Cross-field Free Electron Laser Instability for a Tenuous Electron Beam

Ronald C. Davidson and Wayne A. McMullin
Plasma Fusion Center, Massachusetts Institute of Technology,
Cambridge, MA 02139

Kang Tsang
Plasma Research Institute, Science Applications Inc.
Boulder, Colorado 80302
Cross-field free electron laser instability for a tenuous electron beam

Ronald C. Davidson and Wayne A. McMullin
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Kang Tsang
Plasma Research Institute, Science Applications Inc., Boulder, Colorado 80302

(Received 8 December 1982; accepted 15 September 1983)

The free electron laser instability is investigated for a tenuous circulating electron beam propagating perpendicular to a uniform magnetic field \(B_0 \), and transverse wiggler field modeled by \(B_w \sin k_0 \hat{y} \), in planar geometry. Unlike the rippled-field magnetron which operates at Brillouin flow, the present analysis assumes a low-density electron beam with \(c < 2 \). Making use of a macroscopic cold-fluid model for the electrons coupled with Maxwell's equations for the fields, it is found that wave perturbations with ordinary-mode polarization \((\delta E \parallel B_0 \text{ and } \delta B \perp B_0) \) amplify with characteristic maximum growth rate \(\text{Im}(\omega) = \omega_p (\Omega_w / 2 \sqrt{2} v k_0) \) and emission frequency \(\omega = (\omega_p + 3 E) \sqrt{v / c} \). Here, \(\omega_p = \frac{eB_p}{m_c \gamma E} \) and \(\gamma E = \frac{-eE_{\parallel}}{B_0} \), where \(E_\parallel \) is the applied electric field across the anode-cathode gap. Depending on the size of \(\frac{\omega_p}{k_0} \), the characteristic exponentiation time \(\omega_p ^{-1} (\Omega_w / 2 \sqrt{2} v k_0)^{-1} \) for the cross-field free electron laser instability can be relatively short in units of \(\omega_p ^{-1} \).

I. INTRODUCTION AND SUMMARY

There have been several theoretical1-12 and experimental13-20 studies of free electron lasers in linear (straight) geometry with transverse1-8 or longitudinal9-12 wiggler magnetic fields. Such configurations have gain limitations imposed by the finite length of the interaction region. In the present analysis, we consider the free electron laser (FEL) instability for a tenuous circulating electron beam propagating perpendicular to a uniform magnetic field \(B_0 \), and transverse wiggler field \(B_w \sin k_0 \hat{y} \) (Fig. 1), where \(\lambda_0 = \frac{2 \pi}{k_0} \) is the wiggler wavelength and \(B_w = \text{const} \) is the wiggler amplitude. The planar configuration in Fig. 1(a) is used to model the cylindrical geometry in Fig. 1(b) in the limit of large aspect ratio \(R_0 \gg d \). Like the rippled-field magnetron discussed by Bekefi21, the beam circulates continuously through the wiggler field thereby providing a long effective interaction region. Unlike the rippled-field magnetron,21 which operates at Brillouin flow, the present analysis assumes a tenuous electron beam with low density \((\omega_p ^{-1} \ll \Omega_w ^{-1}) \). In addition, it is assumed that the average transverse motion \(V_\parallel = -\frac{eE_{\parallel}}{B_0} \) is maintained by an applied electric field \(E_\parallel \hat{y} \) [Fig. 1(a)]. However, a completely analogous stability analysis can be developed for the case where the circulating electron motion corresponds to a large-orbit (cyclotron) gyration in the applied field \(B_0 \hat{z} \).

The present theoretical model (Sec. II) is based on the macroscopic, relativistic cold-fluid equations [Eqs. (5) and (6)] coupled with Maxwell's equations [Eqs. (8) and (9)], where it is assumed that the wave perturbations have ordinary-mode polarization with \(\delta E = \delta E \hat{y} \), and \(\delta B = \delta B \hat{z} + \delta B \hat{y} \). The electron beam density is assumed to be sufficiently low that equilibrium self-field effects are negligibly small and the Compton-regime approximation is valid with negligibly small perturbation in electrostatic potential (\(\delta \phi \approx 0 \)). In Sec. III, the equilibrium flow is examined in the limit of small wiggler amplitude \(c^2 B_w^2 / m^2 c^4 k_0^2 \ll 1 \) [Eq. (25)], and weak spatial variation in electron energy \(\gamma E(x)mc^2 \) across the anode-cathode gap [Eq. (26)]. The average equilibrium electron flow is then approximately \(V_\parallel = -\frac{eE_{\parallel}}{B_0} \) [Eq. (27)] with a small wiggler-induced modulation of the axial flow velocity \(V_\parallel = -\frac{eB_w / \gamma mc}{B_0} \cos k_0 y \). For ordinary-mode perturbations with \(d \parallel \omega_p ^{-1} \), detailed stability properties can be determined from the coupled eigenvalue problem.

FIG. 1. Cross-field FEL configuration in (a) a planar geometry approximation, and (b) cylindrical geometry.
equations \((28)-(33)\) or approximately from Eqs. \((38)-(42)\) in the limit of weak transverse spatial variations with \(|\partial/\partial x|<|\partial/\partial y|\). For small wiggler amplitude and beam density, the resulting matrix dispersion equation \((47)\) can be approximated by the diagonal terms which give the dispersion relation [Eq. \((50)\)]

\[
\omega^2 - c^2k^2 - \omega_p^2 = -\frac{\omega_p^2}{2ck_0} \left(\frac{\Omega_w}{\omega} \right)^2 \left[\frac{\omega}{\omega - (k + k_0)\gamma_E} + \frac{\omega}{\omega - (k - k_0)\gamma_E} \right] + \frac{\omega(k + k_0)\gamma_E - c^2(k + k_0)^2}{\omega - (k + k_0)\gamma_E} - \frac{\omega(k - k_0)\gamma_E - c^2(k - k_0)^2}{\omega - (k - k_0)\gamma_E} - \Omega^2_i/\gamma_E^2 \right),
\]

where \(\omega_p^2 = 4\pi n_e e^2/\gamma_E mc\), \(\Omega_w = \epsilon B_v/\gamma_E mc\), \(\Omega_e = \epsilon B_v/\gamma_E mc\), \(\gamma_E = (1 - V_e^2/c^2)^{-1/2}\), \(k = k\hat{e}_k\) is the wave vector, and \(\omega\) is the complex oscillation frequency.

