
PFC/JA-83-1

GROWTH OF PHASE SPACE DENSITY HOLES

Thomas H. Dupree

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

January 1983



GROWTH OF PHASE SPACE DENSITY HOLES

Thomas H. Dupree*

ABSTRACT

Phase space density holes are shown to grow in a plasma for any non zero electron-ion drift velocity. As a

hole grows, its depth, velocity width and electrostatic potential increase. For a hole with velocity u, the growth

rate is of order -vif',(u)vif'i(u) times the bounce frequency of a particle trapped in the hole. The theoretical

predictions agree reasonably well with a recent computer simulation. The results call into question the role of

linear stability theory. Energy and momentum conservation are analyzed in detail, and the relationship to the

clump instability is discussed.
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1. INTRODUCTION

Phase Space Holes

It has been argued' that fluctuations which move at characteristic particle speeds in a turbulent plasma can

be modeled as a collection of phase space density holes. In this paper we enlarge on that theme by showing

that in the simple case considered, even slight departures from plasma equilibrium make such isolated holes un-

stable to growth. Whereas the threshold for linear instability occurs at a finite and usually significant departure

from equilibrium, holes appear to require only an infinitesimal departure. This fact suggests that the prevailing

view of stability theory as essentially linear stability theory should be modified. Furthermore, the fact that

holes may provide the basic instability mechanism that causes the turbulence calls into question the validity of

perturbative nonlinear models in which the linear theory provides the lowest order approximation. The hole

instability is related to the clump instability2 which also has a threshold below the linear value. We discuss this

relationship which clarifies the physics and limitations of both the hole and clump models.

In this paper, we compute the hole growth rate for the simple case of a one dimensional electron ion-

plasma with a relative drift velocity. The calculated growth rate is in good agreement with that observed in a

recent computer simulation.3 The simulation also contained clear evidence of holes and clump-like structures in

phase space which gives further support to the theory.

This paper deals only with a one dimensional system since it is more tractable analytically and more

amenable to computer simulation. However, one can carry out a straightforward (although complicated)

generalization to a three dimensional plasma with a magnetic field-a case we will describe in a subsequent

publication. The properties of holes for a one dimensional plasma have been discussed at length in Ref. 1.

For present purposes, a hole is a BGK mode in the form of a localized depression in the phase space density

of magnitude f, spatial width Ax, and velocity width Av, all moving at the hole velocity u. Section VI B

of Ref. 1 describes relatively simple approximate relationships between these quantities and the hole energy

T = T + Mu 2 , self-energy T, momentum P = Mu, mass M, and charge Q = qM/m. In a two

species plasma (electrons and ions) one can have an election hole or an ion hole, depending on whether it is the

electrons or the ions which have a local depression in their phase space density and are trapped in the resulting

potential energy well.
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Although in principle a hole or BGK mode can have an infinitely complex structure, we showed in Ref.

I that the most probable (maximum entropy) holes are completely determined by three parameters, e.g., P,

T, and M or u, Ax, and Av. This is analogous to characterizing linear waves by the three parameters,

amplitude, frequency, and wavenumber. Although the frequency and wave number are related by a dispersion

relation, the three parameters determining hole structure are independent and arbitrary, within certain limits.

For example, unlike the phase velocity of linear waves, the hole velocity u can have any value as long as the

shielding distance X given by (165) is real. This means hole velocities are of the order of, or less than, the

average particle velocities. Thus, holes and waves tend to occupy different regions of velocity space. We argued

in Ref. I that fluctuations for which X2(u) > 0 tend to organize themselves into holes which can be regarded

as a fundamental constituent or building block of a turbulent plasma. In this model, holes play a role analogous

to that traditionally assigned to waves. We argue for this picture not only on an analytical level but on an

intuitive level where historically the vocabulary of plasma physics has been heavily weighted by terminology

and concepts derived from linear waves and instabilities.

The concept of a hole as a separate and identifiable entity is further enhanced by the fact that if it grows

or accelerates slowly, it behaves like a macroscopic "rigid" body and obeys Newton's second law. "Slowly"

means that yr << 1 and tir/Av << I where -y and ti are the hole growth rate and acceleration and r is

the hole trapping time which is approximately equal to Az/Av. This restriction is analogous to the criterion,

-y/w << 1, for the existence of a wave packet with a definite energy and momentum.

We list here several useful approximate formulae from Section VI B of Ref. 1. The hole velocity width,

Av, is related to the minimum trapped particle potential energy, qO. by

mAV = g(Az/i)qO0  (1)

where

g(z) = (1 + 2/z)[1 - exp(-z)] - 2 (2)

and X is the shielding distance given by (165) and is of order of the Debye length, XD. The quantities q, m, n,

and V are the particle charge, mass, average number density, and thermal speed respectively. The BGK
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equilibrium requires that

f = AV[6w2X 2g(Az/)]- (3)

The hole mass is given by

M = nmAzAvf (4)

Equations (1)-(4) apply to either ion or electron holes provided the ion or electron values of q, m, n, etc. are

used.

Hole Growth Rate

Conceptually, the physics of hole growth is quite simple and a rather accurate formula for -1 for small u

can be obtained from a simple calculation which we shall now describe. However, it should be borne in mind

that the details and the justification for our simple calculations are quite complicated and occupy the bulk of

this paper.

In a two species plasma, a hole of one species will experience a Fokker-Planck drag force due to the

reflection or scattering of particles of the opposite species. For example, for an isolated ion hole, the drag force

due to reflected electrons is w ,e2f',,/1r where W2  41rn2qi/m", fa is the average distribution of the 0 th

species and f' (8/8u)f,(u). The hole acceleration, ti = du/dt can be obtained by equating this force to

the rate of change of the hole momentum Mi.

Mt = W prf'/1 (5)

Since the trapped particle distribution function remains constant as the hole accelerates, the depth of the hole

will change at the rate

aft/at = -(fi. 6)

Using (1), (3), (4), (5), and (6), it is a simple matter to show that the growth rate of the potential #. (which is

proportional to f) is given by

4



ol=I d4)0 = A/x)XW Ax(M (7)

Thus, if the velocity gradients of fo for electrons and ions have opposite signs at the hole velocity u, the hole

depth will grow. The characteristic frequency of the growth rate is the particle bounce or trapping frequency

Av/Az. The instability is illustrated schematically in Fig. 1, showing electrons moving through the ions with

a drift velocity vD. The ion hole (dashed line) has a negative charge which reflects electrons, causing a loss in

electron momentum (dashed line) . To conserve momentum, the negative mass ion hole decelerates to smaller

velocity u, where f,01(u) is also larger, and consequently the hole depth increases. Clearly, the isolated hole

instability occurs for any finite value of vD, whereas the linear ion acoustic instability requires relatively large

values of vD and Te/T. The growth rate (7) applies to either electron or ion holes when the appropriate Av

is used. A more detailed calculation of the growth rate leads to the result (110) or (117) and (118). Except for

the second term in the denominator of (110) and a numerical factor slightly smaller than the 8 in Eq. (7), the

more accurate result does not differ substantially from (7). However, a more rigorous, detailed consideration is

necessary to justify the simple procedure since the actual physics is quite complex. Furthermore, it is important

to understand in detail the conservation of mass, momentum, and energy. Although we derived the growth rate

(7) for an ion hole, exchanging the roles of electrons and ions lead to a similar result for an electron hole.

An instability well below the linear threshold was observed in a recent computer simulation.3 The simula-

tion modeled a one-dimensional electron-ion plasma with a relative drift velocity VD, m;/me = 4, and equal

ion and electron temperatures as shown in Fig. 1. In Fig. 2 we have plotted the observed simulation growth

rates for the mean square fluctuation (times I/wp,) and the corresponding theoretical growth rate, 'y/w,,, for

an electron hole from (117) and (118). The linear growth rate is also shown. We computed -y for electron

holes since, for the same 0., they have a Av, and hence a -y, ./imi/m, times that for an ion hole. We used

Av/ve = 0.4/v/2 (Av/Az = w,/ 2 0) which is about twice as large as that cited in Ref. 3, but is consistent

with more recent diagnostics on equivalent simulations.4 These simulations also show phase space holes with a

packing fraction, p, less than 1/2. The packing fraction is the fraction of local phase space occupied by holes.

We have also calculated the hole growth rate for mi/m = 1836. In Fig. 3, we have plotted Tri yAz/Av

given by (119) for electron and ion holes for Te/Ti = I and 2.
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Hole-Hole Collisions

So far, we have considered only the properties of single, isolated holes. In fact, it is likely that many holes

will exist and interact or collide with each other. This process is difficult to analyze in detail. In Ref. 1, we

discussed the coalescence and decay of colliding holes, and estimated the collision frequency to be of order

2pAv/Az.

Hole collisions can be expected to change the distribution of f, Ax, and Av of the hole fluctuations.

Although there exist no real theory of this process, a computer simulation has shed considerable light on the

details of hole-hole interaction.5 For the purpose of the present calculation we shall simply assume that hole-

hole collisions cause a reduction in the mean square fluctuation at the rate

-y = -2rpAv/Az (8)

where the factor r accounts for the fluctuation loss per collision. The validity of this formula is discussed in Ref.

5, where r s 1/3 led to a reasonable fit with the simulation results. We assume all holes of each species have

the same Ax and Av, which we take to be an appropriate average.

When hole-hole collisions are included, the actual average fluctuation growth rate is

I
-1.= + ie = (Av/Az)(-FFj - 2pr) (9)

where

F, = 4Ww f'.(u) (10)

The threshold (-y = 0) occurs at

F.F1 = - 4pr (11)

If we use r = 1/3, p = 1/4, Av/Ax = Lop/20, which is not inconsistent with Ref. 4, we find Yc/Wpe 1

-0.008. As one can see from Fig. 2, subtracting this value from -y, as indicated in (9), gives a value of 1Ya/wpe

that agrees reasonably well with the simulation growth rate in the region of the threshold. As explained later,
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the growth rate (9) would not be expected to hold as vD approaches the linear instability threshold. Of course,

given the approximate nature of(8) and the error in measuring p and Av/Ax, good agreement between (9) and

the simulation may be fortuitous. Also the clump theory shows that near -1. = 0, for p = 1/2 an additional

term occurs in the growth rate [see (33)]. Furthermore, the simulations had a substantial discrete particle noise

level, which means that in addition to -y, a discrete particle damping rate, -ye, should also be added to -1. The

effect of -1d will be discussed later but for the simulations of Ref. 3 and 4 it is of the order of -yc. Therefore, it

would appear that the threshold observed in the simulation is determined, in part, by discrete particle noise.

Although the simulation instabilities cited had packing fractions of the order of one half, one can imagine

fluctuations with arbitrarily small p created by thermal fluctuations or the coalescing of holesi . Indeed, there

would seem to be a tendency for a few large holes to dominate a turbulent system. Statistically, some holes will

always be bigger than others; but the bigger the hole, the more immune it is to destruction due to collisions

with other holes (and vice versa). This effect would cause p to approach zero. Thus, it would seem that, in the

absence of discrete particle effects, the ultimate stability threshold is zero.

Brief Review of Clump Theory

The hole and clump instability are closely related and it is enlightening to understand this relationship.

Moreover, a recent calculation of the clump growth rate6 also agrees well with the simulation data. We shall

briefly review the most recent versions of clump theory. For more details, the reader should consult Refs. 2, 6,

and 7, and 8.

In the clump theory, one writes the fluctuation portion, 6f = f- < f >, of the distribution function

as 4f = 6ft) + 67. The quantity 6f(c) is the coherent response and 67 is the clump portion. Analogous

quantities appear in the hole theory. The hole analogy to 5f(c) is the linear solution which enters through the

dielectric function and the hole analogy to 6! is the hole depth - = (f - ft) where fi is the distribution

function for trapped particles. The equation for the two point correlation function for a two species plasma is

(approximately)

(- + V_ - D((z_) a ) < 6fa(1)6fk(2) >= S. (12)
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The "source term" is given by

S. - ' < 6E(1)8f.(2) > -f..(1) + (1 +-+ 2) (13)
ma 9VI

For small z_ and v-, this becomes

Sa 2 < 6if, >, foe (14)

We have used "1" and "2" for the phase space points z1 , vi and x2, V2, and z- =x - x2 and v- =v - V2.

