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Breakdown of Onsager Symmetry in Neoclassical
Transport Theory

Neoclassical transport theory is developed in a Lagrangian rather than the usual Eulerian
formulation. We show that an underlying asymmetry exists in the neoclassical pinch and
bootstrap effects and demonstrate the physical basis of the Onsager symmetry relationship
in the pinch-bootstrap duality. A simple model calculation shows that low frequency
turbulence can destroy the bootstrap current at levels, eb/T, ~ 10, too low to affect the
Ware pinch.

Neoclassical transport theory' has long predicted the existence of a
"bootstrap current" driven by the radial density gradient and a pinch
effect driven by the toroidal electric field. In addition to the substantial
practical importance of these phenomena in fusion devices, they provide
a sensitive test of neoclassical theory. In fact, they point out a substantial
discrepancy between theory and experimental observation. Although a
pinch effect has been observed,2 there is strong if indirect evidence'
that the bootstrap current6 does not exist.4 This is particularly surprising
because the pinch and bootstrap currents are Onsager conjugates. The
object of this Comment is to demonstrate an underlying asymmetry in
these processes, to identify the physical basis for suppression of the
bootstrap current and to present the results of a calculation of the effect
of turbulence on the pinch and bootstrap transport coefficients.

This paper considers the questions of Onsager symmetry and the
nonobservance of the bootstrap current in light of a recently developed
Lagrangian formulation of neoclassical theory.7 This formulation has
the virtue of being a direct expression of the elementary kinematics and
collision processes, allowing the various flows to be identified at the
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microscopic level. We show the net kinematic contributions to both
pinch and bootstrap current to be small and symmetric. However, the
individual kinematic processes involved in the pinch are large and there
is an underlying asymmetry of kinematic processes. Collisional cross
processes involving circulating particles drive both the pinch and bootstrap
effects. These collisional processes are microscopically inverse and
clearly Onsager conjugate. However, they are a result of scattering by
particles in a very narrow layer near the trapped particle boundary. We
argue that the nature of this layer is such that the bootstrap current, but
not the kinematic Ware pinch, is easily destroyed by low level turbulent
scattering.

The physical basis of the Lagrangian formulation is that in the lowest
collisionality (banana) regime, the distribution function, f, relaxes in a
sequence of well-ordered time scales. The fastest is the orbital time
scale, on whichf relaxes to a function of constants of motion (or actions)
alone. The actions JI, J2 , J3 are chosen to be respectively the magnetic
moment, parallel invariant and bounce averaged poloidal flux. These
actions then scatter under the influence of collisions to relaxf to a local
Maxwellian on the collisional time scale. The radial action gradients
relax to produce transport on the (longer) diffusion time scale.

The Lagrangian formulation follows this hierarchy of relaxation
processes, first expressing the kinetic equation in action angle variables,
and averaging over the orbital time scale (or equivalently, the angle
variables). The result is a kinetic equation in terms of the actions alone,

- + q-a(J)Vf = C(f), (1)at aJ2r

where VT is the toroidal voltage, with coefficient, a(J) = f d3 0 X
(1ImR)ec - VJ, and the collision operation is (for the Lorentz model)

aj aJ ao a a

= ~-J d3fv(VJ) T(v21 - vv) . (VJ) - -f (2)aJ aj
For evaluating neoclassical fluxes in an axisymmetric system, the angle
averages are operationally bounce averages, d30 -+ o 2dslu. Equation
(2) gives the bounce averaged effect of collisions (i.e., velocity scattering
at fixed spatial position) on the actions. The three actions, JI, J2 , J3
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have well ordered associated frequencies, o > W2 > W3, so that the
energy is principally a function of J, and J2, the "velocity" variables,
while J3 is a "radial" parameter. More precisely, J3 = (2xrq/c)A1 + AJ 3 ,
where 2 f (dslu) AJ 3 = 0. Note that Cj contains terms of the form
(a/aJ3) D 33 (0/aJ3)f, which explicitly give banana center diffusion due
to collisions. There are also collisional cross processes of the form
(a/aJ2)D 23 (a/dJ 3) and (a/aJ 3) D 3 2 (/0J2)f, which are ultimately responsible
for the pinch and bootstrap effects. Transport equations are obtained
directly by the reduced moments over J, and J2. One can in fact show
that the density per unit J3, n3 = f dJ1 dJ2 f, is equal to the flux surface
average spatial density times the specific volume, dV/dJ 3 = (c/2irq)
dV/d*. In Eq. (1), the13 derivatives are smaller than the JI, J2 derivatives
by a factor p,/a, the small parameter that for tokamaks measures the
relative slowness of radial scattering to velocity scattering. The transport
coefficients can be obtained by a straightforward expansion of Eq. (1)
in powers of pr/a, using a maximal ordering where VT~ p/a,
(a/at) ~ (p/a)2.