Analytic and numerical estimates (Sec. III) of the FEL growth rate obtained from Eq. \((50)\) show that the upshifted resonance term proportional to \((\omega - (k + k_0)\gamma_E)^{-1}\) in Eq. \((50)\) leads to instability with characteristic maximum growth rate [Eq. \((56)\)]

\[
\text{Im}(\omega) = \frac{|\omega_p|}{2\sqrt{2}}|\Omega_w/ck_0|,
\]

and emission frequency [Eq. \((54)\)]

\[
\omega_e = (1 + \beta_E)^2\gamma_E k_0\gamma_V E_x,
\]

where \(\beta_E = V_e/e\). Depending on the size of \(\Omega_w/ck_0\) Eq. \((56)\) can correspond to relatively short exponentiation times in units of \(\omega_p^{-1}\).

The resonance term proportional to \(\{[\omega - (k + k_0)\gamma_E]^{-2} - \Omega^2_i/\gamma_E^2\}^{-1}\) in Eq. \((50)\) also leads to instability with characteristic maximum growth rate [Eq. \((67)\)]

\[
\text{Im}(\delta\omega) = \frac{1}{4} \omega_p \left(\frac{\Omega_w}{ck_0} \right)^2 \left(\frac{k\gamma_E}{\Omega_e} \right)^{1/2} \left[(1 + \beta_E) - \frac{\Omega_e}{\gamma_E k_0} \right]^{1/2} \times \frac{(1 - \Omega_e/\gamma_E k_0)^{1/2}}{(\beta_E - \Omega_e/\gamma_E k_0)^{1/2}},
\]

downshifted frequency [Eq. \((62)\)]

\[
\omega_d = (1 + \beta_E)^2\gamma_E k_0 \Omega_e/\gamma_E k_0\gamma_V (k - k_0)^2.
\]

Depending on the size of \(\Omega_w/ck_0\) Eq. \((67)\) can give even shorter exponentiation times provided \(\beta_E\) is close to \(\Omega_e/\gamma_E k_0\), although the output frequency is lower than that of Eq. \((54)\).

The organization of this paper is the following. In Sec. II we outline the assumptions and macroscopic cold-fluid model used in the present analysis. The equilibrium flow and linearized Maxwell-fluid equations for ordinary-mode wave perturbations are discussed in Sec. III. Analytic and numerical studies of the resulting coupled eigenvalue equations \((38)-(42)\) are presented in Sec. IV in the limit of weak transverse spatial variations [Eq. \((35)\)] and low beam density \(\omega_p^2 \ll c^2k_0^2\) and wiggler amplitude \(\Omega_w^2 \ll c^2k_0^2\).

II. THEORETICAL MODEL AND ASSUMPTIONS

For present purposes, we consider the planar geometry illustrated in Fig. 1(a) with applied fields

\[
E^0 = E_0 \hat{e}_x,
\]

\[
B^0 = B_0 \hat{e}_z + \hat{e}_x B_w \sin k_0 y,
\]

where \(B_0 = \text{const}\) is the axial magnetic field, \(B_w = \text{const}\) is the transverse wiggler amplitude, \(\lambda_0 = 2\pi/k_0 = \text{const}\) is the wiggler wavelength, \(V = -E_0d\) is the applied voltage, \(d\) is the anode–cathode spacing, and \(E_0\) is the electric field. The planar configuration in Fig. 1(a) is used to model the cylindrical geometry in Fig. 1(b) in the limit of large aspect ratio \(R_o > d\). The assumption of constant wiggler amplitude \(B_w = \text{const}\) is a valid approximation over the transverse extent of the electron beam provided \(k_0 d < 1\), which we assume to be the case. In the present analysis, it is assumed that the electron beam is infinite in extent in the \(y\) and \(z\) directions with uniform average density \(n_b\) between \(x = 0\) and \(x = d\). It is also assumed that the beam density is sufficiently tenuous that the effects of equilibrium self-fields \(E_0^0\) and \(B_0^0\) can be neglected in comparison with the applied field components in Eq. \((1)\). For example, it is readily shown from Poisson’s equation that \(|E_0^0| < |E_0|\) provided

\[
\sqrt{\frac{\epsilon_0 e^2}{(2c^2)}} \frac{\epsilon V}{\gamma mc^2},
\]

where \(c\) is the speed of light in vacuo, \(-e\) is the electron charge, \(m\) is the electron rest mass, \(\omega_p^2 = 4\pi n_e e^2/\gamma m\) is the relativistic plasma frequency squared, and \(\gamma mc^2\) is the characteristic electron energy. For the configuration illustrated in Fig. 1(a), the average equilibrium flow is primarily in the \(y\) direction at the \(E^0 \times B^0\) velocity \(V_e\), where

\[
V_e = -cE_0/d = cV/B_0 d.
\]