The quantity D_ is the diffusion coefficient for the relative coordinate v-

D_(z) < 2At > (15)

The quantity D(O) is the single particle diffusion coefficient for the ath species due to the shielded electric fields

of clumps of the Pth species. The quantity ti is the clump acceleration and < ti6f >& describes the "drag"

force exerted by the 3 species on clumps of the a species. As explained in Refs. 2 and 8, the like-like terms

in the source term cancel due to local momentum conservation. The equation for the shielding portion of the

correlation function

g(1, 2) =< 6f6f > - < 66Y> (16)

=< 6f(c)6f() > + < 6f(1)f(c)(2) > + < f6c)(1)6Y(2) > (17)

is given by an equation identical to (12) except that the two particle relative diffusion coefficient D(a)(z_) is

replaced with D(*)(oo) = 2(D(") + Di")).

The equation for the hole growth rate with hole-hole collisions included can be put in a form similar to

(12). When the packing fraction is approximately one half, the destruction of holes due to hole-hole collisions

can be described with the relative diffusion coefficient D_ used in the clump theory. Following the arguments
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of Ref. 1, we can estimate the value of D_ due to holes of size Av, Ax as D_ m 2p(Av/AX)3X2_. The ratio

Av/Ax is a measure of the electric field gradientOE/Oz. Generally speaking, hole A can be torn apart by hole

B only if8E/Oz of hole B is greater than that of hole A.

-2In terms ofD_, the rate of destruction of f of holes of size Ax and Av denoted -c, is

-- c = rD_(Az)/Av 2  (18)

where

AVD-(Ax) s ,2P(2iV)AX2  (19)

If all holes are the same size, then (18) is equivalent to (8). Using (6) and (18), the hole growth rate can be

written

a +r D-(Ax))= 
(20)S -- Av2  f

If we multiply both sides of (20) from the right by ! and average, the resulting equation,

[ - rD_(Az)/A 2] < j >= -2 < q > f , (21)

is very similiar to the clump equations (12) and (14). The major differences between (12) and (21), the clump

and hole equations, are that: (a) The hole being a coherent structure is described in terms off, whereas the

clump is a random structure and is described by a correlation function < 6f6f >; (b) Only the second

part of the clump source term contributes to (21); (c) In the hole model the velocity width Av is determined

for each species separately by the structure of an individual hole (see (1)), whereas in the clump theory Av

is determined by the solution of (12) and is approximately AV a [Ax(D!") + D("))] (Ax is the clump

length). For p z I the two models give similar values. For p << 1, the plasma contains isolated holes

and the clump equation (12) is not applicable. (d) In the hole model (21) fluctuations destroy each other

at the rate rD-/(Av)2 or more generally 2prAv/Az, whereas for the clump theory the analogous rate, is
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v/,x_ + D_0 2 /Ov2 which can be shown to be of order Av/Ax - [D/(AX) 2 ]t/ 3 . The first version of

clump theory7 omitted both the drag portion of the source term and the self-binding effect, both intrinsic to

hole growth. In Ref. 8, the drag source term was included in a renormalized kinetic theory but including

fluctuation self-binding in such a theory proved considerably more difficult.

The hole and clump instabilities can be regarded as different regimes of the same basic physical process.

If all holes have the same Az, and Av, then the hole-hole collision frequency, v, is approximately v =

2pAv/Az = 2pr-1. For p << 1/2, v << r1, particles can follow well defined trapped particle orbits

between hole-hole collisions and the hole model is valid. As p -+ 1/2, v -+ r- and holes collide before a

trapped particle can execute a complete orbit. In this case, the clump picture is more realistic. In terms of the

correlation time, re, the hole model is appropriate when re/r > 1, and the clump model when -r/r < 1.

Of course, the detailed effect of hole-hole collisions on the aggregate growth rate is not understood. In

reality there will be a distribution of hole sizes. Holes can coalesce causing p to decrease. The larger coalesced

holes will be less affected by the smaller holes and -- I will be reduced. Perhaps a few large holes will

dominate. This possibility is suggested by the results of a recent computer simulation5 in which hole coalescing

and the reduction in p were observed. The distribution of fluctuation amplitudes was not Gaussian and had

negative skewness consistent with holes with p < 1/2.

When (8/at) < 8f6f >= 0, the solution to the clump equation (12) may be written < 6f1f >z

rcd(Z_, v_)S. The time rej is the so-called clump lifetime and is the inversion of the operator on the left hand

side of (12) with 8/at = 0. The magnitude of the clump lifetime, re,, is of the order of, but somewhat larger

than, the trapping time r re (D/Az2) 1/3 . The solution to the p equation is y rS. Subtracting the two

solutions gives the clump correlation function

<6bf(1)6bf(2) >= [mr(z, v-) - r]S. (22)

Momentum conservation imposes a useful relationship between Fokker-Planck drag and diffusion coefficients.

The drag force on clumps of species a due to species j(, a) is equal to minus the rate of change of momen-

tum of species , due to the diffusion caused by the shielded electric fields of clumps of species a. Thus we can

write
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nama < to >0= nmD/)O f.0

The diffusion coefficients can be written in terms of the clump correlation function

D"' = (qo/mq)2 4d

d. = (42rnaq,)2 |k 2e(k, ku) 2  dv_ < 6f- >k

where k is a wave number, e(k, w) is the usual dielectric function whose linear value is

e(k, w) = 1 + 1( Pa/k) / dv(w - kv + ib)--'af../Ov
a

and

< 6? >k= dx e-ik- < 6(1)61(2 >

(23)

(24)

(25)

(26)

(27)

If we put (23) and (24) in (14) and then use the Fourier transform (27) of (22) in (25), we obtain an equation for

d0 . We define the quantities

B(k) f dz-e-ik / dv-(ic - r)

4 _ dk B(k)|k|
c 8 |k 2 f(k, ku)12

Fc = 4A w ff 0 /OV = (Wc/X)2

(28)

(29)

(30)

For a clump of length Ax, B(k) s Ax 2 when kAx < 1. If Ax is larger than X or Xi[Xi

Imk2 (k, ku)], then (for X2 > 0) the integral in (29) is approximately X1 Kt (Az/4)2 (X- 2 + X- 2)-1.
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Using (23), (24), and (30), the source term (14) becomes

S. = (41rnqX)-2(d(F 0 - d0 FeYe) (31)

''he cquation for d0 for a steady-state (O < Sfof > /t = 0) solution is (for a = i, e)

2d.d(ca c j a'c (32)

A solution exists when

2Fc/c; = -2 (33)

Equation (33) gives the threshold for a self-sustaining state, i.e., the clump instability. When (33) is satisfied,

(32) gives -diFe = dFci, which can be used to rewrite the first term of the source term (31) as -dFeFc3.

Thus, the first and second terms of the source term are equal.

It is enlightening to compare the clump and hole instability threshold conditions (33) and (11). One

difference is that Fc0 contains X, while F, contains X. Except near linear instability the two are of similar size.

The factor of two on the left hand side of (33) occurs because the clump equations contain both source terms.

The right hand sides are proportional to the hole or clump destruction rate. The smaller this rate, the lower

the threshold, i.e., the criterion can be satisfied with smaller values of relative drift vD. The factor, 2pr, in

(11), which came from (8), contains the (empirical) physics of hole-hole collisions, and lowers the threshold

since 2pr < 1. Of course, such self-binding effects might also be incorporated into the clump theory. For

example, a numerical solution of the clump equations shows that the threshold (33) occurs at /2v/vi s 2.5,

whereas the simulation threshold is at *dvi P 1.5. However, if the right hand side of (33) is replaced with

-2r = -2/3, the observed threshold is predicted.5'6 The decay rate of (8) is apparently more accurate than

that given by the operator vB/x._ - D.8 2 /Ov2_ of the renormalized clump equation (12). It is interesting

to note that in (12), only the D0 2 /v2_ term arises from the renormalization. The rest of the terms in the

equation, including the source term S,, are lower order and occur in the standard two point hierarchy equation.

Therefore, the source term Sa rests on a much firmer analytic footing than does the D. term.
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The source term, (14), contains two terms. The first term describes the random rearrangement of the

average phase space density gradient and was included in the early versions of the clump theory. The second

term describes a coherent rearrangement due to the drag force on an existing fluctuation. Both terms rely on

the fact that if the phase space density f of a fluctuation stays constant for a time re, then as the fluctuation

moves in phase space to a region of different < f >, the fluctuation 6f = f- < f > will change. The

growth of a single isolated hole is due to the second term. For an isolated hole, r,/r >> 1, the drag force is

due to reflected particles which follow coherent orbits. In the clump case (p s 1/2) the orbits are stochastic

and since r/r < 1, one can compute the drag using standard test particle methods and orbit perturbation

theory. For a given 0 ,, the drag force is of similar magnitude for the two cases. For example, for a hole potential

= ,ezp(-k 2X 2), the perturbation theory drag is ir/4 times the right hand side of(5).

The diffusive source term does not occur in (21) or (9) because we considered only one hole of one species.

However, it is easy to see its origin in a multi-hole problem. For example, a hole of species 8 will reflect

particles of species a, creating a perturbation j f o Avf,, in a time 7, os AZ/Ava. These fluctuations will

tend to organize into holes. h'lerefore, (21) will acquire an additional term on the right hand side equal to

p /0 y ) -2
(f/-t) < F > (A vf') 2 /r0  2D(")(f,.) 2 which is the first term in (14).

In calculating the growth rate of isolated holes (p << 0) one can ignore the fact that holes (or clumps)

are produced in the reflected species since they move off to other regions of phase space and do not interact

with the original hole. However, as p -+ 1/2, one cannot in general, ignore the interaction between the two

types of holes, i.e., one must include the first source term as well as collisions between different types of holes.

These features are, of course, included in the clump theory which is the appropriate picture when p -+ 1/2. It is

interesting to see how the growth rate (9) approaches the clump theory result. One can compute D~a) from (23)

using the drag force from (5). The result is

D(a) 4  ~f<Avf > /A (34)

-2 -2
where < fbAvp >= 2ppfbAvo. We may use (34) to generalize (9) to include the diffusive source term

by multiplying both sides of (9) by ~f, adding 2Dj")(f' 0)2 to the right hand side, multiplying both sides by

Ava = Az/re, and then averaging over z. We obtain
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1 1-2 -2
(-'ra + 2 .#+ 2paT) <?AV,, >- 'Fa < f Auo > (35)

When 2pr -+ 1, this equation is the generalization of (32) to include finite -yr, since <2ay

replaced with d. This replacement follows from (25) which shows the two are proportional as far as the a and #

subscripts are concerned. In the clump theory (2par = 1), rj-I is the damping rate due to collisions with both

species of clumps since a (D")+ D"))/Avo. However, in the hole model an additional term,

Ave >= -2pr < f Avo > (36)

due to collisions between electron and ion holes, would occur on the right hand side of (35). An equation of

the form (35) (with p. = 1/2) was first obtained and discussed by Tetreault,6 who solved the clump equations

to first order in -yr. In essence he found that the right hand side of (22) acquires a factor (1 + -yr)-' which

causes the left hand side of (32) to become 2(1 + -r 0 )d0 . Equation (32) is then identical to (35) if 2pr -+ 1,

F --+ Fc and < f:Av. >-+ d.

Equation (35) can be readily solved for -y. Generally speaking, since re/r R s/m,/mi << 1, one

finds that if the threshold (11) is exceeded, then -y - r;-I and the growth is too rapid for the ions to respond.

