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ABSTRACT

The influence of finite radial geometry on the longitudinal wiggler

free electron laser instability is investigated for TE mode perturbations

about a uniform density electron beam with radius Zb. The equilibrium and

stability analysis is carried out for a thin, tenuous electron beam propa-

gating down the axis of a multiple-mirror (undulator) magnetic field

B [1+(6B/B )sink z],z, where X0=21Tr/k 0=const. is the wiggler wavelength. It is

assumed that k R<<1, and that perturbations are about the self-consistent
0 2m

Vlasov equilibrium fb ( , )nb L 2ybmb -2yb Lb Z-bmVb), where
2_ 2 2

p =prU6' , is the canonical angular momentum, and nb bW b' Lb and Vb
are positive constants. For 6B/B 0<<1 and slow beam rotation (wb Wcb

eBO/y bmc), the equilibrium density is uniform (%) out to the beam radius

Rb=(2T //Ybm2bb . Detailed free electron laser stability properties

are investigated for the case where the amplifying radiation field has

TE-mode polarization with perturbed field components (6Ee, B r, 6B z). The

matrix dispersion equation is analyzed in the diagonal approximation, and it

is shown that the positioning of the beam radius (Rb) relative to the con-

ducting wall radius (R c) can have a large influence on the growth rate and

detailed stability properties. Analytic and numerical studies show that the

growth rate increases as Rb/Rc is increased.
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Technology, Cambridge, MA 02139.

* Permanent Address: Institute of Electron, Academia Sinica, Beijing,
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I. INTRODUCTION AND SUMMARY

There have been several theoretical 1-26 and experimental
2 7-3 5

investigations of coherent radiation generation by free electron lasers

that use an intense relativistic electron beam as an energy source. Both

longitudinal1-5 and transverse6-18 wiggler magnetic field geometries have

been considered, and there have been many theoretical estimates of the

gain (growth rate) that treat the system as infinite and uniform trans-

verse to the beam propagation direction. Few calculations,5,16,17

however, have attempted to include the important influence of finite

radial geometry in a fully self-consistent manner, and these analyses5, 1 6 ,1 7

have indicated that the relative positioning of electron beam radius (Rb)

to conducting wall radius (R c) can indeed have a large effect on the linear

growth rate and the detailed stability properties.

1-4
The longitudinal magnetic wiggler configuration has been identi-

fied1 as a strong candidate for coherent radiation generation at frequen-

cies significantly higher than those generated by the cyclotron maser

instability (assuming the same average axial field B0 ). In the present

article, we investigate the influence of finite radial geometry on the

longitudinal wiggler free electron laser instability.1- The analysis is

carried out for a thin, tenuous electron beam propagating down the axis of

a multiple-mirror (undulator) magnetic field (Sec. II and Fig. 1). It is

assumed that ko%<<l and that the amplifying radiation field has TE-mode

polarization with perturbed field components (6Ee, 5Br, 6Bz). Here, Rb is

the beam radius, \0= 27/k0 = const. is the wavelength of the wiggle in the

axial magnetic field, and the conducting wall is located at radius r=R .

A very important feature of the linear stability analysis (Secs. III and

IV) is that the positioning of the beam radius relative to the conducting
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wall radius (as measured by k/Rc, say) can have a large influence on the

growth rate and detailed stability properties relative to the case where

the system is treated as infinite and uniform1 in the transverse direction.

To briefly summarize,- in Sec. II we describe the equilibrium

properties of a thin, tenuous electron beam propagating down the axis of

a multiple-mirror magnetic field. Equilibrium self fields are neglected,

and the vacuum magnetic field is approximated by [Eq. (3)]l

B (r,z) = B0  1 + sinkz ,

B 0(r,z) = 0
r

2-'2
for kR <<l. Beam equilibrium properties ( /'t= 0) are investigated for

the choice of self-consistent equilibrium distribution function (Eq. (6)]36

0 nb 2A
b 1 5P2YblbPe 2Yb mLb :ebmVb)'

2 2 2
where p1=pr+p8 z is the axial momentum, P is the canonical angular

2momentum, and nb' Yb' wb' Tb and Vb are positive constants. Here Ybmc

is the characteristic energy of a beam electron. For small wiggler

amplitude (6B/B 0<<l) and a slowly rotating electron beam with Wb Wcb

eBO /Ybmc, it is found that fb ) can be approximated by [Eq. (16)]

fb5 pJ ab vb (1-r'/ %) 6(p bY b '0 T L Yb _Lb ~ h ~(Z b b)

