem{12]

mem(10] =

news = mem[13]

news_if = mem[13)

news_down
news_down
news_down
news_down

mem(48]) >> 1, news_down

231

mem(11
news =

news_1i
reg
reg
mem({7]
news
reg =
news
reg
reg
reg
mem([16

news_1i
reg
reg =
mem([7]
news
reg
news
reg
reg
reg
mem(17

;i; do
cond_1l

news_i
reg
reg =
mem{7]
news
reg =
news
reg
reg
reg
mem([20

news_1i
reg
reg
mem(7]
news
reg
news
reg
reg
reg

] = news

mem(8]
news_down
news_down
news_down
news_docwn

f = mem(14]

news

addh (mem([14])

= sub(mem(8])

mem(7] >> 1
news >> 1

mem[9)
sub(reg >> 1, mem(7]),
add(reg >> 1, mem[10]),
addh(mem{12}),
] addh (mem([8)),

f mem([15]
news
addh (mem([15])
sub(mem([9])

mem(7] >> 1
news >> 1

mem([12])
sub(reg >> 1, mem(7]),
add(reg >> 1, mem[11]),
addh(mem(13]),

] addh (mem[9]),

wn edge
oad_1

mem([48] << 1

f
news
addh (memf10])
= subh(mem([12))
mem(7] >> 1
news >> 1
mem(13]
sub(reg >> 1, mem[7]),
subh (mem([8]),
sub (mem([14] >> 1),
] addh (mem([12]),

mem[10]

f
news
addh(mem(11])
subh(mem(13])
mem[7] >> 1

mem([11)

= news >> 1

mem([16]

sub(reg >> 1, mem([7]),
subh (mem([9]),
sub(mem([15]) >> 1),

news_down
news_down
news_down
news_down

news_up
news_up
news_up
news_up

news_up
news_up
news_up
news_up

news_right
news_right
news_right

232

mem(21] = addh(mem{13]), news_right

;:: filter 1lvl 2
i:; filter x

mem(l3] = news

news = mem(16]
news_left
news_left
news_left

cond_load_10 = mem([48] >> 1, news_left

;:: right edge

news_if = mom[13]

mem([id]) = news, news_left
news_left
news_left

cond_load_10 = mem[48] << 1, news_leift

i:; left edge

mem([15] = news

news = mem(13)

news_if = mem[14]

mem([13] = news, news_right
news_right
news_right
news_right

news_if mem([15]

mem([12] news

news = mem[15]

;;; right edge
cond_load_10 = mem([48] >> 1

news_if = mem(12]
mem({15] = news
reg = news

reg = addh(mem({12])
news = sub(mem([16])
mem(11l] = news >> 1

reg = mem(1l1l] >> 1

reg = sub(reg >> 1, news)
reg = add(reg >> 1, mem[13])
reg = addh(mem[14])

news = addh(mem([16])

;;: x-odd
cond_load_10 = mem([48]

reg mem[15]

reg addh (mem(12])
mem(10] = subh(mem([16])
mem[11] mem[10] >> 1

233

reg = mem{11l] >> 1

reg = sub(reg >> 1, mem{10})
reg = subh(mem[13])

reg = sub(mem[14] >> 1)

news_if = addh(mem(16])

mem({l16] = news, news_down
news_down
news_down
news_down
ii; filter y

mem(13) = news
news = mem[16]

news_up
news_up
news_up
cond_load_1 = mem[48] << 1, news_up
;:; down edge
news_if = mem[13]
mem([14] = news, news_up
news_up
news_up
cond_load_1 = mem[48) >> 1, news_up
i;: up edge
mem([15]) = news
news = mem{13]
news_if = mem{14]
mem{13] *= news, news_down
' news_down

news_down
news_down
news_if = mem(15]
mem(12] = news
news = mem[15]

;:; down edge
cond_load_1 = mem[48] << 1

news_if = mem([12]
mem{15] = news
reg = news

reg = addh(mem(12])
news = sub(mem(16])
mem{ll] = news >> 1

reg = mem(11l] >> 1

reg = sub(reg >> 1, news)
reg = add(reg >> 1, mem([13])
reg = addh(mem[14])

news. = addh(mem(16])