One can then neglect the diffusive source term and -y is given by (9) using F or F. If the threshold (11) is

not exceeded but (33) is, then clearly ion clumps and the diffusive source term play an important role, and

For p << 1/2 the clump picture is replaced with one of isolated holes and the additional term (36)

appears on the right hand side of (35). In this case the solution of (35) shows that -y is approximately given by

-2(9). No additional instability region (for < f0 Av >> 0), involving electron-ion hole coupling analogous to

(33), appears.

Particle Discreteness - Thermal Fluctuations

The role of particle discreteness, thermal fluctuations, and collisions is difficult to include in the hole model

in a rigorous way, but it appears possible to estimate some of the effects. Collisional damping of holes (or

clumps) will occur because the electric fields of discrete particles will tear the holes apart just as do hole-hole

collisions. One can estimate this effect by computing the D_ due to particle discreteness. One can calculate D_
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using the standard methods for obtaining the Lenard-Balescu collision integral. Assuming that X2 F X2 and

q, = -qi, we find

DW)(Ax) = 2w4 X2 n--h(Ax/X)[f&(u) + f02(u)] (37)

whereh(z) ; z2(1.57 - lnIzI) for z << I and h(z) I I for z >> 1.

The damping rate of #,,, -- yd, due to discrete particle (thermal) fluctuations for a hole of species a and

dimensions Ax and Av is

- = r.Dca)(Az)/Av 2  (38)

where r, is an empirical factor of, order unity, analagous to that in (8). Using (37) for Ax > X, (38) can be

written

-1d = R2 rCW'[f(u) +f 0 (u)] (39)

Obviously, a hole will grow only if - + -yd > 0. This criterion can be made more illuminating by expressing

it in terms of the amplitudes of the hole fluctuation and the mean square thermal fluctuation. If particles are

randomly located in phase space, then the probability of finding a fluctuation 6N = N- < N > of the

number of particles in a small (Av << v) phase space area AvAx is

P(6N) = (2x < N >)-y2eXp(- (6N)2/ < N >) (40)

where < N >= nAxAvf0 0 (v). If Ff is the fluctuation of the distribution function averaged over a phase

space cell Ax, Av, then the mean square thermal fluctuation is

2 < 6N 2 > _ f(4(u)
< f >= (nAxAv)2 nAzAv
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Following (7), we set

a(u) = -yAz/Av (42)

and use (39), (3), and (41) to write the criterion -y + -ya > 0 as

> 22, /(43)
a 6g(Az/X)

The last factor has a minimum at Az/ & 2.8 where it is equal to 1.43. Equation (43) states that a hole will

grow only if its amplitude, -f, exceeds V2.86rc/a times the root mean square thermal fluctuation.

The criterion has important implications regarding the spontaneous creation of growing holes from ther-

mal fluctuations. If V2.86rc/a > I only a fluctuation, -, greater than the root mean square thermal

fluctuation can satisfy (43). We can use (40) to estimate the probability of such a fluctuation. Consider a plasma

of length L, whose phase space is divided into cells Ax by Av. Further assume that the fluctuation in each

cell is independent of other cells and that particles are randomly redistributed among cells during every time

interval Az/Av. Then, in a time t, the number of independent opportunities for a hole to be created in the

velocity interval du is, approximately,

L dutAv du
a, , , =,-(L/XD)(ND/X'/V'(X )24

If the f's of spontaneously created holes have a gaussian distribution about a mean square value < f>;
then the probability of creating a hole satisfying (43) during each "opportunity" is

PI(y) = / dze~ 2  (45)

where

2 _foe(u) + f(u) 1.43r (46)
foa(U) a(u)
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Of course, using (40) for the probabilty of creating a hole is an approximation since particle orbits are not

random and uncorrelated in the vicinity of a hole. Combining (44) and (45), the probability for the spontaneous

creation of a growing hole in a time t is

Jd t( )( U (47)

We emphasize that, at best, (47) can be considered a very rough estimate only. However, it is consistent with the

simulation of Ref. 2, where turbulent fluctuations were observed to grow from discrete particle noise. For the

parameters of the simulation of Refs. 3, (47) is of order one. or greater for vD/vi > 1.5.

Organization of Paper

Although in this introduction we have discussed holes in the broader context of turbulence theory, the

remaining portion of the paper is concerned with the calculation of the growth of a single isolated hole. The es-

sential features of the calculation are contained in Section II through V, while most of the lengthy and detailed

orbit -alculations are deferred to Sections VI through IX. In principle, the paper can be understood on three

levels by reading only Section 1, or Section I-V or the entire paper.
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11. MODEL OF A GROWING HOLE

The two equations that describe a growing hole are the time dependent Vlasov equation and Poisson's

equation. We consider first the solution of the Vlasov equation in a given model potential without regard

to whether the solution satisfies Poisson's equation which is discussed in the next Section. We consider the

following model potential, which we later justify, for a slowly growing and accelerating hole.

4(z, t) = (1 + yt)#(Z - tit2/2) (48)

The hole growth rate, -y, the hole acceleration, u, and the velocity derivative of the average distribution

function of the untrapped species, f . are all considered to be small quantities. The "untrapped species" are the

electrons for an ion hole and the ions for an electron hole. We characterize the smallness by the parameter e.

For an ion hole

f ~ YT - (ti/Avi)-r ~ w,.f' (49)

Note that -y and ti are the same order in e although ti is smaller in magnitude by a factor Av - V/0. We

shall obtain the solution to first order in e. We consider the case of an ion hole, but the arguments for an

electron hole are completely analogous. Since we only require a solution accurate to first order in e, we can

understand the result from a physical point of view by considering separately holes with -y 74 0, ti = 0; and

with -y = 0, ti 34 0. The -y = t = 0 case is the steady state BGK problem discussed in Ref. 1 with the ion

orbits shown in Fig. 2 of Ref. 1.

For the cases of - 3/ 0 or i 74 0, we show in Sections VI-VIII that the orbit problem for untrapped

particles of both species naturally divides into two velocity regions. For u = 0, the region jv| < Av, is a

"resonant layer" where the orbits cannot be expanded in integral powers of the potential, 0, and the region

Iv| >> Av is a "non resonant" region where the orbits can be expanded and the standard perturbative results

are obtained. The 0" expansion is not to be confused with the e" expansion.

Contributions to velocity integrals, such as charge density, mass, momentum and energy, from the

resonant layer involve the local value, f4,(0); whereas contributions from the non resonant region enter
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through the dielectric function and involve velocity integrals of f,0(v). Since e for the un-

trapped species, we need consider only the ti = -y = 0 for this species in the resonant layer. This case is shown

in Fig. 4 where electron phase space streams of width Ave moving in the +v directions are reflected by the

negatively charged ion hole.

For the trapped species the resonant layer is separated from the trapped particles by thin boundary layers

of width 6v -yAz and tiAz/Av in which the f expansion is not valid. Fortunately, this layer makes a

contribution to velocity integrals of order e2 and can be neglected.

Ion orbits for the case -y > 0, i = 0 are shown in Fig. 5. Phase space density streams of width 5v .- -yAz

are trapped by the growing potential as they flow in from positive and negative v. As a consequence, streams of

passing ions of width Av, moving in both directions, are slowed down by bv to fill the void left by the trapped

ions which are, in turn, filling the growing hole area.

Ion orbits for the case i < 0, -y = 0 are shown in Fig. 6. For this case there is a plus-minus asymmetry.

The stream of width Av passing in the positive direction is accelerated by an amount6v % tiAx/Av while the

negativ,7! flowing stream is slowed down by the same amount, i.e., both streams are accelerated in the positive

direction. No trapping or untrapping occurs. Since the potential in the accelerated differs frame from that in an

inertial frame only by the small amount mjtiz/qj, the trapped ion distribution function ft in the frame of the

hole is not significantly changed by ti. However, since f remains constant as u decreases, the difference between

ft and the local value of fe(u), the hole depth -f, will increase if f'g(u) < 0.

Now let us combine the two pictures. If Av increases as u decreases, then, for u > 0, the value of the

phase space density, f0i(u), being trapped at each instant of time will increase with time so that ft will be built

up of concentric rings as each new layer of f01(u) is added. To zero order in -y and ti, each ring has the shape

of a trapped particle orbit, i.e., a line of constant ion energy. Each ring corresponds to a particular value of

f. As the hole grows and #(x, t) increases, the rings will change shape, but if yr << 1 the orbits will not

cross and there will be no mixing. Therefore, since phase space density is incompressible, the area inside a ring

corresponding to a particular ft will not change with time. This means that ft is a function of the area, a, only!

Of course, a, in turn, is a function ofE and the spatial structure of O(z, t), so that we can write ft = f(a(E, t)).

The trapped ion distribution function develops slowly on a long time scale -f- and must be determined

self-consistently with Poisson's equation. On the other hand the distribution function for passing ions (and for

passing and reflected electrons) in the region of the hole (x << Az/-yt) follows O(x, t) adiabatically since its
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response time is r << -f 1 .

In Sections VI, VII. and VIll we calculate exactly to first order in f, the charge density, the rate of change

of hole mass M, momentum P = Mu, and energy, T = Mu 2/2 + T,. We list here some of the principal

results which are necessary to calculate and understand the hole growth rate. Although the actual calculations

are complicated, it is not difficult to motivate the results by simple intuitive arguments. We use the same

definitions of M, P, and T as in Ref. 1.

(M, P, T) = n / dxJ dvf(X, v){m, my, [mv 2 + q#(x)]/2} (50)

The quantities n, m, q refer to the trapped species, and

f(x, v) - f" (U) (51)

inside the trapped region of phase space, m(v - u)2 /2 + qo(z) < 0, and = 0 outside. The rates of change

of hole mass, momentum and energy are

dM /
S2tif'(u)nimj T dz(-2q i(z)/mj)'/ 2  (52)

Mt! = -nem,(u)(2q,#,/me) 2 - 7n mf,1 (u) f dz(-2qjO(z)/mj) 3 /2  (53)

(2/3)tin mjf' j(u) dx(-2q4(z)/mj) 3/ 2  (54)

These formulas can be derived qualitatively as follows. The right hand side of (52) follows from the fact

that the hole depth, -, increases at the rate tif, and that the hole mass is M .t fAzAvjnjmj where

Ava P 2q,#/m. The first term on the right hand side of (53) is the rate of momentum loss from the reflected

electrons. When electrons moving in a stream of width Ave are reflected, they lose momentum at the rate

jmemevif,,(u + Ave/2). When the electrons at -Ave/2 are added, we obtain memedvf,e, which is the
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first term in (53). The second term is the momentum loss of the passing ions. The calculation is similar to the

electron case except that each ion in a stream of width Avi suffers a net velocity change of -- yAxv/vl which

when summed over the streams at u+Av/2 gives a total rate of momentum change of -- jmjmjf'oAv Ax,

which is the second term in (53). The right hand side of (54) is the rate of kinetic energy loss of passing ions.

The calculation is similar to the ones for momentum except that each passing ion in a stream of width Avi at

v = u+Avi/2 undergoes a kinetic energy change of bvAv = t!Ax. The corresponding total rate of change

is tnim ifiAvAx, which is essentially the right hand side of(54). According to (54), in the rest frame of the

hole the increased self-energy of a hole, including the electric field energy, comes from the loss in kinetic energy

of the passing ions.
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IIl. SOLUTION OF THE VLASOV AND POISSON EQUATIONS FOR A TIME

DEPENDENT HOLE

The objective is to obtain the hole solution to first order e. To this end, the potential O(x) in (48) can be

expanded as

o(x) = 0(0)(X) + 0()(X) (55)

where O() is of order (P. Given the potential (48), one can expand in powers of f, the trapped and untrapped

distributions functions which solve the Vlasov equation for each species.