2
where V 2TCh/Ybm. In this case, the axial modulation of the beam

envelope is negligibly small with Rb(z)b= const. [Eqs. (10) and (14)], and

0the beam density is uniform with nb()= over the interval O<r<

[Eq. (9)]. The particle trajectories in the equilibrium field configura-

tion (3) are also described in Sec. II [Eqs. (17)-(20)].
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Stability properties are investigated in Secs. III and IV for TE-

mode perturbations about the choice of self-consistent solid-beam equi-

librium specified in Eq. (16). Assuming perturbed field components

(5E 9 5B , 6B ), the linearized Vlasov-Maxwell equations [Eqs. (24)-

(25)] are analyzed using techniques established in recent investiga-

tions37-39 of the influence of finite radial geometry on the cyclotron

maser instability. In particular, for a tenuous electron beam, we

approximate the r-depencence of 6E (r,z) by the vacuum waveguide solu-

tion, J 1(t 0Zr/Rc), where a is the Z'th zero of J 1( 0 Z) = 0 [Eq. (30)].

After considerable algebraic manipulation, this gives the matrix dis-

persion equation [Eq. (43)]

2
2 0 It

- 2- + Xn,n(k,w) 6E (k)

c Rc n=-

+ = F -N,n(k+NkOW)5 6 (k+Nk 0 0,
N#0 n=-c 1-on

where the susceptibility ,n(k,w) is defined in Eq. (50) for the choice

of radially confined equilibrium distribution fb in Eq. (16). For

sufficiently small wiggler amplitude, the off-diagonal terms in Eq. (43)

can be neglected, and the dispersion relation is approximated by (Eq. (47)]

2 a2
- k2 R + xnn (k,w) = 0.

c

The striking feature of the definition of \mn(kw) in Eq. (50) is the

strong dependence of the integrand on radial coordinate r. For the case

of small energy variation over the beam cross section, we obtain the

approximate expression for ),(k,w) given by [Eq. (55)].
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2

(kw) = 4 2b

2
91_f_( ) ..b g2f 2(w )
[ [-(kknnkOb-b ] 2 2)

1 - w-k~k )V-cb] c 2[w-(k+nk 0 )Vb- cb]2

+ (Wcb Wcb )

where f () and f2 M) are defined in Eqs. (56) and (57), and g and g2

are the geometric factors defined in Eqs. (53) and (54) (see also Fig.

2).

In Sec. IV, we obtain approximate analytic and numerical solutions

to the diagonal dispersion relation (47) for Xn(kw) specified by

Eq. (55). Several points are noteworthy from the stability analysis.

First, for a given harmonic number n, the characteristic maximum growth

rate [Eq. (68)] is largest whenever the argument of J corresponds to the

first zero of J'(x)= 0, i.e., whenn

Wcb 6B
kOVb BO n,l

where a is the first zero of J'(x) = 0. Second, the characteristicn,l n
2/3^ 1/3maximum growth rate scales as (V /c) nb , which can lead to

substantial gain for the. longitudinal wiggler free electron laser..

Third, there is a strong dependence of stability properties on the

positioning of the beam radius (Rb) relative to the conducting wall

radius (Rc). In particular, the growth rate Imw increases as Rb/R,

is increased, and the detailed dependence of Imw on /R is examined

numerically in Sec. IV. Another important feature of the results is
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that the instability is inherently broadband in the sense that many

harmonics are unstable, even when (w cb/k0 V b)(6B/B ) is chosen to

maximize emission for a particular value of n.