In the present analysis, all equilibrium and perturbed quantities are allowed to have spatial variations only in the \(x\) and \(y\) directions with \(V = \dot{e}_x (\partial/\partial x) + \dot{e}_y (\partial/\partial y)\) and \(\partial/\partial z = 0\). It is assumed that the beam density is sufficiently tenuous that the Compton-regime approximation is valid with negligibly small perturbations in electrostatic potential \((\delta \Phi \approx 0)\). In particular, we consider perturbed electromagnetic fields \(\delta E\) and \(\delta B\) with ordinary-mode polarization

\[
\delta E = \delta E \times (x,y,t) \dot{e}_x = -\frac{1}{c} \frac{\partial}{\partial t} \delta A \times (x,y,t) \dot{e}_x,
\]

\[
\delta B = \delta B \times (x,y,t) \dot{e}_z + \delta B \times (x,y,t) \dot{e}_y = \frac{\partial}{\partial y} \delta A \times (x,y,t) \dot{e}_z - \frac{\partial}{\partial x} \delta A \times (x,y,t) \dot{e}_y,
\]

where \(\delta B = \nabla \times \delta A\), \(\delta E = -(1/c)(\partial/\partial t)\delta A\), and \(\delta A\)
corresponding to the conservation of axial canonical momentum \(P_z = \gamma m V_z - (e/c)A_{uw} - (e/c)\delta A_z = \text{const} \). Following a fluid element. If we consider the case where there is no axial flow in the absence of wiggler and radiation fields, then \(P_z = 0 \) and Eq. (12) gives the exact result \(\gamma m V_z = (e/c)A_{uw} + (e/c)\delta A_z \).

Making use of Eq. (13) to eliminate \(V_z \) from the \(x \) and \(y \) components of motion in Eq. (6) then gives

\[
\left(\frac{\partial}{\partial t} + V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)(\gamma m V_x) = -eE_0 - \frac{eb_0}{c} V_x - \frac{e^2}{2\gamma mc^2} \frac{\partial}{\partial y}(A_{uw} + \delta A_z)^2, \tag{14}\]

\[
\left(\frac{\partial}{\partial t} + V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)(\gamma m V_y) = eB_0 V_x - \frac{e^2}{2\gamma mc^2} \frac{\partial}{\partial y}(A_{uw} + \delta A_z)^2. \tag{15}\]

With regard to the transverse motion of an electron fluid element, it is evident directly from Eqs. (14) and (15) that \((A_{uw} + \delta A_z)^2\) plays the role of a ponderomotive potential for the combined wiggler and radiation fields.

III. GENERAL EQUILIBRIUM AND LINEARIZED STABILITY EQUATIONS

In this section, we make use of the theoretical model outlined in Sec. II to investigate equilibrium and stability properties for the planar flow configuration illustrated in Fig. 1(a).

A. Equilibrium equations

From Eqs. (13)–(15), the exact equilibrium \((\partial / \partial t) = 0\) motion of a fluid element in the absence of radiation field \((\delta A_z = 0)\) is determined from

\[
V^0 = \frac{e}{\gamma_0 mc} A_{uw} = -\frac{eB_0}{\gamma_0 mc k_0} \cos k_y y, \tag{16}\]

\[
\left(V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)(\gamma_0 m V_x) = -eE_0 - \frac{eB_0}{c} V_x, \tag{17}\]

\[
\left(V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)(\gamma_0 m V_y) = eB_0 V_x - \frac{e^2}{2\gamma mc^2} \frac{\partial}{\partial y}(A_{uw})^2, \tag{18}\]

where

\[
\gamma_0 = \left(1 - \frac{V^0_x}{c^2} - \frac{V^0_y}{c^2} - \frac{V^0_z}{c^2} \right)^{-1/2}, \tag{19}\]

and

\[
\left(V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)(\gamma_0 mc^2 + eE_0 x) = 0, \tag{20}\]

follows from Eq. (10). Making use of Eq. (5), the equilibrium density profile \(n_0(x,y)\) is related self-consistently to the flow velocity by

\[
\left(V_x \frac{\partial}{\partial x} + V_y \frac{\partial}{\partial y} \right)n_0 = -n_0 \left(\frac{\partial}{\partial x} V_x + \frac{\partial}{\partial y} V_y \right). \tag{21}\]
Integrating Eq. (20), and defining $\dot{\gamma} = \gamma(x = 0)$, gives
\[
\dot{\gamma} = \frac{1 + eV_x}{\gamma mc^2 d},
\]
where $V = -E_d$ is the applied voltage. Moreover, making use of Eq. (16) to eliminate V_y from the definition of γ_0, we find from Eqs. (19) and (22) that
\[
\frac{V_x^2}{c^2} + \frac{V_y^2}{c^2} = 1 - \left(1 + \frac{eB_0^2}{mc^2 k_0^2} \cos^2 k_0 y\right) \frac{1}{\gamma} \left(1 + \frac{eV_x}{\gamma mc^2 d}\right)^2.
\]
(23)

Although closed expressions for the individual velocity components V_x and V_y are difficult to obtain analytically from Eqs. (17) and (18), the combination $V_x^2 + V_y^2$ is determined exactly by Eq. (23) in the present model.

For future reference, we summarize equilibrium flow properties in circumstances where the x-z motion is nonrelativistic with
\[
\gamma_0^2 \left(\frac{V_x^2}{c^2}\right), \quad \gamma_0^2 \left(\frac{V_y^2}{c^2}\right) \ll 1,
\]
but the y motion is generally relativistic with V_y^2 approximately equal to the $E^2 \times B^2$ velocity $V_y = -cE_d/B_0$. From Eq. (16), the inequality $\gamma_0^2 V_y^2/c^2 < 1$ implies weak wiggler amplitude with
\[
e^2 B_0^2/mc^2 k_0^2 < 1.
\]
(25)

If, in addition, it is assumed that the spatial variation in γ_0 is weak over the gap region $0 < x < d$, then $eV/\gamma mc^2 \ll 1$, or equivalently,
\[
(V_x/c)\Omega_c d/c \ll 1,
\]
(26)
where $V_x = -cE_d/B_0 = cV/B_d$ and $\Omega_c = eB_0/\gamma mc$. Even if $V_x \approx c$, Eq. (26) is satisfied provided $0.6 B_d d \ll \gamma$, where B_d is in kilogauss and d is in centimeters. On the other hand, Eq. (25) is satisfied provided $0.6 B_d k_0 \ll 1$, where B_d is in kilogauss and k_0^{-1} is in centimeters. Making use of Eqs. (24)–(26), it is straightforward to show from Eqs. (10)–(18) and (22) that the equilibrium flow correct to $O(B_w)$ is given by
\[
V_x^0 = (B_w/\gamma mc) \cos k_0 y,
\]