[ x+ o ]f(, V, t) = 0

Through first order in e, we obtain

f(X, v t) = f(0)[<(x, t)] + f(')(x, V, t)

(56)

(57)

where P() is the usual BGK function of the particle energy, mv2 /2 + q4b(x, t), but contains the instantaneous

potential. More precisely

and

tvj - m ax ) fO)[(x, t)J = 0

O )[<,( t)]+ [V , - q aO (0)(X) 0.f()[4(x ~j [v --- ]f()(X Vt)= 0
at Ox m Ox av '

(58)

(59)

(60)

The charge density

p()= E nq df(x,v)
a=e t
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can likewise be expanded in powers ofe

p(X) = p(0)(X) + p(')(z)

p(0)(z) + p( )(x) = nq f dvf(0)[<(X, t)]

(61)

(62)

(63)

(64)

()(x)= nq dvf()(z,v,t)
a

We show in Section VII and VIII that for a time independent potential, O(z) = #(0) + 0), the solution of the

Vlasov equation for an ion hole leads to a charge density

nq dvPf()[O(x)} = (47 2)- 1q4(z) + (q(z)) + -f'f,(u)F(O(x))ne
f X

(65)

The first term is the usual Debye shielding effect. The second term describes the trapped ions and is a function

of 4(x). The third term is due to reflected electrons and comes from the second term of (198), where the

velocity integral has been denoted by F[#(z)]. The third term is not a function of O(x) because of the factor

jzj/z. Using (62) and (65), we can set, at t = 0,

p(O) = (4wX2 )'-1( 0 )(z) + X(#( 0)(z)) (66)

and

P(I) = 40()[(47X2)-I + (o( (z))/O 4"(r)1

|z|
+nqe, f'oe(u)F[0(0)(x)I

X

23

(67)

P () = Pga) + p )



If the Vlasov equation is solved with the time dependent potential (48) (i.e., -yt and it 2 /2 now included),

the additional terms f(I) and p' )(z) given by (59) and (63) must now be included. In general, p( )(x) will not be-

a function ofO(x), although it is, of course, a functional of O(z).

The functions O(z) and p(z) are determined by Poisson's equation which requires that

- = 4r P(0) (68)

ax2

a

The quantities 0(o) and p(() are the potential and charge density for (a steady state, unaccelerated) BGK mode,

and are, therefore, relatively easy to obtain. Given -y, ii, and (0), p( ) can also be readily obtained. However,

k(') and p O) must be obtained by solving (69) and the Vlasov equation simultaneously. This is difficult to do

since p(') is not a function O(x). Fortunately, however, one does not need (0) to calculate -y and 4 to lowest

order in e. The reason for this is that y and ii are determined by the rate of change of particle momentum. We

show in Section IX, that 001) makes a contribution of order E2 to the total rate of momentum change whereas

Section VII and Vill show that the -yt and ist2 /2 terms in 0(O) each separately make a contribution of order e.

Therefore, we can neglect #(l)(x) in the calculation of - and it

Consider, however, the solution with 00) retained. Once the ion and electron distribution functions have

been obtained for the model potential (48), the resulting charge densities can be substituted into Poisson's

equation to obtain

-4( =t) 4=rp(x) 
(70)

Both O(x) and p(x) are functions of x. To solve (70), it is conventional to invert #(x) as x(o) and write the

charge density as a function of 4, p(#). However, for a time dependent hole p(#) will, in general, be a double

valued function of 0 since x(#) is double valued. Following the usual procedure we define the "potential"

V(O) = 87r d.'p(o') (71)
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so that (70) becomes

( 0)2 + V(O) = 0 (72)

whose solution is

z =+ d4' (73)

We denote the potential O(z) at z = ±o0 and x = -oo by #+ and 0- respectively. Since p(#) is, in

general, double valued, so is V(#). This feature plays an important role in obtaining a solution. Consider first

the conventional 1GK case where the hole is not time dependent and p() = 0. Then V(O) is single valued

[and has the form of curve (b) in Figure 1 of Ref. 11. As shown in Ref. (1), taking #_ = 0 leads to a localized

hole solution, i.e., 0 -+ 0 as |x| -+ oo. As z --+ ±oo, # -+ . and in this ' = 0 case, 0+ = 0- = 0 and

(x) =0(-x). The criteria for such localized solution is that the maxima, OV(#)/9O = 8ir(pe + pi) = 0,

occur at the same value of# (0 in this case) for which V(O) = 0.

Now consider the case in which the potential changes slowly in time, i.e., -y and ih are nonzero. In this case

P) is non zero and a double valued function of # with the branches pl(#) and p2(#). As 0 goes from 0- to

#,, V(O) is given by

VI(4) = 87r d'pP (0') (74)

As q returns from 0,, to 0+, V(#) is given by

V2 (0) = 8w j d5'p(O') + 8 f do' p2(') (75)

According to (71), (70), and (65)

6(701 O4V - O22 4
=- - 4rp = 7-2 A 4 p( 0) (76)
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where p(I) denotes the last term in (65). If'o/oz -+ 0 and ~ -+ 0 as / -+oo, then # and pu() approach

constants in z, which we denote 0L and p and according to (76), #i = 4irp($\ 2 . From (74) it is clear that

the local solution condition is satisfied at # = 0-, i.e., VI(#_) = 8V1(#_)/aO- = 0. At # = #+, it is again

obvious thato(V2 #+)/+ = 0, however, the requirement that V2(#+) = 0 is not automatically satisfied. It is

0 = = 87r d#'pj(#') + 87r d'p2(4') (77)

Integrating over z rather than 4', this can be written

L 0dz'oz 4 ' [pe(z) + pi(z)] = 0 (78)

This equation simply states that the force on the electrons plus the force on the ions is zero, i.e., momentum is

conserved. Since 0 (z) is the BGK solution it is even in x and may be assumed to vanish at JzI = 00. If #(z) is

odd, it is due to 0)(x) and 4(z) at tzi = 0o is given by # )(±oo).

As mentioned earlier, we show in Section IX, that 0) makes a contribution to the rate of momentum

change that is of order f2 whereas (1 + -yt)0(0)(z - itt2/2) makes a contribution of order e. Therefore, in the

next Section, where we compute the structure of a growing and accelerating hole, we neglect P) and 4(l). In

other words, for -yr << 1, the fact that the hole is accelerating and growing has only a negligible effect on the

solution so long as a solution exists, which is guaranteed by (78).
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IV. THE TRAPPED PARTICLE DISTRIBUTION FUNCTION

In Section II we showed that the trapped particle distribution, fi(a), is a function only of the area a inside

a trapped particle orbit of energy E. The area is a function of E and the minimum hole potential 40. For an ion

hole

a(E, ,) = 4 f dx'[(2/mi)(E - q0('))}/ (79)

where

E = miv 2/2+ qiO(z)

q0(zE] = E

We introduce a dimensionless distance, potential, and energy

z = z/N

(80)

(81)

(82)

c(z) = ()/0 (83)

w = E(qio,)~1 (84)

Note that 0 < c < 1, q#ok < 1 for an ion hole and 0 < w < 1 for trapped ions. 'The area (79), can now be

written

a(E, #)= 4X(-2qiq0/mi)I/2 dz/ c(z)-w (85)

where
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c(zw) = W (86)

The hole depth, -, is given by

f ft(a) - foi(u) (87)

where u is the hole velocity. At the hole boundary, E = 0 and f = 0. For a given 0,, ft 3 0 for 0 < a <

a(0, 0) and ft = 0 for a > a(0, ). For two different values of 0,, the corresponding functions ft(a) must

be equal in the common region in which both are nonzero, i.e., for 0 < a < a(0, 0'), where 0' is the smaller

of the two potentials in absolute value. This self-similar property determines the functional form fi(a). This

form can be anticipated by the following simple argument. Consider an ion hole with u > 0, foi(u) < 0,

f' (u) > 0. As the hole velocity decreases, the depth, -, increases. We assume, to be confirmed by the

solution, that the spatial length of the hole, Ax, stays fixed near its most probable value1 , a few times X.

According to (3), a change in the hole depth, -6?, and a change in the hole velocity width, 6Av, are related by

5f 6 V ~ Sa 2X--2. Since the change in hole area is 6a - Av\, we obtain

(4f/18a)AX = -wp 3 (88)

where k, is a positive eigenvalue to be determined by the actual solution. The solution of (88) which vanishes at

the hole boundary E = 0 is

.(E) = k 2X-[a(0) - a(E) (89)

We will show that this form of f(a) has the proper self-similar property.

The function a(E) and the constant k, are determined by requiring that Poisson's equation be satisfied. As

discussed in Section III, we use the lowest order (-y = = = 0) charge densities. According to (65) or

(239), to zero order in e, the charge density is given by a hole portion and a shielding portion just as in Ref. 1.
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Using

(90)- X--24() + 4rniq/ dvf

dv (2mi(E - giO(x)]--12dE, (91)

(90) becomes

-92 _ (x) + 8rnqj 0 dE ~(E)
9Z2 fO(x) V/2mi(E - qio(z))

Using (89) and the dimensionless variables (82), (83), and (84), this can be written

2c(z) -c(z) + 8ko dwA(w) = 0
c\z) -c(z)-w

where

(92)

(93)

(94)A(w) = O dzv/-5 - f dz'/c(z') -- w

The potential amplitude 0, and the spatial scale X do not occur in (93) and (94). Therefore, our choice (89) for

7(a) has the required self-similar properties discussed earlier.

Following the usual procedure, we define a "potential"

V(c) = C2 - 16k dc/ dw A(w)
fo f V c' -Iw

(95)

Using V(c), we can write (93) as

(96)[(a ))2 - V(c(z))] = 0

which can be solved immediately to give
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z(c) = f dc'[V(c')--1/2 (97)

By reversing the order of integration, i.e.,

/ c C' 
C C

dc' dw = fdwf de' (98)

Equation (95) for V(c) can be written

V(c) = C2 - 32ko dwv/c - wA(w) (99)

Using the differential form of (97) for z > 0, dz = -dc/VI-V(c), we can replace z integrals with c integrals

V(c) = c2 - 32k, f dwVIc - -w dc' - f dc' V(100

Using

fdwf dc' = j dc'f dw + dc' dw (101)

we can reverse the order of integration in the second integral of (100). The two w integrals can then be readily

evaluated to give

V(c) = c2 + kO dc'K(c, c')[V(c')]-1/ 2  (102)

where

K(c, c') = c + 8(c + c)/c + 2(c - c')2In( - ?)4 (103)3 (c - c')2

Equation (102) determines V(c) and the cigenvalue k0. We have solved it numerically by successive iteration.

We found that k, = 0.0216. We have used the solution V(c) in (97) to obtain z(0/ 0 ) which is plotted in Fig. 7.
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We have also evaluated numerically the following quantities

f dzc(z) = 7.00 (104)

dzc(z)1/ 2 = 9.50 (105)

f dzc(z)/2 = 5.76 (106)

These integrals occur in the formula (110) for the hole growth rate. The first integral is related to the total hole

charge, Q, (or mass M) which can be obtained by integrating (90) over z. Since the last term in (90) is 47r times

the hole charge density, we obtain

Q = 1 J dz4(z) = dzc(z) (107)

which holds for any shape hole

By writing the integral (104) as '~-' f dz(x)/4(0), it is apparent that it is approximately equal to Az/X

where Az is the length of the hole. From (104) we find that Az/N X 7. The hole parameters computed

here are consistent with the prediction of the rectangle approximation of Ref. 1. If we compute the maxi-

mum hole depth from (87) using a(0) = AzAv = ThAv, we find f A Av/(7w2X2) whereas (3) gives

f /
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V. HOLE GROWTH RATE

The hole growth rate, y, and acceleration, ti, are determined by (52) and (53) together with (107) for the

hole mass. Since M - 0,, -y = (d0,b/dt)#;-7 = (dM/dt)M- . In terms of z and c(z) given by (82) and (83),

(52) can be written

M =-yM= 2tioinmig )1/ " dzc(z)' / 2

Mt f-00JC
(108)

The hole acceleration ti is obtained from momentum conservation determined from (53)

Mu - 'nimif 0 N (s )3/2 dzc(z)3 / 2 2 4.2,r-, = 0 (109)

Equations (108) and (109) can be solved together with Eqn. (107) for the hole mass to obtain the ion hole

growth rate, -/. After some algebra we obtain

fe(U)fi(U)Ww 2 .X48 f_00 dzc(z)1/ 2

[f_ dzc(z)]2 + ( 32U A48f_ dzc(z)'/2 f_ dzc(z) 3/ 2 (110)

The shielding distance N(u) is given by (164) and (165). If f, is a shifted Maxwellian:

fo(v) = x-1/ 2 -1ezp[-(V _ VDa) 2 /V2 (111)

then one can show that

X-2 = ()XDeDiY'G (112)

G = b-'G(e) + bG(zi) (113)
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where Da = 2w) 0/vi, b2 = 2 ZTb/Te, Z = q1/q, T- = m-va/2, and

G(xa) 1 - 2Zo dy exp(y2 - z ) (114)

X. = (u - VD)/V. (115)

Using (111)-(113) and (104)-(106) in (110), and the ion hole trapping width

Avgi = V/-2qjO./mi (116)

we obtain for an ion hole

- A i AV12(T'/T (117)
wpi vi

where

(19)V2f' (U)V2f,()
49G2 + V(f'o )2Z(Te/Ti)(5.76)(19)

Written in terms of the ion trapping time rei = Az/(2Av2 ), the growth rate is

-ri = Axriz"/4/(2X) s 3.5Z'/ 4r' (119)

These growth rate formulae are for an ion hole, but they can be readily converted to apply to electron holes if

the subscripts i and e are switched.