Finally, also in Sec. IV, we investigate stability properties in

the limiting case where 6B=0. This corresponds to the cyclotron

maser instability for perturbations about the solid electron beam

equilibrium f0( ,k) specified by Eq. (16). The numerical results for

6B= 0 also show a strong dependence on radial geometry (Rbd/R)
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II. EQUILIBRIUM MODEL AND ASSUMPTIONS

A. Equilibrium Field Configuration

In the present analysis, a tenuous electron beam propagates

along the axis of a multiple-mirror (undulator) magnetic field with

axial periodicity length X 0 = 27r/k 0 and axial and radial vacuum

magnetic fields, B (r,z) and B (r,z), given by1
z r

B (r, z) = B 1 + 6BI kr)sink z
z 01 B 0 0 ink0zj

(1)

B (r,z) = -6BI (k r)cosk z

where I (k0r) is the modified Bessel function of the first kind of

order n, and 6B/B0 < 1 is related to the mirror ratio R by R =

(1+6B/B 0 )/(1-6B/B0). In circumstances where the beam radius Rb is

sufficiently small that

k 2 << 1, (2)

and the oscillatory field amplitude 6B is small with SB/B0 < 1,

then the leading-order oscillation (wiggle) in the applied field is

0 =0
primarily in the axial direction, with B= O(k r6B/B )B . Within

the context of Eq. (2), the equilibrium magnetic field components

can be approximated by1

B. (r,z) = Bo + sinkoz,
B 0 j

(3)

B (r,z) = 0r
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-l
in the beam interior where r < Rb << k'

b 0

Assuming a tenuous electron beam with negligibly small equilibrium

self fields, then the electron motion in the longitudinal wiggler field

specified by Eq. (3) is characterized by four single-particle constants

of the motion. These are:

pz '

2 2 2
p. = r + pe '

2 2 4 2 2 2 2 1/2
ymc = (m c + c p1 + c P ) , (4)

P0 = r p - A 0(r,z)

where pz is the axial momentum, p1 is the perpendicular momentum, ymc2

is the electron energy, and

0 1 f B
A0(r,z) =-! rB 1 + sinkz , (5)

0

is the 6-component of vector potential consistent with Eq. (3). Here,

-e is the electron charge, m is the electron rest mass, and c is the

speed of light in vacuo. Note that ymc2 = const. can be constructed

2
from the constants of the motion pz and p,, which are independently

conserved.

It is important to keep in mind that the validity of the single-

2 2
particle constants of the motion in Eq. (4) assumes that k r < 1,

0

SB/B 0 <1, and that the oscillatory radial magnetic field B ~ -(8B/2)k rcoskz

0
can be approximated by B r= 0 [Eq. (3)]. To determine the range of
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validity of this approximation, we have also calculated (in an

iterative sense) the leading-order corrections to the longitudinal

0
and transverse orbits, treating the magnetic force (-e/c)vxB e as

a small correction.

B. Beam Equilibrium Properties

The TE-mode stability analysis in Sec. III is carried out for

perturbations about the self-consistent equilibrium distribution 3 6

0 nb 2
f (x = 5 (P2 - 2 - 2bmT )5 (p bmV) , (6)
b T Ti 2Ybmwbe Ybi.b6 (P b b

A 2
where nb' T.Lb' 'b and Vb are constants, ybmc const. is the

characteristic energy of a beam electron, and Vlb is defined by

1/2
Vib =( 2 b/ybm) . Making use of Eq. (4), it is readily shown that

2 2+ p-mr 2

p - 2ybMW Pe p 2r + -yb b2

(7)

+ y2m2 rwb 2 cb (1 + -_B sinkoz - b

where w cb = eBO/ybmc is the relativistic cyclotron frequency. From

Eqs. (6) and (7), it readily follows that the average axial and

azimuthal momentum of the beam electrons are given by

d d3p pf0
3 0

z b
<pz> r d 3 f0 YbmLvb'

fd p fbd p efb
<p e> f d 3 pf0 Yb mWbr.

d p b

Moreover, it can be shown from Eqs. (6) and (7) that f (x, ) corres-
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ponds to a sharp-boundary equilibrium3 6 with density profile n0

T 0
d p fb given by

const., 0 < r < R b(z)

n (r,z) = (9)

0 r > Rb(z)

Here, the radial boundary Rb(z) of the electron beam is defined by

^2
2 -Lb (10)

Rb(z) = Wb wcb [l+(6B/Bo)sink0 z]- b

where =2Tlb bm. From Eq. (10), b is required to be in the range

0 < Wb cb[1-6B/B0(

for a radially confined equilibrium to exist. Moreover, the maximum

beam radius [Rb ]M occurs for k0 z=(2n+1)7r/2, n=±l, t2, ...