$V_y^0 = V_x + O(B_w)$,

$V_z^0 = O(B_w)$,

where $\gamma \approx (1 - V_x^2/c^2)^{-1/2}$ and $\gamma_0 \approx \gamma$ is approximately uniform over the region $0 < x < d$. For small wiggler amplitude [Eq. (25)], the wiggler field produces only a small second-order modulation of the x-y motion [Eqs. (23) and (27)], with V_x^0 and V_y^0 given approximately by $V_x^0 = 0$ and $V_y^0 = V_y$. Finally, in the context of Eqs. (21) and (27), a uniform density profile with $n_0(x, y) = n_b = \text{const}$ is an allowed equilibrium solution in the region $0 < x < d$ [Fig. 1(a)].

B. Linearized Maxwell-fluid equations

We now examine stability properties for small-amplitude perturbations about the exact equilibrium flow equations (16)–(21). All perturbation quantities $\delta \phi(x, y, t)$ are expressed as
\[
\delta \phi(x, y, t) = \phi(x, y) \exp(-i \omega t),
\]
where $\Im \omega > 0$ for the case of oscillations that amplify temporarily. Making use of Eqs. (16)–(21), we find from Eqs. (13)–(15) that
\[
\begin{align*}
\delta \tilde{V}_y = & \frac{\delta \gamma}{\gamma_0} \frac{eB_w}{\gamma_0 mc k_0} \cos k_0 y + \frac{e\delta \Delta_z}{\gamma_0 mc}
\end{align*}
\]
(28)

\[
s + \frac{eB_0}{c} \delta \gamma_y + \frac{e^2 B_w}{c} \cos k_0 y \frac{\partial}{\partial x} \delta \Delta_x,
\]

\[
(29)
\]

\[
\frac{eBo}{c} \delta \gamma_y + \frac{eB_w}{c} \cos k_0 y \frac{\partial}{\partial x} \delta \Delta_x,
\]

\[
(30)
\]

where use has been made of $A_w = - (B_w/\gamma) \cos k_0 y$ and $V_x^o = -(eB_w/\gamma mc) \cos k_0 y$. Making use of $\delta V_y (\partial / \partial x) \gamma mc^2 = - eE_d \delta V_x$ [Eq. (22)], the linearized, energy equation (10) can be expressed as
\[
\begin{align*}
\delta \gamma_y = & -\frac{eB_0}{\gamma_0 mc^2} \cos k_0 y \delta \Delta_x,
\end{align*}
\]
(31)

Eqs. (28)–(31) determine the perturbed fluid motion $(\delta \tilde{V}_x, \delta \tilde{V}_y, \delta \tilde{V}_z, \delta \gamma)$ in terms of the wiggler field and $\delta \Delta_x$. Returning to the Maxwell equation (8) for $\delta \Delta_x$, we make use of Eq. (28) to eliminate $\delta \tilde{V}_y$. Equation (8) then reduces to
\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\omega^2}{c^2} - \frac{4\pi n_0 e^2}{\gamma_0 mc^2}
ight) \delta \Delta_x
\]

\[
= \frac{4\pi n_0 e^2 B_w}{\gamma_0 mc^2 k_0} \cos k_0 y \left(\frac{\delta \gamma_y}{\gamma_0} - \frac{\delta n_0}{n_0}\right).
\]
(32)

In Eq. (32), $\delta \gamma(x, y)$ is related to $\delta \Delta_x(x, y)$ by Eq. (31), and $\delta n(x, y)$ is determined in terms of the perturbed flow from the linearized continuity equation (5), i.e.,
\[
\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \delta n = \frac{(\partial V_x^0 / \partial x) + (\partial V_y^0 / \partial y)}{\gamma_0}
\]

\[
= \left(\frac{\partial}{\partial x} \delta \gamma_y + \frac{\partial}{\partial y} \delta \gamma_x\right)
\]

\[
- n_0 \left(\frac{\partial}{\partial x} \delta \tilde{V}_x + \frac{\partial}{\partial y} \delta \tilde{V}_y\right).
\]
(33)

To summarize, Eqs. (29)–(33) constitute the final coupled eigenvalue equations for $\delta \Delta_x(x, y), \delta n(x, y), \delta \gamma(x, y), \delta \tilde{V}_x(x, y)$, and $\delta \tilde{V}_y(x, y)$ assuming ordinary-mode perturbations about the general equilibrium flow equations (16)–(21). Equations (29)–(33) include both x and y variations and must be solved numerically in the general case. In the special limit of zero wiggler amplitude ($B_w = 0$), it follows trivially that
\(\delta \hat{V}_x = 0, \delta \hat{V}_y = 0, \delta \hat{y} = 0, \text{ and } \delta n = 0, \) and Eq. (32) reduces to the familiar ordinary-mode eigenvalue equation
\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\omega^2 - 4\pi n_k e^2}{\gamma m c^2} \right) \delta A_z = 0, \tag{34}
\]
for a cold plasma in the absence of wiggler field.