We have evaluated (117) for electron holes for the simulation case of mi/me = 4 and equal electron

and ion temperature, Te = Ti. For each vD one can compute -y as a function u. A typical result is shown

in Fig. 1 for vD = 2v2. For each vo there is a maximum -y. This value as a function of vD is plotted in

Fig. 2. For evaluating (117) we have used the value V/Avti/v, = 0.2 which is consistent with the widths

of holes observed in the simulation 4 We used -y for electron holes since (116) and (117) predict that they grow
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approximately (m 1/me)" 2 times faster than ion holes. The agreement between the theoretical and simulation

growth rates is discussed in Section I.

According to the discussion following (107), the hole length Ax is approximately TX. Relative to the

Debye length, the predicted half width is then Az/(2hD,) = 3 .5(P/NDe). The quantity X/XDe can be obtained

from (112) and for values of u corresponding to the maximum -y, we find that 3.1 < Ax/(2NI)e) < 5.6 for

1.5 < vD/vi < 3.5, which is consistent with the value of AZ/(2XDe) - 4 observed in the simulation.

For v'2-vD/vi > 2.5, the assumptions underlying (117) begin to break down. For one thing, -Ire is no

longer small. Furthermore, the neglect of the third term in (65), the reflected particle term, in computing the

hole structure is valid only if w X2f'. << 1. The main problem is that (118) does not include the resonant

structure of Ie-2, as does (29), when vD approaches the linear instability value.
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VI. PARTICLE ORBITS IN THE MODEL POTENTIAL

In this Section and the following two, we derive in detail the expressions (65) for charge density and (52),

(53), and (54) for the rate of change of hole mass, momentum and energy. These formulae can be obtained by

solving the Vlasov equation (56), in the model potential (48).

As an alternative to solving the Vlasov equation, one can obtain the particle orbits. There are various

classes of orbits. For example. for an ion hole there are trapped ions, passing ions, reflected electrons and

passing electrons. For an electron hole the roles of electrons and ions are switched, so it suffices to calculate

one case. We shall arbitrarily choose an ion hole. Since the origin in time is arbitrary, we shall calculate the

distribution function at t = 0. It is given by f(x, v, 0) = f(x(t), v(t), t), where x(t) and v(t) are the orbits

whose values are x and v at t = 0. Also at t = 0, the center of the hole is assumed to be located at x = 0

and to have zero velocity (u = 0). As discussed earlier, we wish to compute the orbits to first order in -1 and

ti. Thus, we solve two separate orbit problems using the potential (48)-one with -y = 0, ti 4 0, and one

with -y = 0, zi = 0. To obtain f(x, v, 0) for passing and reflected particles, we proceed as follows. For given

initial values x and v, we integrate back in time to obtain x(t) and v(t) for t < 0. We assume that the hole

potential is localized in space between Z and :2, i.e., O(x) 3 0 only for x, < x < x2 and Ax = X2 - x1.

At t = -oo the particles have not been scattered by the hole potential and they have a spatially homogeneous

distribution finction f0(v). As time evolves from t = -oo, a particle, whose coordinates are x and v at t = 0,

first encounters the potential at : = :0 = z or e at t = -r,. Therefore, we can set

A v) V, 0) = f.[v(-r)] (120)

Integrating further back in time, i.e., taking a larger value of r,, will not change (120) since v(-r) =

v(-r - At) for At > 0. If we put

v(-r.) = v + 5v(x, v) (121)

then (120) can be written

Ofo(v)
f(, , 0) = fo(v)+ 64 (122)
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provided 6v/v << 1.

We consider first the case ti = 0. This problem can be solved exactly (to all orders in ti) by transforming

to the accelerated frame of the hole. In the inertial frame the orbit equation is

d 2
m tzx(t) = F[z(t) - Zh(t)] (123)

where F(x) = -q(/Ox)4(z) is the force and xh(t) = tit 2/2 is the orbit of the hole in the inertial frame. The

particle orbit xz(t) in the accelerated (hole) frame is

Xa(t) = X(t) - Xh(t) (124)

and the equation of motion is

m za(t) = FZ(t)} -m = .(t){q#[z(t)j + mtix.(t)} (125)

In the accelerated frame, we have a simple constant (in time) potential problem with the new potential 0.(z) =

O(x) + mtix/q. In the accelerated frame the "energy"

S dZ(t)~ 2 ~ 16
Ea = m( di 32+ qO.[x.(t)] (126)

is a constant of the motion. In the accelerated frame, the trapped ions have a steady state distribution function

which can be written as some function (say Aa)) of E. Since zh(t) = (d/dt)zh(t) = 0 at t = 0, the trapped

ion distribution function in the lab frame at t = 0 is

fg(x, V, 0) = fa)(mv 2/2 + q#(z) + mtiz) (127)

For passing or reflected particles, v(-r,) can be calculated by using conservation of energy (126) in the ac-

celerated frame to obtain the velocity in the accelerated frame and then using (124) to convert to the inertial

frame. We find
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at) dz (t) 2Vad) t = +{v2 + -q[0(Z) - 0a(X.(t))I}"/ 2  (128)

v(-r) = V(-o) + tir. (129)

r0 = dx'{V2 + q(x) - #(2')-1/2 (130)

where z = x,(-r) and is equal to either z or z2. If z = z or z2 (as required in Sections VII and VIII) then

0.(x) - #0(Z) = mti(x - zx,)/q. We can expand (128) and (130) to first order in ti to obtain

6v(xi, v) = v(-r,) - v = +v - v - ti dxz[(v 2 - 2q#(z)m)-' / 2 - vI-1] (131)

For passing ions and electrons the +v is to be used and z, = z2. For reflected electrons, -v is to be used,

2; = z1, and the z integral is to be taken from xi, to the reflection point (where the argument of the square root

vanishes) and then back to zi.

Unlike the accelerating potential, the orbit problem in a time changing potential cannot, in general, be

solved exactly analytically. One exception, however, is a potential square well, i.e., 4 = (1 + -yt)O', for

z < x < x2 and 4 = 0 otherwise. In this case (m/2q)[v(-r,)2 _ V2] is just the change in well potential,

-- yr4,, that occurs during the transit time r, = Az(v 2 - 294,/m)-1/2.

V(-r-) = [v2 _ yAx2qo, _I 1/2 (132)
m(v2 - 2qo./m)1/2

Expanding to first order in -y, we obtain for passing particles v < 0 at z

5v(z1 , v) = - yAzq(133)
mvv2 - 2qco,/m

We now obtain the orbits to first order in -y for arbitrary potential shape 4(z) by a direct expansion of
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(48). This procedure will also produce the result (131) for the ti component of the orbit and (133) for the -y

component when the potential is a square well. We expand the potential as

<b(z, t) = 4'(z, 0) + 4(X, O)t + 4(z, O)t 2/2 (134)

where 4(x, 0) = oV(z, t)/t at t = 0 and 4(z, 0) = 24(z, t)/8t 2 at t = 0. For the model potential (48)

$(z, 0) = -YO(z) (135)

4(z, 0) = 600(z)/Oz (136)

The orbit equation is

6d1z(t) = - a0 (X(t), 0d-t2 c-- (t) '
(137)

Using (134) and multiplying by v(t) = dz(t)/dt, (137) becomes

m v(t)2 = -q dj(z(t), 0) - qt d(z(t), 0) - qt2 4(z(t), 0) (138)

This equation can be integrated from 0 to r, with z(O) = z and v(0) = v. The last two terms on the right hand

side can subsequently be partially integrated bearing in mind that

<b(z,, 0) =4(z0,) = 0 (139)

The result is

[2(-ro) 2 - V21 + 4'(z0, 0) - <(X, 0) = dt((t), 0) (140)
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+ dtt4(z(t), 0)

This equation can be readily solved to lowest order in -y and ti by neglecting the <1 and 4 terms. The solution,

written in terms of t and x' instead of -r and z, is

dt = +{v 2 + 2q[o(x) - #(X')]/M}-1/2dx' (141)

This result can be used in (140) to convert the t integrals into z' integrals. Denoting the right hand side of (140)

by E, and using (135) and (136) we have

E = y 'q(d')
(r V2 + 2q[O~r) - q(,)/M}'/2

"dZ , c5#(4')/Ox' fdx"
{i dx' [ I"

Jr f{V2 + 2q[40(x) - O(X')I ) 1/ 2 f {V2 +j- 2q[o(x) - e)/12
(142)

The second term can be partially integrated to give

dx'[1 - (v2 + 2qo(x)/m)1/ 2{v 2 - 2q[#(x) - 0(_')/m}-1/2j
q (

Now we solve (140) for V(-r,,)2, take the square root, and expand to first order in E. We find

8v(X, v) = V(-r) - v = +(v 2 + 2q#(x)/m)1/ 2 - v

(143)

(144)

±(qE/m)(v2 + 2qO(x)/m)~'/ 2

If we set x = z1, then 4(xi) = 0, and we have for v < 0
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6v(XJv) = +V-V- dx(V2 - 2q ||M)1/2 -f dz[(v 2-2qO(z)/m)-1/ 2 -|vjMj (145)

Note that x, is the exit point from the non-zero potential region as one integrates back along the orbit. If

reversing the orbit causes the particle to move away from the potential, then x. = z and the integrals are zero.

Thus, 6v(xi, v) = 0 for v > 0 and 5v(x2, v) = 0 for v < 0. The first term (+v - v) is 0 for passing particles

and -2v for reflected particles. For passing particles, 6v(xi, v) for v < 0 and 6v(x2, v) for v > 0 is given by

(145) with x, = x2. For reflected particles, i.e., those for which mv2 /2 < qO,, (electrons for an ion hole, ions

for an electron hole), the z integrals in (145) are path integrals to the reflection point z, and back (see Section

Vill). As expected, the third term of (145) agrees with (133) when the potential is a square well, and the last

term of (145) agrees with (131).

From (128) it is clear that the t! expansion does not converge if v2 < 2tiAx, and from (132) it follows that

the -y expansion will not converge if v 2 < 2yAxq-Om-'(v 2 - 2qO,/m)1/ 2 . Using (116) for the trapping

width Avj and (49) for ti, both of these expansions can be shown to diverge in a small velocity boundary layer

of width 6(1)v - Avt./ ir. Clearly, our calculations will not be very accurate unless yrt << 1.