Introducing the effective thermal Larmor radius rLb -Lb V cb the

condition k [Rb]2 << 1 can readily be expressed as

2 2 W b(1_L_ b

0 Lb < cb B0 Wcb(

The stability analysis in Sec. III is carried out for the case

where the beam rotation is slow with

Wb << W cb (13)

and the wiggler amplitude is small with 6B/BO << 1. In this case,
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the axial modulation of the beam radius in Eq. (10) is very weak,

and Rb(z) can be approximated by the constant value

1/2

b (z)~Rb (b 
(b cb )

Moreover, consistent with Eqs. (13) and (14), it is valid to approximate

P e=- b Mcbr 2/2 in Eq. (7), which gives

2
P - 2Ybmwb P8- 2YbmT'b

(15)

2 2 2 ^
PI - (Ybmb) 2(1-r /2 )

for wb < wcb and 6B << BO. The equilibrium distribution function in

Eq. (6) can then be expressed to the required accuracy as

0 nb p2 - (YbVb) (-r 2 ^ 2  bmvb (16)
b Tr b tb/%r2 p-bm

2 2 2

where pi = pr+p2. Equation (16) readily gives the rectangluar

density profile in Eq. (9) with constant beam radius equal to R b.

Note from Eq. (16) that the equilibrium distribution function has an

inverted population1 in pa with f0 = const. x 2[p - p2(r)]6(pY mV

2 2 2 ^2
where plo(r) = (Yb mVlb) (1-r /Rb).

C. Particle Trajectories in the Equilibrium Fields

The orbit equations for an electron moving in the axial magnetic

field B (z) = B +6Bsink z described by Eq. (3) are given by dp'/dt'=z 0 0 x

-(e/c)v'B 0(z'), dp'/dt' = (e/c)v'B0 (z') and dp'/dt'=0, where 2(t') =

2 2 2 1/2
ymsv'(t') and y = (1+k' /m c ) = const. The axial trajectory
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(z',p') that passes through the phase space point (z,pz) at time t'=t
z

is given by

P pz , z' = z + V (17)

where T = t'-t and vz=p z/y m=const. is the axial velocity. Defining

v' (t)=v'(t')+iv'(t') and making use of Eq. (17), it is straightforward
x y

to show that v'(t') satisfies

d V = C 1 + B sin(koz+kov t) ' (18)dt'- + ~ c 0  O z ),

where wc = eB0/ymc is the relativistic cylotron frequency for electron

motion in the average field B Integrating Eq. (18) with respect to t'

and enforcing v'(t'=t)=v +iv =vlexp(i$), where (v ,v ) = (vicosOv sin$)

is the perpendicular velocity at time t'=t, gives1

'(t') = vjexp (+iwT

(19)

. SB cosk 0z-cos(k 0z+k0 v z)
c B 0 k0v z

From Eq. (19), we note that 1v'(t')I = const., as expected. However,

the individual transverse velocity components, v' (t') and v'(t'),

can be strongly modulated as a function of z and t' by the longitudinal

wiggler field 6Bsink0z. Depending on the size of 6B/BO, this can

lead to a significant enhancement of radiation emission relative to

the case where 6B=0.

For future reference, it is convenient to Fourier decompose the

k0 z dependence in Eq. (19), making use of the Bessel function identity
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exp(ib cosa) = J M(b)exp(-ima+ir /2)

where J (b) is the Bessel function of the first kind of order m.

This gives

v' (t'= viexp(i$) J I B B 6B n-
m,n m 0k0 z B n kv 0

(20)

x exp[i(WcT+mk0 vzT)]exp[i(m-n)kOz]

where mn denotes I' _ . From Eq. (20), for (wc/k v)(6B/B)

of order unity, we note that the temporal modulation of the perpendicular

velocity can be strong at harmonics of k0 zk0 Vb. Finally, when Eq. (20)

is integrated with respect to t' to determine the transverse particle

orbit x'(t')+iy(t'), we note that there are, resonant contributions

proportional to (w c+mk0 vz ) . n this regard, the present analysis

assumes that vz b is sufficiently far removed from cyclotron resonance

(with w c+mkb0 b0) that the particle orbits do not exhibit large (secular)

transverse excursions.1
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III. TE-MODE STABILITY PROPERTIES