;13 y-odd
éend_load 1 = mem([48]

reg mem(15]

reg = addh(mem([12])
mem[10] = subh(mem({16])
mem{11l} = mem({10] >> 1

reg = mem([1l1l] >> 1

reg = sub(reg >> 1, mem([10]})
reg = subh(mem(13])

reg = sub(mem{14] >> 1)

news_if = addh(mem([16])

mem{16] = news
reg = news

;:;:; compare to previous frame

ii; use mem[15] to store 0

menm{15] = sub(news)

;;; use mem{l4] to store rounding bit

cond_load_1 = inv(mem([15])
mem(14] = concat_cond(mem([15])
load_counter (bottom _bit)
dec_counter

dec_counter

label rounding_bit_loop

mem{1l4) = mem[14! << 1
dec_counter
jmp_if_counter rounding_bit_loop

i:: 1vl 3

reg = mem([16)

news = sub(mem([32])
cond_lcad_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem({32] = concat_cond(mem([32])
reg = mem([14]

mem(16) = add(news)

ii: 1lvl 2

reg = mem(17])

news = sub(mem(33])
cond_ioad_10 = news >> 1

reg = mem{15]

news_if = sub(news)

mem(33)] = concat_cond(mem[33])
reg = mem(14]

mem{17] = add(news >> 1)

235

reg = mem[20]

news = sub(mem([36])
cond_load_10 = news >> 1

reg = mem{15]}

news_if = sub(news)

mem{36] = concat_cond(mem[36])
reg = mem(14]

mem(20) = add(news >> 1)

reg = mem([21]

news = sub(mem([37])
cond_load_10 = news >> 1

reg = mem(15]

news_if = sub(news)

mem({37] = concat_cond(mem([37])
reg = mem[1l4]

mem([21] = add(news >> 1)

iii lvl 1

reg = mem(18]

news = sub(mem([34]))

cond_load_10 = news >> 1

reg = mem[1l5]

news_if = sub(news)

mem[34) = concat_cond(mem[34])
reg = news >> 1

mem([18] = add(reg >> 1, mem([14])

reg = mem{19])

news = sub(mem[35])

cond_load_10 = news >> 1

reg = mem[15]

news_if = sub(news)

mem(35)] = concat_cond(mem([35])
reg = news >> 1

mem[19]) = add(reg >> 1, mem({14))

reg = mem(22)

news = sub(mem{38))

cond_load_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem[38] = concat_cond(mem(38])
reg = news >> 1

mem(22] = add(reg >> 1, mam[14])

reg = mem(23]

news = sub(mem[39])
cond_load_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem[39] = concat_cond(mem([39])
reg = news >> 1

mem([23] = add(reg >> 1, mem[14])

reg = mem([24])

news = sub(mem{40])

cond_load_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem(40] = concat_cond(mem[40])
reg = news >> 1

mem([24] = add(reg >> 1, mem([14])

reg = mem[25])

news = sub(mem([41])

cond_load_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem(41l] = concat_cond(mem{41])
reg = news >> 1

mem([25) = add(reg >> 1, mem[14])

reg = mem([26]

news = sub(mem(42])

cond_load_10 = news >> 1

reg = mem{[15]

news_if = sub(news)

mem[42] = concat_cond(mem([42])
reg = news >> 1

mem([26] = add(reg >> 1, mem([14])

reg = mem(27)

news = sub(mem([43])

cond_load_10 = news >> 1

reg = mem([15]

news_if = sub(news)

mem(43] = concat_cond(mem{43])
reg = news >> 1

mem([27]) = add(reg >> 1, mem[14])

.29 = mem[28]

news = sub(mem([44])

cond_load_10 = news >> 1

reg = mem(15]

news_if = sub(news)

mem([44] = concat_cond(mem[44]})
reg = news >> 1

mem[28] = add(reg >> 1, mem([14])

reg = mem(29])

news = sub(mem[45])

cond_load_10 = news >> 1

reg = mem({15]

news_if = sub(news)

mem[45]) = concat_cond(mem[45])
reg = news >> 1

mem([29] = add(reg >> 1, mem([14])

237

reg = mem[30]

news = sub(mem([46])
cond_load_10 = news >> 1

reg = mem([15])

news_if = sub(news)

mem[46] = concat_cond(mem[46])
reg = news >> 1

mem(30] = add(reg >> 1, mem[14])

reg = mem{31]

news = sub(mem([47])

cond_load_10 = news >> 1

reg = mem(15}

news_if = sub(news)

mem([47] = concat_cond(mem[47])
reg = news >> 1

mem[31]) = add(reg >> 1, mem[14])