From an examination of the formula (144) for bv(x, v) or by intuitive consideration of the orbits as

depicted in Figs. 5 and 6, one can determine the following parity of 6v(x, v). For the portion proportional to -y,

6v(x, v) = -6v(-z, -v) and for the portion proportional to ti, 6v(z, v) = 6v(-x, -v). The distribution

function is given by (122). Except for a boundary layer |vj < Q-2q#(z)/m, 6v can be expanded in powers

of 0. Since f',(v) is essentially constant in this layer, the contribution of the boundary layer to the velocity

moments of 6vf'(v) will have the following parity under z - -z.

< V> odd even

< vi > even odd

< V2 > odd even

As we shall see in Sections VII and VIll, except for the boundary layer contribution, the rate of change of

mass, momentum and energy can be expanded in powers of # giving the usual results involving the dielectric

function. Because these quantities are integrals over z, the parity properties mean that for the boundary layer
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Iv < Avt, only the ti portion of 6v contributes to mass and energy and only the -y portion to momentum.
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VII. MASS, MOMENTUM, AND ENERGY FOR THE TRAPPED SPECIES

In this section we compute charge density, and the rate of change of mass, momentum, and energy for the

trapped species. For an ion hole, the term "trapped species" refers to all the ions, both trapped and passing,

and the "untrapped species" refers to the electrons, both reflected and passing. For an electron hole, the roles

are reversed. In this section, we delete the species subscript on q, m, f0, etc., with the understanding that the

quantities for the trapped species are to be used.

We are interested in the low order velocity moments of f(x, v). For this purpose, we multiply the Vlasov

equation (56) by vt and integrate over v for -oo < v < oo and overx for z < z < x2. We obtain

- dxz dvv'f(z, v) + f d vt+ [f( 2 , v) - f(X1, v)] (146)

- dz L dv'-If(z, v)

The right hand side, and therefore, the left hand side, is independent of z and x2 as long as the hole lies

between z1 and z 2. For t = 0, 1, 2, the right hand side is proportional to the rate of change of total mass,

momentum, and kinetic energy respectively, whereas the first term on the left hand side is the rate of change for

the same quantities inside z1 and z2. Therefore, the second term equals the rate of change of these quantities in

the outside region, i.e.,

d r0
f dx + dx)dvvef(x, v) = dve+i[f(x2 , v) - f(z 1 , v)] (147)

To compute the rates of change to first order in -y and ti, we may use f(z, v) to zero order in the first term on

the right handside of (146) (prior to taking the time derivative) and to first order in the other two terms.
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Inside Region

We now compute

(148)

in the inside region (i.e., z1 < z < x2 ) to zero order in -y and t. As explained earlier, a subsequent time

derivative of this expression will produce a result correct to first order in y and ti. [Later in this section,

we compute (148) for t = I to first order in -1 and i in order to obtain the ion momentum change from

f d9F/z f dvf(z, v, t)).

In general (9/Ot) < ye > consists of a term proportional to ti and a term proportional to -Y. In computing

the ti term we set -y = 0 and vice versa. It is convenient to express (0/Ot) < ye > in the instantaneous hole

frame, i.e., u = 0. However, in computing the ti term we must keep u finite until after the time derivative is

taken.

We b~gin by computing the portion of (9/Ot) < V > proportional to ti. To zero order in y and ti, the

distribution function in the rest frame of the hole (u = 0) can be written as a function of the particle energy,

mv 2 /2 + qO(x). In a coordinate system in which the hole has a velocity u, we have:

u - (x ) 
f0< V1 >= ( dv + dv)vefo[ v-u (v -u) 2 - s(z) 2 + U1-OO u+8(z) |v - I|

u+8(X)

+ Jt-8(X) dtvnfg[(v - U) 2
- S(Z) 2]

where s(x) = V/-2q#(z)/m is the separatrix. Setting v - u -+ v, (149) can be written

-8(Z) joo

<Ve >= (] dv + dv)(v + u)'f(- v V2 - s(z)2 + u)-() IjI

+ dv(v + u)ft(v2 - S(X)2)
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We expand (v ± u)' = V + ut ~l , set f(v - s() 2 +u) = f,(v)+f'(v)[g v2 - s()-v+ u],

compute (0/at) < Ve > with Os/at = 0, and set u = 0. We obtain

< Va >= tt(< V~-t > < V-1 > - dvv'(0) (151)

where < v >0= f dvvefo(v) is the 11h moment in the absence of a hole.

As the hole accelerates, fi/8t = 0, but its depth changes at the rate

f = [ft -fo(u)] =- fo(u) (152)

which is uniform over the area of the hole. Therefore, the last term of (151) just accounts for the change of hole

depth.

f d vvf(x, v) = -t dvvf'O(v)at -s )-s )

S- tis(x)'+f(0) for 1 = 0, 2 (153)

, 0 for I = I

Note that the time derivative of the limit s(z) does not contribute since f vanishes on the hole boundary.

Therefore, (153) has no portion proportional to -y. According to (50), the x integral of (153), with t = 0, is

proportional to the rate of changes of hole mass M.

aM = -2tif'(0)nm dx/ -2q(x)/m (154)at4

For t = 2, the x integral of (153) is proportional to the rate of change of the trapped ion portion of the hole

energy [see (50)]
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X2 d 8(Z ) = f 2-~nmJ dx] dvv 2 (X V) 3 - nmtuf,(O) ]dx(2qoz)/M)/2
(155)

We now compute < v1 > to zero order in - and ti in the instantaneous u = 0 frame. The resulting

expressions can be used in the second term of (151) and can also be differentiated in time, with u constant, to

obtain the -y contribution to the inside portion of(O/Ot) < Vo >. Equation (149) with u = 0 is

V >= (L dv + /x) dv)v fo (fY vV 2 + 2qo(x)/m
-00 (l)

(Z)

+ dvv'fifv 2 - S(5)6)

First we shall evaluate (156) for t = 0 and t = 2. Expanding f0 about v and using (51), (156) becomes

/ L foS()< ve >= f 0d vef(v)+f
-8(Z) r 1

dov'[ f0()-f(v)I+(] dv+ dv)v'f'(v)[ v V2 - s(z)2 _Vdv'1OO)fOV1+f-oo (X)

(157)+ :(Z) dvV'e(v)

We can expand fo(v) about 0 in the second term and show that it is of order f'' 3 /2 for i = 0 and f'05/2 for

I = 2. In each case this is smaller than the terms retained and we shall neglect the second term.

The integrand of the third term can be expanded to give

qO(x) q2o(z) 2

- 2 - 8(Z) 2 - v mu 2m 2 3

lVI M MV (158)

The third term then involves integrals of the form

(159)dv + Idv)f'#(v)/v
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As s -+ 0, this approaches the principal value integral

(160)PF dvf'0 (v)/v

One can show that the use of the expansion (158) and approximation of (159) by the principal value (160)

leads to an error of order s ~ V9 times the principal value term. With these approximations, the third term

becomes

-O(x)(4?nq2) for e = 0 (161)

#S (z) + 0() 2 (87nmX 2)'for I = 2
ma

(162)

where

T 
00I fo,(v)dv = I

-- 2 = -W 0 f
a pav

and w2 = 47rn4q2 /m. The total shielding distance, X, is given by

X-2 -2 + X-2

(163)

(164)

(165)

We now evaluate (156) with i = 1. In this case the second integral in (156) is zero since ft(v 2 _ 52) is even

in v. After the transformation of integration variable, v2 + 2q#(z)/m -+ V2 , the remaining integral in (156)

can be written

< V >= f 00 dvvf(v) =< v >0, (166)
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This result shows that in the hole frame, the creation of an ion hole does not change the total ion momentum.

To obtain the terms of (/t) < Vo > proportional to -y, we apply (c/Ot) to (157) for t = 0, 2 and (166) for

I = 1. The first term in (157) gives zero. We have neglected the second. The third gives terms containing -y

from (161) and (162). The last term gives only the term proportional to t as explained following (153). For

t = 1, there is no -y term since (9/t) on (166) gives zero. The terms proportional to ti and -y can now be

combined to produce the first term of (146), the "inside" term, for I = 0, 1, and 2. For t = 0, we use (151),

(153) and (161). For I = 1, we have only the first term of (151) with < I > - < 1 >0 given by (150) and

(161). Fort = 2, we use (153) and (162). The second term of (151) is zero because of (166). After integrating

over x, we find

d M2 MZ2 Z

dx < v >= - W f dz4(x) - 2tif0 (0)f' dxV-2q#(x)/m (167)
dt 4 4,nq, a 1

dx < V >= - i X dxo() + uM (168)
dt JzT V 4nqX. fJz nm

d d < v 2 >= -q dX0(X) + 4n X2 dX4(X)2

3 tjf(0) 4 dx(-2q(x)/m)/ 2  (169)

Outside Region

We now calculate the second term on the left hand side of (146), the "outside" term. According to (147),

this term gives (9/&1) f dx < vt > in the outside region. For passing particles f(x, v) is given by (145). For

x = xj, v > 0 and x = x2 , v < 0; bv(x, v) = 0. For x = zx, v < 0 and x = x2, v > 0; 6v is given by

(145)

6v = -ti d(v 2 - 2q$(x)/m)--1/ 2 - vI-1|+ 2q dx () (170)
-my /V2 - 2qo(x)/m
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where the + gives 6v(zi, v) and the - gives 6v(x2, v). The square root symbols mean, in each case, the positive

root. Using (122) and (170) in (147) we obtain

at(fL d Z+ L dz) < ve >= L-0dvvet+fx2, v) -f(I,v)I

-o 2 -o

= - dx] dvve+f'(v){u[(v2 - 2qo(x)/m)-'/ 2 - |v1'] (171)

+ qy$(x) v
mV V - 2qo(x)/m |VI

The first term (the ti term) on the right hand side of (171) can be partially integrated to give

- f dx[vef'(v)]ti( v Vv2 - 2qo(x)/m - v) (172)
.1 ivi0+

JX2 fCC

+ dx dv[vEf'0(v)]I',( V T V2 - 2qo(z)/m - v)

The prime denotes a velocity derivative. For I > 1, it is useful to perform another partial integration so that the

second term in (172) becomes

dx ti Iv'f'(v)]' [ V (v2 - 2q$(x)/m) 3/ 2 - 31I 3f0+

- d dv {-[VY"'T(V) (V2 - 2qo(z)/m) 3/ 2 - V3] (173)fi-00 3v V

The second term (the -y term) on the right hand side of (171) can be partially interated to give

-
' 20-~f d± -- (x)V' 'f(v) VV2 - q~ mv 1.1 m 2q Ix)1 0+
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+ f dz- qgYg(z) dv[v'-'f (v)]' V v2 - 2qo(x)/m (174)
1 -M f-COvi

To evaluate (171) fore = 0, we use (172) for the first term in the integrand. We find

d CO X2o f-2q#(z)

-(J dz x]+ dz) < I >= J dz[2f,(0)ti( m ) (/2 4q 2 )--9(z) (175)

The first term in the integrand comes from the first term of (172). We have neglected the second term of (172)

since it is of order i4. The last term in (175) comes from setting 4 = 0 in the square root of the y term of

(171).

To evaluate (171) fore = 1, we use (172) and (174). We find

(fc dZ + d) < v >= dxf(47nq

-af(O)(-2qo(__)/M)3/2) (176)

The first term in the integrand comes from expanding the square root in the second term of (172), and neglect-

ing the f,' term which is of order vO times the f,. term. The second term of (176) comes from the first term of

(174). We have neglected the second term of (174) which is of order vl times the first term.