A. Linearized Vlasov-Maxwell Equations

For the equilibrium configuration discussed in Sec. II, we now

make use of the linearized Vlasov-Maxwell equations to investigate

stability properties for electromagnetic perturbations with TE-mode

polarization. It is assumed that a conducting wall is located at

radius r = Rc > Rb. Moreover, perturbed quantities are expressed as

65(x,t) = 6$(x)exp(-iwt)

where Imc>O corresponds to instability.

symmetric (3/H=O) TE-mode perturbations

components

We consider azimuthally

with electromagnetic field

= 
5Ee(rz)~e

(21)

( = Br (r,z),Ar + 6Bz(r,z),

where (e r' e ) are unit vectors in the (r,e,z) directions. The

Maxwell equations for 6 and 6 are given by

Vx6 E = 6 B
%c ~

41- e 3
7x 6.,c = - d p v 6f c

(22)

(23)

where 6J(x) = -e d3p v 6f is the perturbed current density, and 6f (r,z,)
= o I b b

is the perturbed distribution function. From Eqs. (21) and (22), 5B (r,z)
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and 6 Br (r,z) are related to SE (r,z) by

ri e

6i z= - (r6 E6 '

(24)

ic a
r W az 6e

Moreover, substituting Eq. (22) into Eq. (23) and taking the O-component

gives

/2 + 2
++ r -E +(r,z)2 r r r -2 2r a

(25)

47riwe 3
i d p v 6fb(r,z,,)

which relates 6E (r,z) to the perturbed azimuthal current density

3
6J (r,z) = -e d p v 6b'

Making use of the method of chracteristics, the linearized Vlasov

equation for 6fb(r,z,,pt) = 6fb(r,zq)exp(-iwt) can be integrated to give

6 fb (r,z,,) = e dt'exp [-iw (t'-t) I

(26)
v'x6B(x 

* )
x 6 ( x ) + c b , , '

where (g',g') are the particle trajectories in the equilibrium field

configuration (Sec. II.C) that pass through the phase space point

(g,,p) at time t'=t, and ( ) is the equilibrium distribution

function. We first simplify Eq. (26) for the general class of self-

consistent Vlasov equilibria (Sec. II.B),
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f0 f 0 (p-2y ' WP ), (27)
b b Lb be

where the perturbed electromagnetic fields have the components shown

in Eq. (21). After some straightforward algebra, the perturbed dis-

tribution function can be expressed as

03f 0
6fb(r,zq) 2e b d- exp(-iot) [E (r',z') +1 v'6B (r',z')]

(p- b br') +Yb br' v'6iz(r',z') (28)

0 0
fb I

- e - - dT exp(-iwt) v e6Br(r',z')

where T=t'-t. In obtaining Eq. (28), use has been made of the fact that

f 0/ap 2and af /ap are constant (independent of t') along a particle

trajectory in the equilibrium field configuration. Moreover, from

V'=v =p lm ad = 2 2 21/2
Sec. II.B, v' = vz = /ym and y' =y (l+ /m c ) are independent

of t' in Eq. (28), and the axial orbit is given by z' = z + vz .

In addition, the transverse velocities v' = dr'/dt' and v' = r'd6'/dt'a

can be determined from Eq. (19), subject to the boundary conditions

v'(t'=t) = r, v (t'=t) = v,, r'(t'=t) = r and 6'(t'=t) = 6.

Equation (28) simplifies considerably in the case of very slow beam

rotation (wb « W cb) and weak wiggler field (6B << B0 ) discussed in

Sec. II.B. Neglecting the terms proportional to wb in Eq. (28), and

expressing 6Br in terms of 6Ee [Eq. (24)], we obtain

af0 0
6fb(r,zq) = 2e - d exp(- i)p'6 r',z')

(29

0f0  0 (29)

+ 2p0 dTexp(-i) p I 6E(r',z),
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where z' = z + v zT. In general, Eq. (29) is to be substituted into

Eq. (25) and the resulting equation solved as an eigenvalue equation

for SEa(r,z) and w.