;:: shift down
load_counter (bottom_bit)

label shift_down_loop

mem[16]) = mem[16] >> 1
mer(17] = mem[17] >> 1
mem(18] = mem([18] >> 1
mem([19] = mem[19] >> 1
mem([20] = mem[20] >> 1
mem[21] = mem(21] >> 1
mem([22] = mem(22] >> 1
mem[23] = mem[23] >> 1
mem{24] = mem[24] >> 1
mem(25] = mem{25] >> 1
mem[26] = mem[26] >> 1
mem({27] = mem[27] >> 1
mem([28] = mem(28] >> 1
mem[29] = mem([29] >> 1
mem([30)] = mem[30] >> 1
mem({31] = mem(31] >> 1

dec_counter

jmp_if_counter shift_down_loop

;:; shift up
load_counter (bottom_bit)

label shift_up_loop

mem([1l6] = mem[l6] << 1
mem[{l7] = mem[17] << 1
mem{18] = mem(18] << 1
mem([19] = mem{19] << 1
mem([20] = mem([20] << 1

mem([21] = mem([21] << 1
mem{22] = mem(22] << 1
mem(23] = mem(23] << 1
mem[24] = mem([24) << 1
mem(25] = mem[25] << 1
mem[26]) = mem[26] << 1
mem[27] = mem[27] << 1
mem([28] = mem[28]) << 1
mem(29] = mem[29]) << 1
mem[30] = mem([30] << 1
mem(31] = mem([31l] << 1

dec_counter
jmp_if_counter shift_up_loop

;;; new prev frame and prep for ezw
iii 1vl 3

reg = mem{32] >> 1
cond_load_1 = mem{32] << 1
news = add(mem(16] >> 1)
news_if = sub(mem[16] >> 1)
mem[32] = news << 1

news = mem[16] >> 1

news = concat_cond(news)
mem[1l6] = news << 1

;i 1lvl 2

reg = mem{33] >> 1
cond_load_1 = mem{33] << 1
news = add(mem{17})

news_if = sub(mem([17])
mem{33] = news << 1

news = concat_cond(mem[17])
mem(17] = news << 1

reg = mem[36] >> 1
cond_load_1 = mem[36] << 1
news = add(mem(20])

news_if = sub(mem[20])
mem[36] = news << 1

news = concat_cond(mem([20])
mem(20] = news << 1

reg = mem([37] >> 1
cond_load_1 = mem(37] << 1
news = add(mem(21])

news_if = sub(mem{21])
mem{37] = news << 1

news = concat_cond(mem([21])
mem[21] = news << 1

iis 1vl 1

reqg = mem([34] >> 1
cond_load_1l = mem[34] <<
news = add(mem[18] << 1)
news_if = sub(mem[18] <<
mem(34] = news << 1

news = nem([18] << 1

news = concat_cond(news)
mem([18) = news << 1

reg = mem[35] >> 1
cond_load_1 = mem[35] <<
news = add(mem([19] << 1)
news_if = sub(mem([19] <<
mem[35] = news << 1
news = mem[19] << 1
news = concat_cond(news)
mem([19] = news << 1

reg = mem([38] >> 1
cond_load_1 = mem[38] <<
news = add(mem([22] << 1)
news_if = sub(mem[22] <<
mem[38] = news << 1

news = mem[22] << 1

news = concat_cond(news)
mem(22] = news << 1

reg = mem[39] >> 1
cond_load_1 = mem{39] <<
news = add(mem[23] << 1)
news_if = sub(mem([23] <<
mem([39] = news << 1
news = mem(23] << 1
news = concat_cond(news)
mem(23] = news << 1

reg = mem([40] >> 1
cond_load_1 = mem[40] <<
news = add(mem[24] << 1)
news_if = sub(mem[24] <<
mem({40] = news << 1

news = mem[24] << 1

news = concat_cond(news)
mem([24] = news << 1

reg = mem[41l] >> 1
cond,load_1 = mem[41l] <<
news = add(mem[25] << 1)
news_if = sub(mem{25]) <<
mem(41] = news << 1
news = mem([25] << 1
news = concat_cond(news)
mem[25] = news << 1

reg = mem{42] >> 1

1)

1)

1)

1)

1)