IV. ANALYSIS OF EIGENVALUE EQUATION

In general, allowing for full \(x \) and \(y \) dependence, the coupled eigenvalue equations (29)-(33) must be solved numerically. In this regard, Eqs. (29)-(33) can be used to investigate cross-field free electron laser stability properties over a broad parameter range where the tenuous-beam theory summarized in Secs. II and III is valid. For present purposes, however, to illustrate the basic physics features of the cross-field FEL instability, we consider the regime where spatial variations in the \(y \) direction have short wavelength in comparison with spatial variations in the \(x \) direction, i.e.,
\[
\frac{\partial^2}{\partial y^2} \gg \frac{\partial}{\partial x}, \tag{35}
\]
In particular, we neglect the \(x \) dependence of all equilibrium and perturbation quantities in Eqs. (29)-(33) (\(\partial / \partial x = 0 \)). In addition, it is assumed that the inequalities in Eqs. (24)-(26) are satisfied, and the equilibrium \(x-y \) motion is approximated by
\[
V^0_x = 0, \tag{36}
\]
\[
V^0_y = V_E = -eE_y/B_0. \tag{36}
\]
It is convenient to define
\[
\Omega_c = eB_0/\gamma m c, \quad \Omega_w = eB_w/\gamma m c, \quad \omega_p^2 = 4\pi n_k e^2/\gamma m, \quad \delta \hat{A}_z = e\delta A_z/\gamma m c^2, \tag{37}
\]
where \(\gamma = (1 - V_E^2/c^2)^{-1/2} \) is const, and \(n_b = \text{const} \) is the (uniform) beam density. Setting \(\partial / \partial x = 0 \) and making use of Eq. (36), the coupled eigenvalue equations (29)-(33) can be approximated by
\[
\left(-i\omega + V_E \frac{\partial}{\partial y} \right) \delta \hat{V}_x = -\Omega_c \delta \hat{V}_y, \tag{38}
\]
\[
\left(-i\omega + V_E \frac{\partial}{\partial y} \right) \delta \hat{V}_y + V_E \left(-i\omega + V_E \frac{\partial}{\partial y} \right) \delta \hat{y} + \Omega_c \frac{V_E}{c^2} \delta \hat{V}_z = \Omega_w \frac{\partial}{\partial y} \left(\cos k_0 y \delta \hat{A}_z \right), \tag{39}
\]
\[
\left(-i\omega + V_E \frac{\partial}{\partial y} \right) \delta \hat{y} = i\omega \frac{\Omega_w}{c k_0} \cos k_0 y \delta \hat{A}_z, \tag{40}
\]
\[
\left(\frac{\partial^2}{\partial y^2} + \frac{\omega^2}{c^2} - \frac{\omega_p^2}{c^2} \right) \delta \hat{A}_z = -\omega_p^2 \frac{\Omega_w}{c^2 k_0} \cos k_0 y \left(\frac{\delta n}{n_b} - \delta \hat{y} \right), \tag{41}
\]
\[
\left(-i\omega + V_E \frac{\partial}{\partial y} \right) \delta n = -n_b \frac{\partial}{\partial y} \delta \hat{V}_y. \tag{42}
\]
Equations (38)-(42) constitute coupled equations for \(\delta \hat{V}_x(y), \delta \hat{V}_y(y), \delta \hat{y}(y), \delta \hat{A}_z(y), \) and \(\delta n(y) \). In obtaining the term \(\Omega_c (V_E^2/c^2) \delta \hat{V}_z \) in Eq. (39), we have made use of Eq. (22) to approximate \(\delta \hat{V}_z (\partial / \partial x) \delta \hat{m} \delta \hat{y}^2 \) as \((V_E/c^2) \delta \hat{V}_z - (eE_y/B_0) \).

We now Fourier decompose with respect to the \(y \) dependence in Eqs. (38)-(42) with \(\delta \hat{A}_z(y) = \Sigma_k \delta \hat{A}_k \exp(ik y) \), etc. After some straightforward algebra, this gives
\[
\delta \hat{V}_k = -\gamma \frac{\omega}{\omega - \Omega_w} (\delta \hat{A}_k + \delta \hat{A}_{k - k_0}), \tag{43}
\]
\[
\delta \hat{n} = n_b k \delta \hat{V}_k / (\omega - k V_E), \tag{44}
\]
\[
\delta \hat{V}_{k,k} = \Omega_w \frac{\omega - k V_E}{2ck_0} \left[(\omega - k V_E)^2 - \Omega_w^2 / \gamma n \right] \delta \hat{A}_k + \delta \hat{A}_{k - k_0}, \tag{45}
\]
\[
(\omega - \omega_p^2 - \omega_p^2 \delta \hat{A}_k), \tag{46}
\]
Combining Eqs. (43)-(45) and substituting into Eq. (46) gives the final eigenvalue equation
\[
\left(1 - \frac{c^2 k^2}{\omega^2} - \frac{\omega_p^2}{\omega^2} + \frac{\gamma}{k - k_0} (\omega) \right) \delta \hat{A}_k + \frac{\omega - k V_E (2ck_0)}{2ck_0} \right) \delta \hat{A}_k + \frac{\omega - k V_E (2ck_0)}{2ck_0} \right) \delta \hat{A}_{k - k_0} = 0, \tag{47}
\]
where the wiggler-induced susceptibility \(\chi_k(\omega) \) is defined by
\[
\chi_k(\omega) = \frac{\omega_p^2}{\omega^2} \left(\Omega_w \frac{\omega}{2ck_0} \right)^2 \left(\frac{\omega}{\omega - (k + k_0 V_E)} \right) \left(\frac{\omega}{\omega - (k - k_0 V_E)} \right), \tag{48}
\]
Equation (47) constitutes the final matrix dispersion equation for the cross-field free electron laser instability in circumstances where \(\partial / \partial x = 0 \) is assumed. For \(\Omega_w^2 / c^2 k_0^2 < 1 \) [Eq. (25)], the coupling to the off-diagonal terms in Eq. (47) is weak, and the dispersion relation can be approximated by
\[
1 - c^2 k^2/\omega^2 - \omega_p^2/\omega^2 = - \left[\chi_{k + k_0}(\omega) + \chi_{k - k_0}(\omega) \right], \tag{49}
\]
or equivalently
\[
\omega^2 - c^2 k^2 - \omega_p^2 = -\omega_p^2 \left(\frac{\Omega_w}{2ck_0} \right)^2 \left(\frac{\omega}{\omega - (k + k_0 V_E)} \right) \left(\frac{\omega}{\omega - (k - k_0 V_E)} \right), \tag{50}
\]
Equation (50) constitutes the final ordinary-mode dis-
A. Analytic estimates of FEL growth rates

In this section, we make use of Eq. (50) to obtain simple analytic estimates of instability growth rates in the limit of small wiggler amplitude and beam density with

$$\Omega_\omega/4c^2k_0^2, \quad \omega_0/c^2k_0^2 < 1.$$ \hfill (51)

It is evident that the ordinary-mode electromagnetic wave with \(a^2 - c^2k^2 - \omega_0^2 < 0\) can resonantly couple to wiggler-induced current perturbations whenever the beam resonance condition \(\omega = (k \pm k_0)V_E = 0\) or cyclotron resonance condition \(\omega = (k \pm k_0)V_E^2 - \Omega_\omega^2/\gamma_E^2 = 0\) are approximately satisfied. Now we simplify Eq. (50) in these two limiting regimes.