B. Matrix Dispersion Equation for a Tenuous Beam

For a low-density electron beam, we make use of the fact that

the solution for 6 Ee (r,z) is closely approximated by the vacuum

waveguide solution, and solve Eqs. (25) and (29) in an iterative

sense. In particular, we express37-39

6t e(r,z) = 6E (z)J1 (a Or/RC) , (30)

where aOz is the Z'th zero of J 1(a) = 0, and 6E (r=Rc,z) = 0 at the

conducting wall. Here, Jn (x) is the Bessel function of the first kind

of order n. Taylor expanding the z'-dependence of 6E 9(r',z') in Eq. (29)

according to

6e (z') = 6E (k)exp(ikz+ikvt ) , (31)
k=-co

where k=2n/L and L is the periodicity length in the z-direction, we

readily find

0 0
/ kv 3f0

6^f (r,zq) = e d (k)exp(ikz) 2 l z bf + k b
b k 8 W 9 2 ymw p z

(32)

0
x d-c exp (-iWT+ikvz-p (a Or '/Rc

We substitute Eqs. (30) and (32) into Eq. (25), make use of
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{r (3/3r)[r(a/ar))-r }Ji 0(ar/R 2 /R )J (ar/R ), and operate

with oc dr r J (ao r/R )... . This gives

2 2 2

c Rc az

(47re iW/c ) c dr r J (E (k)exp(ikz)2 2 JO -~r)
[RcJ2  a 0o)/2] 0 c k

x dp V 12(1 _ 2 + k

0z

x r dT exp(-iwr+ikvz J(a zr'/RC

where use has been made of Rc dr r J (a0 r/R) =(R /2)J (a

We now evaluate the orbit integral

0-
I dt exp(-iwT+ikvt )p I (a0 r'/Rc) (34)

The azimithal momentum p' is expressed as p, = pjsin ('-e'), where

p= p, = ymv is constant (independent of t') for the equilibrium

field configuration described in Sec. II. Equation (34) then becomes

0
I = p 0 dT exp(-iWT+ikvzT)sin($'-e')Ji (a or'/Rc) (35)

To simplify Eq. (35), we specialize to the case of small thermal

Larmor radius, r b/b << 1, and approximate the r' and e' orbits

by (r',6') ~ (r,e). This is an excellent approximation for a

<< , inc r2 ^2 -2 /2 ^ 2
slowly rotating beam with wb/wcb < 1, since rLb/R V b cbR

/wcb << 1 follows from Eq. (14). The orbit integral I in

Eq. (35) can then be approximated by
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I = pJ 1 (a 0 r/RC) f dr exp(-iwT+ikvzr)

(36)

1 {expi($-e)]-exp[-i($'-e))

where ' is the rapidly oscillating velocity phase defined by [Eq. (19)],

'B +Cosk O - cos (k0 z+k~v )
+ ' = c T + W c B 0 ko v (37)

We substitute Eq. (37) into Eq. (36), make use of the Bessel function

identity in Eq. (20) to expand exp(±i$'), and then carry out the

integration over T for Imw > 0. After some straightforward algebra,

this gives

PiLJ1( 0r/R C) wc 6B ( dB
2i n ovz 0) Jm kv B

n,m zk B E
n-m+l

X exp~i($-8)]exp[-i(n-m)k 0z](i)nM (8
w-(k+mk0 )vz~- (38)

exp[-i($-e)]exp[-i(n-m)k0 z](i)-n+M+1

w-(k+mk
0 )vz+Wc

where wc = eB0 /ymc, vz = pz/ym and L denotes . In the
n,m 3n=-00 m=-co

eigenvalue equation (33), we express d3 n =

d- dpip dpz and carry out the required 
integration over

0 0 -" 0
$, making use of ve=(p±/ym)sin($-e) and the fact that f b
0O 2  2 2 ^2

- (ybmVib) (-r/ is independent of $ to the level of

accuracy of Eq. (15). In particular, we readily obtain from Eq. (38)
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2r
devisin($- )I

- JIrp1  (a0  r/Rc) J
4ymi 1 k n,m n cOv z B 0)

n-m

w-(k+mk z)~c

i B exp[-i(n-rn)k Z]
mk( 0vzB 0) 

0

(39)

w-(k+mk0 )v+W

Substituting Eq. (39) into Eq.. (33), the eigenvalue equation

for 6E 6(z) can be expressed as

2 a 2 2

2 2 +2 e z
z Rc c

=- Xmn (kw)6E (k)
k- m,n

x exp~i(k+mk0-nk0 )z] ,

where the susceptibilityX mn (k,w) is defined by

Xrn (k,w)
=1 (4 2/c2

4[(R /2)J (a0

dr r J2 (cL0 r/R)
01 

09

r3 (w BBfd p J I BB)Jm \k Ov B0 /n k-z0
x 0d

[ af 0 3 0

SV2[mm 'b + k b z
P a PP± ( P±JJ P.