1)

cond_load_l1l = mem([42] <<
news = add(mem([26]) << 1)
news_if = sub(mem[26] <<
mem([42] = news << 1
news = mem[26] << 1
news = concat_cond(news)
mem[26] = news << 1

reg = mem([43] >> 1
cond_load_1 = mem[43] <<
news = add(mem[27] << 1)
news_if = sub(mem[27] <<
mem([43] = news << 1

news = mem(27] << 1

news = concat_cond(news)
mem[27] = news << 1

reg = mem[44] >> 1
cond_load_1 = mem[44] <<
news = add(mem(28] << 1)
news_if = sub(mem[28] <<
mem{44] = news << 1

news = mem[28] << 1

news = concat_cond(news)
mem{28] = news << 1

reg = mem[45] >> 1
cond_load_1 = mem([45]) <<
news = add(mem([29] << 1)
news_if = sub(mem[29] <<
mem([45] = news << 1

news = mem([29] << 1

news = concat_cond(news)
mem[29] = news << 1

reg = mem{46] >> 1
cond_load_1 = mem([46] <<
news = add(mem[30]} << 1)
news_if = sub(mem([30] <<
mem{46)] = news << 1

news = mem(30] << 1

news = concat_cond(news)
mem{30] = news << 1

reg = mem(47] >> 1
cond_locad_1 = mem[47] <<
news = add(mem[31]. << 1)
news_if = sub(mem(31] <<
mem([47] = news << 1
news = mem([31] << 1
news = concat_cond(news)
mem([31l] = news << 1

;:; EIW

1

1)

1)

1)

1)

1)

1)

241

;::; check for top_bit at passl

cond_load_1 = mem([16] >> 1
pre_top_bit

cond_load_10 = mem[16]
jmp_if_not_top_bit top_bit_pass2

;i;; pass 1 - sblvl 3 only
;i up pass

cond_load_10 = mem[16]

cond_and_10 = inv(mem[16] >> 1)

news = concat_cond(mem{16])

mem[16] = news, news_left
news_left
news_left
news_left

cond_or_1l = news << 1

news = concat_cond(news)
news_up
news_up
news_up
news_up

cond_or_1 = news << 1

news = concat_cond(mem[16])

:;; down pass
;77 send 1lvl 3 LL

init_arith_tables
set_zero_possible

;::; not x-even * y-even
cond_load_10 = mem[48]
cond_or_1 = mem{48)

reg = news
news_if = sub(news)

reg = news

news = concat_cond(news)
news = ezw(news)
news_if = mem(16]
mem([16] = news
do_ezw_slot

;ii; prep for the rest of 1lvl 3 and distrikbute pot from 1lvl 3 LL

init_arith_tables
clr_zero_possible

;i; X-even * y-even

cond_load_1 = inv(mem([48])
cond_and_10 = inv(mem([48])

242

reg = news

news_if = sub(news)

reg = news

news = mem([16]
news_down
news_down
news_down
news,__down

mem|(16]

news

news_if
mem[16]

news_right

news_right

news_right
cond_load_10 = inv(mem{48]), news_right
iii; X-even

news_if = mem([16])

;:; x-even * y-even
cond_load_1 = inv(mem([48])
cond_and_10 = inv(mem([48]))

news_if = concat_cond(news)
news = ezw(news)

news_if = mem([16]

mem[{1l6] = news

do_ezw_slot

load_counter (ezw_passes)
jmp_if_counter ezw_pass2

i;; pass 2 - sblvl 3 and 2 only
label top_bit_pass2

cond_load_1l = mem([16] >> 1
pre_top_bit

reg = mem([16]

mem(16] = ezw(news)

cond_load_10 = mem{16]
cond_load_10 = mem[17]
cond_load_10 mem(20]
cond_load_10 mem[21]
jmp_if_not_top_bit top_bit_pass3

iii up pass

label ezw_pass2

cond_loacd_10 = mem([16])
cond_and_10 = inv(mem([16] >> 1)

mem[16] = concat_cond(mem[16])

;7i; 1vl 2 HL and up to 1lvl 3

cond_load_10 = mem{17]
cond_and_10 = inv(mem{17] >> 1)
news = concat_cond(mem{[17])
mem([17) = news, news_right
news_right
news_right
news_right
cond_or_1 = news << 1
news = concat_cond(news)
news_up
news_up
news_up
cond_or_l1l = mem[16] << 1, news_up
cond_or_1l = news << 1
news = concat_cond(mem[16])

;i:; not x-odd * y-even
cond_load_10 = inv(mem([48])
cond_or_1 = mem(48]

mem([16]
news

news_if
mem(16]