The leading order consequence of Eq. (1) is Cj(fo) = 0, where C'
is the velocity scattering part of the full operator. This operator has a
local H theorem (when like-particle collisions are included) so that fo
is a local Maxwellian of the form fo = N(J3) exp[ - H(J)IT(J3)]. The
first order equation is

Co(f) = -Va- fo -D - e3) (3)
27r a i afi al

where (d/aJ 1 ) = e, (a/aJ) + e2 (a/aJ2) is effectively a velocity gradient.
It is thus the electric field and the collisional cross processes that drive
perturbations fl. Only the circulating particles are affected and f, = 0
in trapped space.

With f, known, the particle and energy moments of Eq. (1) are
determined to second order [since Co(f2) is annihilated] and provide the
transport equations. These are formalized by defining generalized forces,
A I = d In n/dJ3, A2 = d In T/dJ 3, A3 = VTIT and their respective fluxes
of particles, heat and charge, F1 = ', F2 = q, F3 = IT, related by
F = 2i T1,A,, with the transport matrix, Tij, exhibiting Onsager symmetry,
T = T,. Defining coefficients, ot, in Eq. (3) such that CO(f 1 ) = icx

fGAj, f, can be expressed as a sum over the thermodynamic forces,
f, = EigAi, with individual responses determined by CO(gi) = tf 0 .
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These relations are useful for writing the transport equations in a compact
form and for proving Onsager symmetry.

For example, the particle moment of Eq. (1) can be written to second
order as

0 = 3+ d2J A a\fo VT - aif1 - D33aJ . (4)

The particle flux transport coefficients, T1,, can be inferred from Eq.
(4). Specifically, the pinch coefficient, T13, using an inner product
notation, (g,h) f d2J gh, is T13 = [(qT/27r) a3 , fo] - (aI,
g3) T13 + T' . The decomposition into explicit (superscript e) and
implicit (superscript i) is a key feature of this formulation. The fluxes
that do not require the calculation off, are termed explicit, and represent
processes depicted in explicit form in the original kinetic Eq. (1). Thus,
the first flux term in Eq. (4) proportional to VT is an explicit, purely
kinematic radial flow, independent of collisions. The Ware effect appears
in this term. The implicit or indirect fluxes result from fl.

To calculate the toroidal current, one starts from

JT = f d3Jd08 [x - x(J,O)] qec - v(J,O) fJ). (5)

This contains the Pfirsch-Schluter current in addition to the parts, constant
on a flux surface, determined from transport theory. We now weight
JT by 1/2R, flux surface average and multiply by dV/dJ 3 to give an
angular current per unit J3 :

IT = d32 ( c - AJ q et - vf
fJ J u 2nq 2irq 2ITR

= d2 s2 et - v [f, J, * (6)

af]

This expression is correct to order p/a. Here again we have implicit
and explicit parts. The explicit part is a toroidal current associated with
the departure of the orbits from the average flux surfaces analogous to
the perpendicular diamagnetic flow associated with the departure of
gyroorbits from the guiding center. Transport coefficients may be inferred
from Eq. (6), the bootstrap coefficients being T3 and T3 = -9(a, g1).
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Constructing the rest of the transport matrix, one gets results for the
net coefficients, Ty, identical to the conventional Eulerian theory and
having Onsager symmetry.7 In the Lagrangian formulation, however,
there are two symmetry theorems, one for the implicit and another for
the explicit part. The former follows immediately from the self-adjointness
of CO, viz., Tij = (a,, gi) = [Co(gi), gi] = [gi, Co(g)] = (as, g1) = Tj,.
This symmetry is related to a positive definite form for entropy production
due to collisions. Onsager's theorem is applicable to this implicit part.
Explicit symmetry can be demonstrated term by term.7 Recall that only
the circulating particles contribute to the implicit fluxes. Trapped particle
contributions are all explicit.

We now describe the elementary processes involved in producing the
pinch and bootstrap effects. It is useful to define the dimensionless
transport coefficients 13 and 131 according to T13 = ? qTn313, T31 =

f qTn3I31. In the limit of small E = a/R, the overall coefficients' are
113 and 131 A 1.38\/ .

In the conventional explanation, the pinch is associated predominantly
with the kinematic flow of trapped particles, f''f (the Ware effect).'
Indeed, one finds 1'6' = (8/31r) V2E, which is 62% of the full coefficient.
The circulating particle contributions flir' and I1's are of opposite sign
and tend to cancel. The difficulty with this interpretation is that the
process conjugate to the Ware effect, the trapped particle banana current,
Isij is negligible (of order E312) in the small E limit. Also, ICir =

0(E312), so that i3, is negligible. The bootstrap current is all implicit. It
is a result of the collisional cross process, and entirely a consequence
of circulating particles. This picture does not give the physical basis of
Onsager symmetry.