(i)nm 
-nf+

I w-(k+mk0 )vz-W c W-(k+mk 0)vZ +WC

(40)

(41)
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In Eq. (41), vL = pl/ym, vz = PZ /ym, WC = eB0 /ymc and fd p = 2r f dpjpL dp.z

Equations (40) and (41) should be compared with Eqs. (22) and (23)

of Ref. 1. The major difference is that Eqs. (40) and (41) include

finite radial beam geometry in a fully self-consistent manner, whereas

Ref. 1 assumes an infinite uniform beam in the transverse direction.

The effects of finite radial geometry are manifest through the occurrence

of the effective perpendicular wavenumber a on the left-hand side

of Eq. (40), as well as the r-integration over J (a0 r/R ) and the

r-dependence of the equilibrium distribution function f in Eq. (41)
b

[see Eqs. (15) and (16)]. Fourier decomposing the left-hand side of

Eq. (40) with respect to z, and changing the k-summation variable

on the right-hand side of Eq. (40) from k+mk0-nki>k gives

2 a2
-- - k e (k)exp(ikz)

k c 2 R 2
c 

(42)

+ Xm,n(k+nk0 -mk0 ,9066 (k+nk0-mk0)exp(ikz)
k m,n

=0.

Equation (42) gives the final dispersion equation

D (k,w)6 (k) + r (k+Nko' (k+Nk0) 0 , (43)
0 e + X1,+NO~) (k+

N#0

-l 0
where = + , and D and XN are defined by

N#0 N=-- N=l

2 ~a 2D 0 (k'W [2 - k2  R 2J + R(kw) (44)

c

and
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XN (k+NkO,) Xn-N,n (k+Nk0,W) . (45)

The dispersion equation (43) can be used to investigate stability

properties for a wide range of system parameters. To lowest-order,

the stability analysis in Sec. IV is based on a diagonal approximation

to Eq. (43), i.e.,

D0(k,w) = 0 , (46)

which neglects the coupling of 6 e(k) to the higher harmonic dependence

in 6E (k+Nk0) for N#0. Making use of Eqs. (44) and (45), the

approximate dispersion relation (46) reduces to

2 a2
k2 01 x (k,w) 0 (47)

c 2R n=- n,n
c

which is analyzed in Sec. IV.

C. Susceptibility for a Nonuniform Beam

We now evaluate the susceptibility X m,n(k,w) defined in Eq. (41)

for the specific choice of radially nonuniform beam equilibrium in

Eq. (16). The evaluation of x (k,w) proceeds in a manner similar

to Ref. 1 with the important difference that the p,- and p Z-integrations

in Eq. (41) select spatially nonuniform values of p, and ymc for the

choice of f in Eq. (16). In this regard, it is convenient to define



23

PLb = Ybm^Vib

Pzb = YbmVb ' (48)

222 (1+p2b/M2c2)1/2 21- /2 -1/2
Yb= zb b;/

2
(Heretofore, yb has been a convenient scale factor, with Ybmc a

measure to the characteristic electron energy.) It is clear from

Eq. (16) that the delta-function form of f selects the values of
b

perpendicular momentum p, = plO(r), total energy ymc2 = Y r)mc2

perpendicular velocity v, = p1 /ym = V10(r), and axial velocity vz

p /Ym = Vbo(r), where

2 2 r 2

^2 b 1/2

YO~r b 1 + Lb r (49)

- c Rb-

V.LO(r) - Y(r) RLb(b-r 1/2

Yb
Vb (r) E Vb

bO b y 0(r)

for 0 < r < Rb. Note from Eq. (49) that p1 0 (r) and V1 0 (r) are highly

nonuniform across the beam cross-section, assuming maximum values

on the axis of the beam (r=O), and minimum values of zero at the edge

(r=b). theothr hndfor2 2of the beam (r= ). On the other hand, for Vib/c << 1, the variation

of y0 (r) and VbO (r) is relatively weak over the beam cross section.