:2; 1lvl 2 LH and up to 1lvl 3

cond_load_10 = mem[20]
cond_and_10 = inv(mem[20] >> 1)
news = concat_cond(mem([20])}
mem([20] = news, news_left
news_left
naws_left
news_left
cond_or_1l = news << 1
news = concat_cond(news)
news_down
news_down
news_down
cond_or_1 mem([16) << 1, news_down
cond_or_1 = news << 1
news = concat_cond(mem([16])

;:;; not x-even * y-odd
cond_load_10 = mem{48]
cond_or_1 = inv(mem({48])

news_if mem(16]
mem[16] = news

;7: lvl 2 HH and up to 1lvl 3

cond_load_i0 = mem([21]
cond_and_10 = inv(mem([21] >> 1)
news = concat_cond(mem[21])
mem({21] = news, news_right

244

news_right
news_right
news_right
cond_or_1 = news << 1
news = concat_cond(news)
news_down
news_down
news_down
cond_or_1 mem[16] << 1, news_down
cond_or_1l = news << 1
news = concat_cond(mem(16])

;i; not x-odd * y-odd
cond_load_10 = inv{(mem(48])
cond_or_1 = inv(mem[48])

news_if = mem([16]

:3;; over to 1lvl 3 LL

mem[16] = news, news_left
cond_load_l = news, news_left
news _left
news_left

cond_or_1l = news << 1

news = concat_cond(news)
news_up
news_up
news_up
news_up

cond_or_1l = news << 1

news = concat_cond(mem([16])

;i ::; down pass
;i; send 1lvl 3 LL

init_arith_tables
set_zero_possible

;:; not x-even * y-even
cond_load_10 = mem{48)
cond_or_1 = mem[48]

reg = news
news_if = sub(news)

reg = news

news = concat_cond(news)
news = ezw(news)
news_if = mem[16]
mem([16] = news
do_ezw_slot

;;; prep for the rest of lvl 3 and distribute pot from lvl 3 LL

245

init_arith_tables

;ii; x-even * y-even
cond_load_1 = inv(mem[48])
cond_and_10 = inv(mem{48])

reg = news

news_if = sub(news)

reg = news

news = mem[16]
news_down
news_down
news_down
news__down

news_if = men([1l6]

men[l6] = news

news_right
news_right
news_right

cond_load_10 = inv(mem({48]), news_right

;i X-€ven

news_if = mem[16]

ii; X-even * y-even
cond_load_1 = inv(mem([48])
cond_and_10 = inv(mem([48])

news_if = concat_cond(news)
news = ezw(news)

news_if = mem([16]
do_ezw_slot

init_arith_tables
clr_zero_possible
;:: 1lvl 2 HL

mem{16] = news,

reg = mem([17],

cond_load_1 = inv(mem[48]),
cond_and_10 = mem([48],

;:: Xx-odd * y-even

mem([16]
news,

news_if
mem{17]

cond_load_1 =
iii Y-even

inv(mem([48]}),

news_if = mem([17]
mem{17) = ezw(news)
do_ezw_slot

news_left
news_left
news_left
news_left

news_down
news_down
news_down
news_down

246

;::; 1lvl 2 LH

news = mem[16]
reg = mem([20],

news_right
news_right

cond_load_1 = mem([48], news_right

cond_and_10 = inv(mem([48]), news_right

ii; Xx-even * y-odd

news_if = mem(16]

mem(20] = news, news_up
news_up
news_up

cond_load_1 = mem(48], news_up

ii: y~odd

news_if = mem[20]
mem{20] = ezw(news)
do_ezw_slot

;:; 1lvl 2 HH

news = mem([16])

reg = mem([21], news_left

news_left
cond_load_1l = mem([48), news_left
cond_and_10 = mem[48), news_left

;:: x-odd * y-odd

news_if = mem([16]

mem[21] = news, news_up
news_up
news_up

cond_load_1 = mem[48]), news_up

;i3 y-odd

news_if = mem([21]

mem([21) = ezw(news)

do_ezw_slot
::: All other passes

load_counter (ezw_passes)
jmp_if_counter ezw_loop

label top_bit_pass3
Joad_counter (ezw_passes)
label tep_bit_loop
cond_load_1 = mem{16]} >> 1
pre_top_bit

reg = mem[16]
mem{16] = ezw(news)

cond_load_10 = mem([16]
reg = mem([17]