To evaluate (171) fore = 2 we use (173) and (174). We find

d2
-(0 d + d)<v2 >

f2 4 -2q#(z) q'ye(z)
= dx[-f (0)( )3/2 + + (4rnmXi)'-y(z) 2  (177)

The first term in the integrand comes the first term of (173). We have neglected the second term of (173) since

it is of order v( times the first. The last two terms in (177) come from expanding the square root in the second

term of (174) and using (164).
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The rate of change for total momentum and energy for -oo < z < oo is obtained by adding the inside

and outside terms. For momentum we add (168) and (176). Two of the terms proportional to i cancel and we

obtain

(178)n dxm < v >= M - 'ynmf,(0) dx(-2q(x)/m) 3/2

For energy we add (169) and (177), the -yo terms cancel and we obtain

a n0 .2 2 2  -2qo(z)
- z <V2 >= '9(87rX)-l JdX(z) 2  f'(0)nm dz( m )3/2ot-o 2 Ot ,3 f.1 M

We now evaluate the third term in (146), the first term on the right hand side. This term must, of course,

equal the sum of the first two terms, so we already know its value. We evaluate it only to elucidate the process of

energy and momentum conservation. Fort = 0, this term is obviously zero because of particle conservation.

For t = 1, this term multiplied by nm is the momentum input to the trapped species by the electric field

-nqfdxf "0 dv n 9(Z q f dz'a"~ f dvf(z, v)
f-0 ax av " 1 - O

(180)

The distribution function consists of two parts: the trapped portion f,(0) + f and the passing portion fo(v) +

6vfo(v) where 6v is given by (142) and (144). The unperturbed piece f will give zero when substituted into

(180). Next we substitute ftf, into (180), and integrate over the untrapped region. The contribution from

v > 0 and v < 0 is the same so we integrate over +v only and multiply by 2. We obtain

2-1 dx-o( * dv nq2fO(v) fd' 
JX1  Ox f' qo(.)/ m/v 2 + 2qo(x)/m f. 1  N/ 2 + 2q-o(x)/m - 2qo(i')/m

Setting v2 + 2qO(z)/m -* V2, this can be written

2 2 fX2 00 2

2nq2 dz(X) dv 2 - 2qo(x)/m) fdz'
m Ox Jo 2qo(x)/m 1 - 2q$(x')/m

(181)

(182)
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After partially integrating on z, we obtain

= nqy dv X2 dZfo( v2 v -2q(z)/m) - f.(v) (z) (183)
fo 'I1 Vv2 - -2qo(x)/m

Expanding the numerator of the integrand as in (157), we obtain

= -nq 2 dx dov f0 (v)O(z) (184)
4 Jo v2 - 2qo(z)/m

After partially integrating on v, we find

= -2nqy dz[ v2 - 2q-(x)/m fr(v) - dv v2 - 2q(z)/m fo'(v)JO(z) (185)
01 0

The second term in the integrand is smaller than the first by a factor of qO/mv2 so we neglect it. The final result

is

2nqf'(O)y L dzx(z)Vz-2#(x)/m (186)

This result, for passing particles, equals the second term on the right hand side of (178).

The momentum input to the trapped particles from the electric field is obtained by substituting the

trapped particle distribution function fo + f into (180). Since the trapped species and untrapped species f.

contribution to (180) cancel, we consider only I. Next we note that in a frame accelerating at ti, any function of

mv 2/2 + q#(x) + mux is a stationary solution of the Vlasov equation. Therefore, the charge density associated

with ! can be written

nq fdv = X + ntix/q) (187)

Using this result, (180) becomes

f dzo) (x) + mtiz/q
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fZ {4()[O(x)] + mt}x ( (188)d x q {ao)I+ 8(x)

The first term in the integrand is zero since 4(x2 ) = 4(z1 ). The second term may be partially integrated to give

M d xA[#()] = M (189)

This result gives the first term on the right hand side of (178). When e << 1, a hole behaves like a rigid

macroscopic body and obeys Newton's equation.

The total energy lost from the electric field to the trapped species is nm/2 times the right hand side of

(146) with I = 2.

nqj dx) < v >= nq dxO() a <v> (190)

Using the continuity equation for ions

a a
-<1> +- <v >= 0 (191)

(190) becomes

-nq dxo(x) < 1 > (192)

If we use (167) forO < 1 > /at, (192) produces the two terms on the right hand side of (179).
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VIII. MASS, MOMENTUM, AND ENERGY FOR THE UNTR APPED SPECIES

Except for the different orbit topology, the computation of (/LOt) < Vo > for the untrapped species is

similar to that for the trapped species in Section VII. As in the previous section we delete the species subscript

on q, m, f, etc., with the understanding that the quantities for the untrapped species are to be used.

Inside Region

For the untrapped species, the expression for < Vo > to zero order in -y and ti, analogous to (149), is

<ve>=( d

+ f ac(Z)

V+ dv)vif,(-V- V(X))lvi

dvvef( Xv(z))

86(z) = /[#O - (z)]2q/m

is the separatrix between passing and reflected particles, and

v(z) = v2 + 2qo(z)/m

We now expand f, in (193) around v

v1 >= ( d + dv)v'ff0(v)+ f'(v)( -v (z) - v)]
-L o .(z)) |

+J dvv'[f(v) + f'(v)( Xv(z) - v)]80(.) 1Ii
Using the expansion
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V qo(x) q2q(z)2

iLv(z) -v= -- 2m 2V3

in the first integrand in (195) and setting f',(v) ~ f',(O) in the second, we find for I = 0, 2

<vt >= dvv'f(v)

(196)

- a(z) 0OO qO(X) oX2+(L dv + ZI- dv)f,,(v)v M 2m2;73-)

(197)
-a(z)+Lf z'(0) dvv(x)

The last term is odd in z and so will not contribute to M or T, but will contribute to the charge density and

create an electric field which is even in z and will accelerate the hole. We now evaluate (197) for i = 0 and

t = 2. Using (164) and the definition of principal value as ,% - 0 we find for t = 0

4-2 zf (< 1>=l1- O(X).+ -- '(0) dvv(z)
4wrnq x es

For I = 2, we obtain

< v 2 >=< V2 >. -qO(z)/m + X1an (,)2
81rnm

/-(z)+-- f'(0) dvv 2v(X)
z i

(199)

For I = 1, (193) may be readily evaluated by making the transformation of integration variable v2 +

2q#(z)/m -+ v2 .We find

<V>=( dv + dv)vf.(v)+ dvvf.(-- Iv|}
Lo f2qO./m f -2q0. / m \x

(200)
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The last term is zero, and the first two can be written

00 Vf2qo./-

< V >= dvvf0 (v) - dvvf0 (v) (201)

After expanding f,(v) in the integrand, (201) becomes

< v >= f dvvf0 (v) - 2fO(0)(2q*O/m)3/2 (202)

The portion of (/Ot) < v' > proportional to -i.can now be obtained by differentiating (198), (199), and

(202) with respect to time.

Next we consider the portion of ((/Ot) < V1 > proportional to t. The calculation is analogous to that

leading from (150) to (151). The analogy to (150) is (193) transformed to a coordinate system in which the hole

has a velocity u, which gives in place of (150)

~-a.(z) (00

<Iv >= ] dv + dv)(v + u)f( V V(Z) + u)
-CO Z-(X) |VI

+ dv(v + u)f ( -v(z)+ u) (203)
-8-(Z) Izl

We now carry out the procedure following (150) that led to (151). The calculation is virtually the same except

that the presence of u in the argument of f, in the second term on the right hand side of (203) (which is

not present in ft) produces an additional term which exactly cancels the last term of (151). The result for the

untrapped species is

< v >= tit(< E-1 > - < V 1 >) (204)

To obtain the total (0/Ot) < vi > for the inside region we add the -y portion, obtained from applying9/Ot to

(198),(199), and (202), to the ti portion obtained from (204). Again, we emphasize that the result applies only in

the u = 0 frame. After integrating over z, the results are
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d f dl f dx2~
dz < 1 >= -4i~ L dzb(z)

d X2  ~
dx < v >= -u f dxk(x) - f (0)_1(±q0)3/2Az

dt < 2> -rn-qX .2# m

d f'dx < ,2 >= -f f2  + '7 F2
di T j 47rnmX2 x~

(205)

(206)

(207)

4 f'(0)(2q/m)3/2Az

Outside Region

To compute (0/at) < vI > in the outside region, we consider separately the passing particles and the

reflected particles. The distribution function is given by (122) and (145). For passing particles the "untrapped

species" counterpart to (171) is

dvt+'[f(z2, v) - f(i, v)]
pasing

(208)= -d- dvj ti ti
f1 f2 q /, -o LV2 - 2qo(x)/m V

~q#(z) 1 viZv

mV Y v 2 - 2qo(z)/m

The portion due to reflected particles is

f dvvt+I[f(x2, v) - f(zI, v)]
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f / dvt+14(v)-2v - 2u P2 dx

J-v2 - 2qo(x)/m

0 dovv+14(v)[-2v - 2ti dx

J-V2'im .O - J /z 2 -- 2qo(z)/m

2q- X2 dxo(x)
mV J2 yV2 - 2qo(x)/m

2qy r' dxo(z)
mV fI V - 2q$(x)/m

The x integration limits r, and r2 are the reflection points and are determined by the two roots, negative and

positive respectively, of

V2 - 2qO(r)/m = 0 (210)

We can reverse the order of integration of the last two terms in each integrand in (209) by using

-,/f2qof/. X2 X2

dv dx=- dx dv
Jo Jr22 2 J 2/(j)/M

(211)

and

(212)dv dx= - dz dv
T- 2 q 0,/m - .I 2 .1 -Q2qo./m

In obtaining these relations we have assumed O(z) is even. Using (211) and (212) in (209), we can combine the

passing and reflected terms (208) to obtain

ff X 2J dvve+1f(x, V) Ij= A+B+C+D (213)

where

A/ dx-f) dv -
_ I "'X) f .

V- .

|2-2qo(z}|/m |V|

57

(209)

(214)



B = - dz[I dv - X dv] -q(z)ve+lf(V) (215)
Jz1a( z) -J o myv v2 - 2q#(x)/m

C= - dxjVdx d v - MV)?n l (216)
"1 (X) f-y/2qolm |vi

2' 
'0

D= -2f dVe+2f'(V; +21 dve+2 fO(v) (217)

We have used the notation s(z) = V2q(z)/m.

The last term, D, comes from the first terms in brackets in the integrands of (209). We have changed the

limits of the v integration from +V/2q0/ m to si and s2 which contain corrections of order -y and i. The

rationale behind this correction is that we wish to compute d < vi > /dt correct to first order in ti and y.

Without this correction this term would be zero order. The y correction in s, and s2 takes into account the fact

that a j.article on the separatrix just exiting the inner region at z or z2 at time t was reflected at an earlier time

t - At where

At s (Z2 - z)/(2/2q-/m) (218)

Of course, this expression is not accurate to within Az/V'/2q'i/m and is, therefore, only meaningful for

Z2 - z >> Ax which is not our convention since we put z and x2 at the hole boundaries, i.e., z2 - x, =

Ax. However, it is instructive to retain this term. This correction requires that the separatrix be determined by

the potential evaluated at the earlier time:

0. - 4(1 - -/At) (219)

The ti correction in s, and 82 can be understood by going to the accelerated frame. In this frame the

acceleration produces an equivalent potential mtiz/q. Therefore, the maximum value of qo(z) relative to the

hole edges at T~Ax/2 is q40,+tiAz/2. The velocity coordinate of the separatrix at z and Z2 then becomes
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2q#/m+Az 
(

Using (219) and (220), the scparatricies s, and s2 for reflected particles at x = x, and x2 to first order in -y and ti

are

(si, s2) = (-, +)V2qO/M(1 - yAt/2) - tiAx(2/2qk/m)-' (221)

In order to evaluate (213) for t = 0, 1, 2, the various terms must be dealt with in different ways for different t.