To clarify the symmetry first note that the explicit symmetry 131 = 13
implies that to order E2, I3 = 0, and therefore that the explicit circulating
particle flow is actually radially out, at a rate which entirely cancels
the Ware pinch! Thus, one does not have symmetry of the elementary
processes represented by Jelf and Ie;; (or J7ic" and fCi% ) but only of the
net coefficients 1e3 and Ii. Nonetheless, 13 A 0, and this leads to an
alternate interpretation of the pinch as a collisional process involving
circulating particles.

The question is now reduced to understanding the implicit flows.
Recall that these arise from the cross processes in the collision operator,
reflecting correlations in the scattering process between jumps in radius
and jumps in velocity. Figure 1 compares representative orbits for different
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FIGURE 1 Representative orbit projections for circulating particles in quiescent to-

kamak. Well circulating particle orbits follow the * surface very closely. Marginally

circulating particles have very distorted orbits, resembling the inner (outer) half of a

trapped particle banana orbit for the or = - 1(+ 1) direction of parallel velocity. Average

surfaces, (4), for marginally circulating particles are displaced inward from i for or = - 1,

and outward for (- = +1.

types of particles. Consider two particles, initially well circulating,
moving in opposite directions along the magnetic field. Both have orbits
lying very nearly on the flux surface 4i. As these particles scatter toward

trapped space under the influence of collisions, the o- = - 1 particle

scatters to an orbit whose average surface is shifted inward relative to

* while the u = + 1 particle scatters out. This is the origin of the

correlation between velocity and radial scattering. A radial flow will

result whenever the perturbed distribution has unequal fractions of

- = - 1 and o = + 1 particles, or in other words, carries a current.

The current driven by the toroidal electric field has an excess of o- = - 1

particles and drives an inward radial flow. This process, due entirely

to circulating particles, causes the pinch effect.
Now invert the process just described. That is, take two marginally

circulating particles, oppositely directed along the magnetic field and
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scatter them back toward the well circulating state. The or = - 1(+ 1)
particles start on an inner (outer) average surface and end up on 4.
With a normal density gradient the result will be more or = - 1 than
a = + 1 particles on the final t, surface, and thus an electric current.
This is the mechanism behind the bootstrap current. It is the precise
microscopic inverse to the process accounting for the pinch effect. The
true Onsager symmetry is obvious.

A detailed calculation shows that all the circulating particle contributions,
Tic'", TI'3", and T3'" arise from a very narrow layer near the trapped
particle boundary. In terms of the pitch angle variable X (such that
0 :X 1 - Eis circulating, 1 - E X :5; 1+ Eis trapped) the layer
is much thinner than E. A layer width, AK, on the order of several
percent of E, accounts for 80% of the effect. In contrast, the Ware effect
T7If has equal contributions from all the trapped particles. Since the
explicit bootstrap current T3 is uniformly small for all X, the underlying
asymmetry in the explicit processes can be brought out by small
modifications of the boundary layer particle dynamics. This can cause
a breakdown of the symmetry when turbulence is present.

Whereas neoclassical theory can be viewed as a collisional scattering
from one global collisionless orbit to another, in a turbulent medium
the collisionless orbits are quite different. In particular, the orbit projections
for the boundary layer particles look like a smeared out banana. Within
the layer a particle cannot retain its memory of a trapped or circulating
status, but only the mixture of these properties. The turbulent orbit has
an average surface, 4,, and this does not jump in a correlated way
depending on c-. Indeed, these particles have no definite memory of -.
Therefore, collisional scattering of these orbits will not generate the
cross processes and T13 and T3, are eliminated. By a related argument,
Tic' is eliminated. The Ware effect, 7If, is more robust. It arises from
a secular accumulation of VB drifts due to poloidal rotation of the banana
tips, is independent of radial memory along the orbit and survives the
turbulence. Carrying out the calculation of this effect for a simle
model,' one finds 131 ~/V2E [1.38 - 2,a/ In (32E/AX)] and I13 ~ V2e
[1.38 - 2/ 3 In (32E/AX)], where AX E4/Te is the turbulent fluctuation
level. For e>/Te - 102, this gives a bootstrap current, 13 = ).28Nie,
20% of the original value, and a pinch effect, I13 = 1.02/2E, of 74%.
In short, the circulating particle effects are sensitive to the detailed
structure of the boundary layer. At realistic turbulence levels they will
be eliminated, leaving mainly the Ware effect and broken symmetry.
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