mem[17] = ezw(news)
cond_load _10 = mem[17]
reg = mem(20]

mem({20] = ezw(news)
cond_load_10 = mem[20]
reg = mem[21]

mem({21] = ezw(news)
cond_load_10 = mem([21]

cond_load_10 = mem{18)
cond_load_10 = mem[19]
cond_load_10 = mem(22]
cond_load_10 = mem{23]

cond_load_10 = mem(24]

cond_load_10 = mem(25]
cond_load_10 = mem(28])
cond_load_10 = mem([29}]
cond_load_10 = mem([26]
cond_load_10 = mem([27]}
cond_load_10 = mem(30]

cond_load_10 = mem(31}

jmp_if_not_top_bit top_bit_pass_n

label ezw_loop
dec_counter

jmp_if_counter not_last_pass
clr_sub_OK_bit
label not_last_pass

iii up pass

cond_lcad_10 = mem[16]
cond_and_10 = inv(mem(16] >> 1)
mem[16) = concat_cond(mem[16])

;:: HL and up to 1lvl 3

cond_load_10 = mem([18]
cond_and_10 = inv{mem[18] >> 1)
mem(18] = concat_cond{mem[18])

cond_load_10 = mem{19]
cond_and_10 = inv(mem[19] >> 1)
mem([19] = concat_cond(mem([19])

cond_load_10 = mem[22]
cond_and_10 = inv(mem([22] >> 1)
mem({22] = concat_cond(mem([22])

cond_load_10 = mem([23]
cond_and_10 = inv(mem[23] >> 1)
mem([23] = concat_cond{(mem[23])

248

cond_load_10 = mem[17]
cond_and_10 = inv(mem[17] >> 1)
cond_or_1l = menm[18] << 1
cond_or_1l = mem[19)]) << 1
cond_or_1l = mem([22] << 1
cond_or_1l = mem{23] << 1
news = concat_cond(mem[17])
mem[17] = news, news_right
news_right
news_right
news_right
cond_or_1l = news << 1
news = concat_cond(news)
news_up
news_up
news_up
cond_or_1l = mem[16] << 1, news_up
cond_or_1l = news << 1
news = concat_cond(mem[16])

;i nnt x-odd * y-even
cond_load_10 = inv(mem(48)})
cond_or_1 = mem[48])

mem[16]
news

news_if
mem{16]

;:; LH and up to 1lvl 3

cond_load_10 = mem[24]
cond_and_10 = inv(mem([24] >> 1)
mem([24] = concat_cond(mem[24])

cond_load_10 = mem(25]}
cond_and_10 = inv(mem[25] >> 1)
mem(25] = concat_cond(mem[25])

cond_load_10 = mem(28]
cond_and_10 = inv(mem[28) >> 1)
mem(28] = concat_cond(mem(28])

conA_load_10 = mem[29]
cond_and_10 = inv(mem[29] >> 1)
mem[29) = concat_cond(mem[29])

cond_load_10 = mem([20]

cond_and_10 = inv(mem[20] >> 1)

cond_or_1 = mem(24] << 1

cond_or_1 = mem[25] << 1

cond_or_1 = mem[28) << 1

cond _or_1l = mem(29] << 1

news = concat_cond(mem{20])

mem[20] = news, news_left
news_left

249

news_left
news_left
cond_or_1l = news << 1
news = concat_cond(news)
news_down
news_down
news_down
cond_or_1l = mem[1l6] << 1, news_down
cond_or_1 = news << 1
news = concat_cond(mem[16])

;::; not x-even * y-odd
cond_load_10 = mem{48])
ond_or_1 = inv(mem([48])

news_if = mem[16]
mem(16] = news

;:; HE and up to 1lvl 3

cond_load_10 = mem{26])
cond_and_10 = inv(mem[26] >> 1)
mem[26] = concat_cond(mem[26])

cond_load_10 = mem([27]
cond_and_10 = inv(mem[27] >> 1)
mem([27] = concat_cond(mem[27])

cond_load_10 = mem([30]
cond_and_10 = inv{(mem([30] >> 1)
mem{30] = concat_cond(mem(30])

cond_load_10 = mem[31]
cond_and_10 = inv(mem([31] >> 1)
mem([31] = concat_cond(mem{31])

cond_load_10 = mem[21]
cond_and_10 = inv(mem([21l] >> 1)
cond_or_1l = mem[26] << 1
cond_or_1l = mem[27] << 1
cond_or_1l = mem[30] << 1
cond_or_1 = mem[31] << 1
rews = concat_cond(mem{21])
mem[21] = news, news_right
news_right
news_right
.news_right
cond_or_1l = news << 1
news = concet_cond(news)
news_down
news_down
news_down
cond_or_1 mem{16] << 1, news_down
cond_or_1l = news << 1
news = concat_cond(mem{16])

i:; not x-odd * y-odd
cond_load_10 = inv(mem[48])
cond_or_1l = inv(mem([48])

news_if = mem[16]