1. FEL instability near beam resonance

Restricting attention to upshifted frequencies, we first examine Eq. (50) for \((\omega, k)\) in the vicinity of \((\omega_0, k_0)\) determined from

$$\omega_0 = (k_0^2c^2 + \omega_0^2)^{1/2},$$ \hfill (52)

$$\omega_0 = (k_0 + k_0)V_E,$$

where \(\omega_0 > 0\) and \(k_0 > 0\) are assumed. In this case, Eq. (50) can be approximated by

$$\omega = (k + k_0)V_E [\omega^2 - c^2k^2 - \omega_0^2] = -\omega_0^2(\Omega_\omega/2ck_0)^2 \omega.$$ \hfill (53)

For \(\omega_0^2/c^2k_0^2 < 1\), it follows from Eq. (52) that \(\omega_0\) and \(k_0\) can be approximated by the familiar result

$$\omega_0 = (1 + \beta_E)\gamma_E k_0 V_E,$$

$$k_0 = (1 + \beta_E)\gamma_E k_0 V_E,$$

where \(\gamma_E = (1 - \beta_E^2)^{-1/2}\). Expressing \(\omega = \omega_0 + \delta \omega\) and \(k = k_0 + \delta k\), and retaining terms to order \((\delta \omega)^2\) and \((\delta k)^2\), the dispersion relation (53) can be approximated by

$$\left(\delta \omega - \frac{c^2k_0}{\omega_0} \delta k\right)(\delta \omega - V_E \delta k) = -\frac{1}{2} \omega_0^2 \left(\frac{\Omega_\omega}{2ck_0}\right)^2.$$ \hfill (55)

For \(\delta k = 0\), Eq. (55) gives the characteristic maximum growth rate

$$\text{Im}(\delta \omega) = (\omega_p/\sqrt{2})(\Omega_\omega/2ck_0).$$ \hfill (56)

Depending on the size of \((\Omega_\omega/2ck_0)\), Eq. (56) can correspond to relatively short exponentiation times in units of \(\omega_p^{-1}\). Within the range of validity of Eq. (55), it is readily shown that the growth rate is stabilized (\(\text{Im}(\delta \omega) = 0\)) whenever \(\delta k > \delta k_m\), where

$$\delta k_m^2 = \frac{2}{V_E^2} \frac{k_0^2}{\gamma_E^2} \left(\frac{\Omega_\omega}{2ck_0}\right)^2,$$ \hfill (57)

and \(k_0\) is defined in Eq. (54). Making use of Eq. (56) and substituting in Eq. (50), it is readily shown for \(\omega = (k + k_0)V_E^2 - \Omega_\omega^2/\gamma_E^2 - 1\) is negligibly small provided

$$\omega_p \frac{B_w}{\Omega_\omega} \gamma_E^2 \left(1 + \beta_E \right) < 2\sqrt{2}.$$ \hfill (58)

It is interesting to compare Eq. (53) with the cold-beam Compton-regime dispersion relation obtained in the case of zero guide field \((B_0 = 0)\). Setting \(\Omega_\omega = 0\) in Eq. (50) and denoting \(V_E\) by \(V_b\), the quadratic resonance term \(\omega / (k + k_0)V_b\) dominates the linear resonance term \(\omega / (k + k_0)V_b\) on the right-hand side of Eq. (50), which leads to the approximate dispersion relation

$$\omega = (k + k_0)V_b \delta \omega / (\omega^2 - c^2k^2 - \omega_0^2)$$ \hfill (59)

with characteristic maximum growth rate \((\delta \omega = 0)\)

$$\text{Im}(\delta \omega) = \frac{\sqrt{2}}{2} \frac{\omega_0^2}{c^2k_0^2} \frac{\Omega_\omega^2}{4ck_0^2} \left(1 + \beta_E\right) k_0 \gamma_E.$$ \hfill (60)

Typically, Eq. (59) gives a somewhat larger growth rate than Eq. (56).

2. FEL instability near cyclotron resonance

We now return to Eq. (50) in the presence of a guide field \((B_0 = 0)\) and examine the dispersion relation for \((\omega, k)\) in the vicinity of \((\omega_0, k_0)\) corresponding to cyclotron resonance, i.e.,

$$\omega_0 = (k_0^2c^2 + \omega_0^2)^{1/2},$$ \hfill (61)

$$\omega_0 = (k_0 + k_0)V_E \pm \Omega_\omega/\gamma_E,$$

where \(\omega_0 > 0\) and \(k_0 > 0\) are assumed. In this case, Eq. (50) can be approximated by

$$\omega = (k + k_0)V_E^2 - \Omega_\omega^2/\gamma_E^2 \omega^2 - c^2k^2 - \omega_0^2$$ \hfill (62)

$$\delta \omega / (\omega^2 - c^2k^2 - \omega_0^2)$$

For \(\omega_0^2/c^2k_0^2 < 1\), it follows from Eq. (60) that \(\omega_0\) and \(k_0\) can be approximated by

$$\omega_0 = (1 + \beta_E)\gamma_E k_0 V_E,$$

$$k_0 = (1 + \beta_E)\gamma_E k_0 V_E,$$

where \(\gamma_E = (1 - \beta_E^2)^{-1/2}\). Expressing \(\omega = \omega_0 + \delta \omega\) and \(k = k_0 + \delta k\), and retaining terms to order \((\delta \omega)^2\) and \((\delta k)^2\), the dispersion relation (62) can be approximated by

$$\left(\delta \omega - \frac{c^2k_0}{\omega_0} \delta k\right)(\delta \omega - V_E \delta k) = -\frac{1}{2} \omega_0^2 \left(\frac{\Omega_\omega}{2ck_0}\right)^2.$$ \hfill (63)