The first integral, A, involving ti, may be partially integrated over v to obtain

A = f dxa(z) (222)

where

-(z)

a(-) = -tVef'(v) [ v2 - 2qo(z)/m - v]

j.- e~x)

O 
- ( Tv)

+[' dv - dvijvef'(V)1'[ V2 -- 2qo(x)/m - Ivi|
4~x) -L

The second term may be further integrated to give

fvef,(v)]' {(V2 - 2qo(z)/m) 3/ 2 -|V131

- If(dv - f '[v,(V))] '1(v2 - 2q#(z)/m) 3/2 - tV13]
.,x)

The integral C, containing i, can be readily evaluated. It is zero when I = 1. Fore = 0, 2 it is

C = 2 dx f,(0)i[(2q#(x)/ ( )/2 - (2qO./m)(1+1)/2]

(223)

(224)

(225)
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The last integral, D, can be evaluated by expanding to first order in -1 and ti. We obtain

D = -f,(O)(2qt#/m) 2(1 - 2-yAt) for t = 1 (226)

D = 2tiAxf',(0)(2qo/m)('+')/ 2 for t = 0, 2 (227)

We shall now evaluate the terms in (213) for t = 0, 1, 2. For e = 0, A is given by the first term in (223),

-2,(0)(2q#(z)/m)(' /2), the second term is of order ', and we neglect it. C and D are given by (225) and

(227). The first term in C cancels A and the second term in C cancels D. Thus fore = 0 the entire contribution

to (213) comes from B which to lowest order is obtained by approximating V/v 2 - 2q#(x)/m with lvI. When

-+ 0. The integral approaches the principal value (164)

X2

dvvf =B = (4wnqX])- dx (z) (228)

Fore = 1, the first term in (223) is zero. The second term may be integrated by writing

v2 - 2qo(x)/m - lvI P -q#(z)/(mv), (229)

neglecting f", and using (164)

A = i(41nqX)-1 dz(z) (230)

To evaluate B we use (215), which can be evaluated by expanding the square root. The first term will give a zero

integral and the second gives a term of order -yo 2 which we neglect. For I = 1, C = 0 and D is given by (226).

Therefore we have

f d 2 =2

21' X2dx1
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-f'(0)(2q4./M)2(l - 2yAt)

For t = 2, we use (223) and (224) to evaluate A. The first terms of (223) and (224), the boundary terms,

give

A = (-2 + 4/3)f' (O) f dz(2qo(z)/m)3/2 (232)

We neglect the second term of (224) which can be evaluated by putting (v 2 - 2q4(z)/m)3 /2 - V13 =

-3qO(x)v/m + 3(qO(x)/m) 2/(2v) in the integrand. It is easy to show that the integral is of order t10 2

which is small compared to (232). We obtain B from (215) by expanding the square root in the integrand

(v2 - 2q#(z)/m)-1/ 2 = Iv|~~ + V-- 3(qo(z)/m). We find

B f x [ q ~x + 4(x)2(4rnmX2 - 1
x1 m

(233)

Using (225) for I = 2

C = Xf()[ dz(2q4(z)/m) 3/2 - (2qo,/m)3/2Az ] (234)

and from (227)

D = 2tif,(O)(2qO,/m) 3/ 2Az (235)

The O(X) 3 /2 terms in A and C cancel. The 03/2 terms in (234) and (235) may be added. We obtain finally

dvv3f = -yf dz[q4(z)/m + O(z)2 (4inmQ']I
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+ 4 tif,,()(2q#0/m) 3/2 AX (236)

The total rates of change of mass, momentum, and energy are obtained by adding the inside (205) -

(207) and outside terms (228), (231), and (236). For e = 0, (207) and (228) exactly cancel since total mass is

conserved. For e = 1, the terms proportional to ti and -y in (206) and (231) cancel when (218) is used so that

fnmf J dx < v >= -nmf0 (0)(2q4,/m)2  (237)

Fore = 2, the first and third terms in (207) and (236) cancel. The second terms, proportional to X2, are equal

and can be added to give

i--~dL < v2 >= r XW dX4(z) 2  (238)

This is just the usual expression for the non resonant kinetic energy. We note that for a localized fluctuation,

half the kinetic energy comes from the hole region (xi < x < x2) and half from outside.

Sum of Electron and Ion Contributions

To zero order in e, the total charge density in the inside region is obtained from (157) and (198). The first

terms of (157) and (198), the nq f f,(v)dv terms, cancel. The second term of (157) is neglected as explained.

The third term of (157) is given by (161) and can be added to the second term of (198) using (165). The last term

of (198) is of order f. We obtain

nqg < - + n fvd (239)
a

which is the same form or that used in Ref. 1. Poisson's equation becomes
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$(x)=47r n,,q0 <1>a=-X - 2 (x)+47rnq dvf (240)
a

The the last terms of (239) and (240) refer to the trapped species. Since we have shown that the charge in the

inside and outside regions cancel, there must also be charge in the outside region. However, it is spread over a

large region so that its density is very small. In fact, for the outside region < 1 >-+ 0 as f -+ 0 even though

f dx < 1 > is finite.

Momentum conservation follows from the first moments of the Vlasov Eqn. (56) for electrons and ions and

from Poisson's equation (70).

d f dznma < v >= 0 (241)

When (178) and (237) are substituted into (241), (53) results.

Similarly, (56) can be used to show energy conservation

6 cd{ [ 21 x2 < v2 >+} = 0 (242)
a

Using (240), one can show that

1 L dz{[ ) ]2 + $(X)2/2}

= f dx dv p(z) (243)

Substituting (179), (238), (165), and (243) into (242) and using the definition of hole energy (50), we obtain (54).
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IX. RATE OF MOMENTUM CHANGE DUE TO 00)

In this section we compute the rate of change of electron and ion momentum due to the first order poten-

tial 0(')(z) as discussed in Section I1. In this calculation the potential is considered to be stationary, i.e., we do

not include the -yt or tit2 /2 corrections contained in (48). To do so would produce a correction of order F2. To

obtain the rate of momentum change we use (146).

The inside terms have the form

dx dvvf(x, v) (244)

where f(x, v) is to be computed to first order in 00) ~ r. Since c/Ot will provide an additional factor of y, the

inside term due to 0) is of order -ye ~ f 2 for both the trapped and the untrapped species.

Next we consider the outside region. Since the potential is stationary only two features of 0)(z) affect

the outside region. The first, which affects passing particles, is the potential difference across the hole 0)(z2) -

#0)(x) = 64. (Remember that 0(0)(z2) = (o)(xi) = 0.) Without loss of generality we can assume 64 > 0

and #(zj) = 0. The second important feature, which affects the reflected particles is a change in the maximum

value of 1#(z)j, i.e., due to 0), #, is replaced by 4', where |0,, - #'j - 6#. The rate of momentum change

for the outside region is given by (147) with t = 1. We consider the trapped species first. For this case the z

portion of (147) is

Lodvv2f(z1,v= dvv2fo(v) + dov 2f(-v)

,-6.

+] dvv2 f(- v2 - 2q6o/m) (245)

where 6s =Vr2q60/m

The x2 portion of (147) is

/ dvv 2 f(X2, v) = dvvf0 ( v2 +2q/m
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0

dvV2f0 (v)

Subtracting (245) from (246) and expanding the arguments of fe,, we obtain

fdvv2f' (v)[ v2 + 2qeo /m - v]

+ dVV2[f.(V) -f( v)---f -( V) dvv2 (v)[IvI - v2 - 2qO$/m]

The first integral in (247) can be split into two pieces-a v integration from 0 to 6s and an integration from 6s to

co. We combine the 6s to o piece with the last term in (247) and denote this quantity a. The remaining piece, 0

to bs, we will call b. The square roots in the integrands can be expanded as follows

For v> 0

tV2 + 2q64/m - =(j_my 2-v3 m
(248)

Forv < 0

ivI- v2 -2q6 =0/m= - (-)2IVIm 2 V V3 M
(249)

The first terms in the preceding expansion contribute to quantity a

q-O q- w' dvvfj'(v)
m m J-6a

(250)

The second term above is of order 602. When the second terms, the 542 terms, from the expansion (248) and

(249) are used in quantity a, the result is

1 (q60) 2p dvf'0(v)/v
2 m JOO

(251)
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The quantity labeled a is

dvv 2f'0 (v)[ V 2 + 2q6O/m - v]

which can be readily evaluated if we put fo(v) ~ f'o(0). The result is of order 602. Finally, the second integral

in (247) can be easily evaluated by expanding f0(v). We obtain

2( )'(0) (252)

Therefore, the total rate of outside momentum loss is of order 6# 2 except for the term -nqbo obtained by

multiplying the first term of (250) by nm. However, -nq6o for the trapped species will just cancel the

analogous quantity for the untrapped species. This term could, of course, have been obtained from the linear

response, i.e., nm f dvv 2f(') where P() = (q6O/m)(f' (v)/v). We now consider the contribution to (147) due

to the untrapped species. The z1 portion is

00 =

TOOf(Iv)V'dv = fodvv h(V)

+f -/27 dvv2 f 0 (- v2 -_+ dovOT. (- + d .( vV2 - 2qbo/m) (253)

The z2 portion is

-C v 2dvf(z2 , v) = TOOUv2dvf0 (v) (254)

+dvv 2f(-v) + dv 2 f( )v2 + 2q60/i)
2q(0 -6 )O/

Subtracting (253) from (254), we obtain
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L. dvv 2 [f(z2 , v) - f(zI, v)] =

dvv 2[f( v2 + 2q6(V/m) - f(v)] - dvv 2tfo( v2 + 2q6b/m) - f.(-v)]
0 F

(255)

+ dvv2{f (v)-fo(- v2-2q8O/m)j + fdV2fo( v2-2q6/m)-

The integrands of the first and third terms in (255) can be expanded in powers of 6# and combined to give

(256)m 2P dfo(v)/v

When multiplied by nm, the first term of (256) will cancel the corresponding term in (250) for the trapped

species since neq, + niqi = 0. The sum of the second and forth terms in (255) can also be expanded in powers

of 6#. The leading terms are

f'(0)(2qO' /m) 2 + f'0(2q40/m) 2 (64u/# 0 ) (257)

Since 6 - ' 6#, this result differs from the zero order result (237) only by a term of order 60f, - f2 .

67

I

I



ACKNOWLEDGEMENTS

The author would like to thank D.J. Tetreault and R.H. Berman for useful discussions related to this work.

This research was supported by the National Science Foundation and the Department of Energy.

68



REFERENCES AND FOOTNOTES

* Massachusets Institute of Technology, Cambridge, Massachusetts 02139

1. T.H. Dupree, Phys. Fluids 25, 277 (1982).

2. T. Boutros-Ghali and T.H. Dupree, Phys. Fluids 25, 874 (1982).

3. R.H. Berman, D.J. Tetreault, T.H. Dupree, and T. Boutros-Ghali, Phys. Rev. Lett.,

4, 1249 (1982).

4. R.H. Berman, D.J. Tetreault, and T.H. Dupree, Bull. Am. Phys. Soc. 27 1105 (1982).

5. R.H. Berman, D.J. Tetreault, and T.H. Dupree, to be published.

6. D.J. Tetreault, Bull. Am. Phys. Soc. 27, 1105 (1982).

7. T.H. Dupree, Phys. Fluids 15, 334 (1972).

8. T. Boutros-Ghali and T.H. Dupree, Phys. Fluids 24, 1839 (1981).

69



FIGURE CAPTIONS

Fig. 1 Average distribution functions (Maxwell Boltzman) for electrons and ions with a relative drift of vD =

2vi. The growth rate curve 2-yri is for an electron hole. The dashed lines indicate the deceleration and

growth of an ion hole and the relaxation of the electron distribution function.

Fig. 2 Normalized growth rates, y/wp,, for mi/m = 4. The x's and bars are simulation values from

Reference 3. The curves are for electron holes and linear theory.

Fig. 3 Normalized growth rates, -yrj, for mi/me = 1836. Curve a, ion hole with Te/Ti = 1; curve b,

electron hole with TC/T = 1; curve c, electron hole with TC/T = 2.

Fig. 4 Electron orbits for an ion hole with y = 0 and ti = 0.

Fig. 5 Ion orbits for an ion hole with -y> 0 and ti = 0.

Fig. 6 Ion orbits for an ion hole with y = 0 and ti < 0.

Fig. 7 Normalized potential 0/0, for a self-similar hole as function of x/X.
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