;i; over to lvl 3 LL

mem([16]) = news, news_left
cond_load_l = news, news_left
news_left
news_left

cond_or_1l = news << 1

news = concat_cond(news)
news_up
news_up
news_up
news_up

cond_or_1l = news << 1

news = concat_cond{(mem[16])

;ii; down pass
;;; send 1lvl 3 LL

init_arith_tables
set_zero_possible

;:; not x-even * y-even
cond_load_10 = mem[48]
cond_or_1l = mem([48]

reg = news
news_if = sub(news)

reg = news

news = concat_cond(news)
news = ezw(news)

news_if = mem[16]
mem[16]) = news
do_ezw_slot

;i: prep for the rest of lvl 3 and distribute pot from 1lvl 3 LL
init_arith_tables
ii; X-even * y-even .

cond_load_1 inv(mem[48]
cond_and_10 inv(mem(48])

reg = news
news_if = sub(news)
reg = news
news = mem(16]
news_down

251

news_down

news_down
news_down
news_if = mem([16]
mem{16] = news

news_right

news_right

news_right
cond_load_10 = inv(mem[48]), news_right
ii; X-even

news_if = mem[16]

i;; X-even * y-even
cond_load_1l = inv(mem{48])
conéd_and_10 = inv(mem([48])

news_if = concat_cond(news)
news = ezw(news)

news_if = mem[16]
do_ezw_slot

init_arith_tables

;i lvl 2 HL

mem(16] = news, news_left
reg = mem(17], news_left
cond_load_1 = inv(mem{48]), news_left
cond_and_10 = mem([48], news_left

;::; x-odd * y-even

news_if = mem[16]

mem[17] = news, news_down
news_down
news_down

cond_load_1l = inv(mem([48]), news_down

iii y-even

news_if = mem([17]

mem([17) = ezw(news)

do_ezw_slot

;i 1lvl 2 LH

news = mem([16]

reg = mem[20], news_right
news_right

cond_load_1 = mem(48], news_right

cond_and_10 = inv(mem[48]), news_right
;i; Xx-even * y-odd

mem[16]
news, news_up
news_up

news_if
mem[20]

252

news_up
cond_load_1 = mem(48], news_up
;:: y-odd

news_if = mem[20)
mem{20] = ezw(news)
do_ezw_slot

;:7 1lvl 2 HH
news = mem[16]

reg = mem{21], news_left
news_left

cond_load..1 = mem[48], news_left

cond_and_10 = mem([48), news_left

i:; x-odd * y-odd

news_if = mem([16]

mem([21] = news, news_up
news_up
news_up

cond_load_1 = mem[48], news_up

7ii y-odd

news_if = mem([21]
mem[21]) = ezw(news)
do_ezw_slot

init_arith_tables
clr_zero_possible

;i 1lvl 3 and some bank0 dram refresh

mem[24]) = mem(24])
mem[25] = mem([25]
mem(28] = mem([28]
mew,29] = mem[29]
ii; lvl 3 HL

reg = mem[18)
mem([18] = ezw(mem([17])
do_ezw_slot

reg = mem[19)
mem[19]) = ezw(mem[17])

do,_ezw_slot

mem{26] = mem[26]
mem([27] = mem([27]
mem(30] = mem[30]
mem(31] = mem([31]

reg = mem[22]
mem[22] = ezw(mem[17])

do_ezw_slot

reg = mem([23]
mem[23] = ezw(mem([17})
do_ezw_slot

mem{16] = mem[16]
mem(17] = mem{l7]
mem(20] = mem[20]
mem{21] = mem([21])
;:; 1lvl 3 LH

reg = mem([24]
mem([24] = ezw(mem[20])
do_ezw_slot

reg = mem(25]
mem[25] = ezw(mem[20])
do_ezw_slot

reg = mem[28]
mem{28] = ezw(mem[20])
do_ezw_slot

reg = mem(29]
mem([29] = ezw(mem[20])
do_ezw_slot

mem[18] = mem[18])
mem([19] = mem([19]
mem(22] = mem([22]
mem(23] = mem(23]
;i; lvl 3 HH

reg = mem([26)
mem[26] = ezw(mem[21])
do_ezw_slot

reg = mem(27]
mem(27] = ezw(mem[21])
do_ezw_slot

reg = mem(30])

mem{30] = ezw(mem[21])
do_ezw_slot.