For \(\delta k = 0\), Eq. (55) gives the characteristic maximum growth rate

$$\text{Im}(\delta \omega) = (\omega_p/\sqrt{2})(\Omega_\omega/2ck_0),$$ \hfill (64)

Depending on the size of \((\Omega_\omega/2ck_0)\), Eq. (64) can correspond to relatively short exponentiation times in units of \(\omega_p^{-1}\). Within the range of validity of Eq. (55), it is readily shown that the growth rate is stabilized (\(\text{Im}(\delta \omega) = 0\)) whenever \(\delta k > \delta k_m\), where

$$\delta k_m^2 = \frac{2}{V_E^2} \frac{k_0^2}{\gamma_E^2} \left(\frac{\Omega_\omega}{2ck_0}\right)^2,$$ \hfill (65)

and \(k_0\) is defined in Eq. (54). Making use of Eq. (56) and substituting in Eq. (50), it is readily shown for \(\omega = (k + k_0)V_E^2 - \Omega_\omega^2/\gamma_E^2 - 1\) is negligibly small provided

$$\omega_p \frac{B_w}{\Omega_\omega} \gamma_E^2 \left(1 + \beta_E \right) < 2\sqrt{2}.$$ \hfill (66)

It is interesting to compare Eq. (53) with the cold-beam Compton-regime dispersion relation obtained in the case of zero guide field \((B_0 = 0)\). Setting \(\Omega_\omega = 0\) in Eq. (50) and denoting \(V_E\) by \(V_b\), the quadratic resonance term \(\omega / (k + k_0)V_b\) dominates the linear resonance term \(\omega / (k + k_0)V_b\) on the right-hand side of Eq. (50), which leads to the approximate dispersion relation

$$\omega = (k + k_0)V_b \delta \omega / (\omega^2 - c^2k^2 - \omega_0^2)$$ \hfill (67)

with characteristic maximum growth rate \((\delta \omega = 0)\)

$$\text{Im}(\delta \omega) = \frac{\sqrt{2}}{2} \frac{\omega_0^2}{c^2k_0^2} \frac{\Omega_\omega^2}{4ck_0^2} \left(1 + \beta_E\right) k_0 \gamma_E.$$ \hfill (68)

Typically, Eq. (67) gives a somewhat larger growth rate than Eq. (66).
For a sufficiently weak applied field B_0 such that $\Omega_c/\gamma_E k_0c < 1$ and $\Omega_c/\gamma_E |\delta\omega|$, Eq. (63) reduces to the unmagnetized results in Eqs. (58) and (59). On the other hand, for $\Omega_c/\gamma_E |\delta\omega|$ the quadratic term in Eq. (63) dominates and $\delta\omega$ is determined from

$$\delta\omega = \frac{\omega_p^2}{4} \left(\frac{\Omega_c}{2\gamma_0 c} \right)^2 \frac{k_0 + k_0}{k_0} \times \left(1 \pm \frac{\gamma_E \gamma_0}{\Omega_c} \right),$$

for $\delta k = 0$. Making use of Eq. (62) to eliminate k_0, Eq. (64) can be expressed in the equivalent form

$$\delta\omega^2 = \frac{\omega_p^2}{4} \left(\frac{\Omega_c}{2\gamma_0 c} \right)^2 \left(\frac{k_0 c \gamma_E}{\Omega_c} \right) \left(1 + \frac{\Omega_c}{\gamma_E k_0 c} \right) \times \left(1 \pm \frac{\Omega_c}{\gamma_E k_0 c} \right),$$

Clearly the + branch in Eq. (65) is always stable ($\text{Im}\delta\omega = 0$), whereas the - branch exhibits instability whenever

$$\Omega_c/\gamma_E k_0 c < \beta_E,$$

with corresponding growth rate

$$\text{Im}(\delta\omega) = \frac{1}{4} \omega_p \frac{\Omega_c}{\gamma_0 c} \left(\frac{k_0 c \gamma_E}{\Omega_c} \right)^{1/2} \left(1 + \frac{\Omega_c}{\gamma_E k_0 c} \right) \times \left(1 - \frac{\Omega_c}{\gamma_E k_0 c} \right)^{1/2}.$$

and downshifted emission frequency [Eq. (62)] $\omega, = (1 + \beta_E) \gamma_T^2 (\beta_E - \Omega_c/\gamma_E k_0 c)$. Making use of Eq. (67) and substituting in Eq. (50), it is readily shown for $\omega - (k + k_0) V_E \approx - \Omega_c/\gamma_E$ that the linear resonance term proportional to $[\omega - (k + k_0) V_E]^{-1}$ is negligibly small provided

$$\frac{\omega_p^2}{2\gamma_0 c} \frac{\Omega_c}{\gamma_0 c} \left(\beta_E - \frac{\Omega_c}{k_0 c \gamma_E} \right)^{1/2} \left(\frac{\Omega_c}{k_0 c \gamma_E} \right)^{1/2} \left(1 - \frac{\Omega_c}{k_0 c \gamma_E} \right)^{1/2}.$$