reg = mem([31]

mem[31] = ezw(mem([21])
do_ezw_slot

jmp_if_counter ezw_loop

set_sub_OK_bit

jmp_if_not_mean_msb mean?
label mean?
jmp_if_not_mean_msb meanv
label mean6
jmp_if_not_mean_msb mean$
label mean5
jmp_if_not_mean_msb meand
label meand
jmp_if_not_mean_msb mean3
label mean3
jmp_if_not_mean_msb mean2
label mean2
jmp_if_not_mean_msb meanl
label meanl
jmp_if_not_mean_msb mean0
label mean0

jmp_if_new_group new_group

load_counter (ezw_passes)
jmp_if_counter start_frame

label top_bit_pass_n

reg = mem{18]
mem(18]) = ezw(news)
reg = mem{19])
mem({19]) = ezw(news)
reg = mem[22]
mem({22) = ezw(news)
reg = mem{[23]
mem[23] = ezw(news)
reg = mem([24]
mem([24] = ezw(news)
reg = mem(25]
mem[25] = ezw(news)
reg = mem([28]
mem([28] = ezw(news)
reg = mem[29])
mem[29] = ezw(news)
reg = mem([26])
mem([26] = ezw(news)
reg = mem{27]
mem(27] = ezw(news)
reg = mem([30]
mem[30] = ezw(news)
reg = mem[31)
mem[31l] = ezw(news)

dec_counter

jmp_if_counter top_bit_loop

jmp_if_new_group new_group

255

load_counter (ezw_passes)
jmp_if_counter start_frame

Appendix D

Chip I/O Pins

The next page shows a diagram of the test chip’s pins. Slowl slows the clock frequency
of the arithmetic coder by about 15%, if asserted. The signal Slow2 does the same for the

relative timing differences generated by the sequencer for PE controls. The other pin labels
are self explanatory.

Ene Lo L] Jus J s dpu | vm]lonn] | Pixt]| Pixs){ Pix7] [ven] [rct] [rcs]| pcs || rciol
Lve [oo d wr L os)] v J[2 | vda]|pixo] | pPix2] | Pixe | | Pco ! pcs || Pco|| san]]| Nc]] vm]
Lovo| [e[oo [us | ma]i v J] 14 j| 10 Jfcin][Pix3]| onpj| P2 || Pc7] [Reset | | Nc][Nc]| o]
Lonp] fvww | | Nc | [nc]| ne | [o] 1s || oo [siow2] | Pixd | | vad | | pc3 | | pcs | [GND| [NC | [vww | | vad |

Lvad | vad | | onD] L vmn |
Lonp| [ven | | onD] | N
Lovof | ven | | vad | | onp]
Lonp] | onojf [van | | vaa |
Lono! | vaa | | onp} | ono]

Lvhn | [vin | | GNDf [vad |

| vaa | { onD] [vad | | N

Lonp] | vin § | onp] | Gro]
Lven | [vaa | | onp] | van |
Lonp| [vad | | onDj | van |
Lono] [onp] | v | | vad |
(] (o] (o]]
Lvad | [v]| oND] | vad |
Lano] | anp] | aip] | Gnp]

Lono) [ven | [nc | Lnc] [nc] | onp] | oNpl | Nc | |siowt] | GND] | vad | [van] [onD] [nc] | Nc | [vin || vin |

[vin J| Nnc] L Nc]| Nc]] ono] | onpy | vad | | Nc | [Endi6] | GNDY | GND] | vaa | | vin | | v | ﬂazu__ NC || vmn |

Lonof [nc || nc || nc]f vah || ven]| oND] | Dow] | ncj| vin | [vin | | ono] [on] | ono] | vas | [ovp) | v |

| Nc]| onp)| vad | ¥ vad | | oND] | vin | | oND] | couf | zn_r<&__<&__n.zc__<§_—ozu__ozu_ﬂ<&__<&_