B. Numerical results

The complete dispersion relation in Eq. (50) is an eighth-order algebraic equation for the complex oscillation frequency ω. In this regard, Eq. (50) has been solved numerically and typical results are summarized in Figs. 2 and 3, where the normalized growth rate (Im $\omega / c k_0$) is plotted versus k / k_0 for the unstable branch with upshifted wavenumber $k = k_0 \left(1 + \frac{\beta_E}{\gamma_T^2 \beta_E k_0} \right)$ in Fig. 2, we fix $\gamma_T = 2, \Omega_c/c k_0 = 0.5$, and $\omega_p^2/c^2 k_0^2 = 0.1$ and vary B_0/B_0 from 0.1 [Fig. 2(a)] to 0.5 [Fig. 2(c)]. On the other hand, in Fig. 3, we fix $\gamma_T = 2, \Omega_c/c k_0 = 0.5$, and $B_0/B_0 = 0.25$ and vary $\omega_p^2/c^2 k_0^2$ from 0.25 [Fig. 3(a)] to 0.5 [Fig. 3(b)]. For small values of both B_0/B_0 and $\omega_p^2/c^2 k_0^2$, it is clear from Fig. 2(a) that the bandwidth of unstable k values is very narrow. Indeed, $\Delta k / k_0 \sim 10^{-2}$ for the parameters in Fig. 2(a). However, for increasing values of B_0/B_0 (Fig. 2), or for increasing values of $\omega_p^2/c^2 k_0^2$ (Fig. 3), the bandwidth of unstable k values increases.

FIG. 2. Plot of the normalized growth rate $\text{Im} \omega/c k_0$ vs k/k_0 obtained numerically from Eq. (50) for the upshifted unstable mode with $\omega \approx (k + k_0) V_E$. Parameters correspond to $\gamma_T = 2, \omega_p^2/c^2 k_0^2 = 0.1, \Omega_c/c k_0 = 0.5$, and (a) $B_0/B_0 = 0.1$, (b) $B_0/B_0 = 0.25$, and (c) $B_0/B_0 = 0.5$.
$\omega^2/c^2k_0^2$ (Fig. 3), both the bandwidth of unstable k values and the maximum growth rate $|\text{Im}\omega|_{\text{MAX}}$ increase substantially. The "dimpled" structure of the $\text{Im}\omega/ck_0$ vs k/k_0 plots in Figs. 2 and 3 has to do with the high-order (eighth-order) nature of the algebraic dispersion relation for ω in Eq. (50).

Finally, we have also solved numerically the complete dispersion relation (50) for the unstable downshifted branch near cyclotron resonance with $\omega-(k+k_0)V_\parallel\approx -\Omega_e/\gamma_E$. (See discussion at the end of Sec. IV A.) Typical numerical results are illustrated in Fig. 4 for parameters such that the growth rate of the downshifted branch is comparable to the cross-field FEL growth rates in Figs. 2 and 3. Note from Fig. 4 than an increase in B_\parallel/B_0 or $\omega^2/c^2k_0^2$ leads to an increase in growth rate $\text{Im}\omega$ and a broadening of the range of unstable k values.

FIG. 3. Plot of the normalized growth rate $\text{Im}\omega/ck_0$ vs k/k_0 obtained numerically from Eq. (50) for the upshifted unstable mode with $\omega-(k+k_0)V_\parallel\approx -\Omega_e/\gamma_E$. Parameters correspond to $\gamma_E = 2$, $B_\parallel/B_0 = 0.25$, $\Omega_e/ck_0 = 0.5$, and (a) $\omega^2/c^2k_0^2 = 0.25$ and (b) $\omega^2/c^2k_0^2 = 0.5$.

FIG. 4. Plot of the normalized growth rate $\text{Im}\omega/ck_0$ vs k/k_0 obtained numerically from Eq. (50) for the unstable downshifted cyclotron branch with $\omega-(k+k_0)V_\parallel\approx -\Omega_e/\gamma_E$. Parameters correspond to $\gamma_E = 2$ and $\Omega_e/ck_0 = 0.5$ and (a) $B_\parallel/B_0 = 0.25$ and $\omega^2/c^2k_0^2 = 0.1$, (b) $B_\parallel/B_0 = 0.25$ and $\omega^2/c^2k_0^2 = 0.25$, and (c) $B_\parallel/B_0 = 0.5$ and $\omega^2/c^2k_0^2 = 0.1$.

V. CONCLUSIONS

The present theoretical analysis of the cross-field FEL instability is based on the macroscopic, relativistic cold-fluid equations for the electrons [Eqs. (5) and (6)] coupled with Maxwell's equations for the fields [Eqs. (8) and (9)], where it is assumed that the wave perturbations have ordinary-mode polarization with \(\delta E = \delta E_y e_z \) and \(\delta B = \delta B_y e_x + \delta B_z e_y \). The electron beam density is assumed to be sufficiently low and the field of the upshifted resonance term proportional to \(\left(k + k_0 \right) V_y \). For weak transverse spatial variations [Eq. (26)], the average equilibrium electron velocity is then approximately \(\left(E_y / B_y \right) \left(\omega / \omega_p \right) \), with a small wiggler-induced modulation of the axial flow \(\alpha / \alpha_y \). For small wiggler amplitude and beam density, the resulting matrix dispersion equation (47) is approximated with \((\delta \gamma)^2 \) [Eq. (27)] in the limit of weak transverse spatial variations [Eq. (25)] and weak spatial variation in electron energy. The diagonal terms which give the dispersion relation in Eq. (50) lead to instability with characteristic maximum growth rate [Eq. (56)]

\[
\Im(\delta \gamma) = \omega_p (2\gamma) \frac{\Omega_o}{\omega_p^2} \frac{k_0}{c k_0},
\]

and emission frequency [Eq. (54)]

\[
\omega_e = \left(1 + \beta_E \right)^2 \frac{k_0}{c} V_E,
\]

where \(\beta_E = V_E / C \). Depending on the size of \(\Omega_o / \omega_p \), Eq. (56) can correspond to relatively short exponentiation times in units of \(\omega_p^{-1} \).

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the benefit of useful discussions with Richard Aamodt and George Bekefi.

This work was supported in part by the Office of Naval Research and in part by the Air Force Aeronautical Systems Division.