Substituting Eq. (16) into Eq. (41) and carrying out the

integrations over p, and pz, we find after some straightforward but
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tedious algebra that X m (k,w) can be expressed as

2

Xm,n(kw) 4 - Rb dr r J2 ( 0c [(R /2)J2 (a0  0 c

c b 0

2 2) 2
V2 O(r) (k+nk 0 -mk 0)c ]0+ (50)

c b2 Vb YO

V2 
-

cb~r)b (w0 -(k+nk -mk )(k+nk )c 2i

c2 w-(k+nk 0)V yOwcb yb/YO 0 JI

+ (cb '-W cb) ~

2 2
where pb b e b, wcb = eBO/Y bmc, and YO(r) and VIO(r) are defined

in Eq. (49). Here, emn is defined by1

E n e6B \ m/e6B
m,n (k=Z) kcpz (51)

z)zzp b z)

The r-dependence of the integrand in Eq. (50) is generally quite compli-

cated. For present purposes, we assume Vj,/c <<1 and approximate

YO(r) = Yb in Eq. (50). This gives the approximate result
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Xm,n (k,w)

I

2= 2 1 
dr r J ao9

4 C [(R /2)J 2 (a0 )] 0
L)

( cb B ( cb 6B
m k0 b B n kOVb B 0

( n-m 2[w-(k+nk -mk
w-(k+nk0 b )-wcb 0 b

lb
+ -

VLb

2
C

(1r2 (k+nkO-mk)c
2

b m,n

r2 2-(k+nkmk 0)(+nk)c2
^2 w-(k+nk 0 )vb cb

(52)

)
+ (Wcb -b 'wc)

In Eq. (52), the r-dependence of the integrand is of the form

rJ1 (aor/Rc) and r2 (a2r/Rc)(1-r/) We'introduce the geometric

factors g, and g2 defined by

1A

g2 2 dr r
[(R /2)J (a O)] 0

2

c J (OR (a0 +

J (aOr
R

(1 J 2 a0%

and

1
2 2

2 [(R / a%]

2 2
3R2 2 ( f 0 + ~ a0% )

R
c 0

(53)

R)

( 1 2R
C

(54)

[dr r 2 2 a
J 0 2 1 OR Rc

kb
09 R 1 OR R

c
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Note from Eq. (53) that g1 =1 for a uniform density beam filling the

waveguide (Rb/Rc=l). On the other hand, for Rb=Rc, it follows from

Eq. (54) that g2 = (2/3) . Figure 2 shows plots of the

geometric factors g1 and g2 versus ^b/Rc for several values of Z.

Note that g, and g2 increase monotonically for increasing Rb/Rc.

Substituting Eqs. (53) and (54) into Eq. (52), we can simplify

the expression for X mn (k,w) for general values of m and n. In the

approximate dispersion relation (47), however, only the diagonal terms

are retained. For m-n, Eqs. (52) - (54) give for the

susceptibility

2

(k,w) = -b Z2 Mcb 6B
Xn,n 4 2 n k b B

c gb 0

glf1 (W) 2 gf(W)
x b g (55)
S w-(k+nk0  b cb 2  [-(k+nk 0 Vb-Wb 2)

+ (cb wcb

Here, w2b = 4brfi e = b , and are defined in Eqs.

(53) and (54), and fI(w) and f2 (w) are defined by (for m=n)

^ 22Vitb g2 kc2
f (W) = 2 (w-kVb) + Lb 92 , (56)

Sc 21 b n,n

f2 M) = w2 - k(k+nk0)c2 .57)

In overall form, Eq. (56) is similar to the result obtained in Ref. 1

for the case of a uniform beam with infinite cross section. There are

important differences, however, associated with the dependence of

Xn,n (k,w) on the geometric factors g, and g2 '
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IV. ANALYSIS OF DISPERSION RELATION

A. Approximate Dispersion Relation

Making use of the expression for Xn,n

approximate dispersion relation (47) for a

2 2 2

k2 _ 0 = p 2 cb
-2 k 2 c2 n k V/ - c n=--C nw kOb

2(, V1f(W) ib.
[1w- (k+nkO)b c2

(k,w) in Eq. (55), the

tenuous beam can be expressed as

_B
B 0

[ 2 (2(W)V 2 )
[W-(k+nk 0 )Vb cb]2

(58)

+ (cb Wcb)

The dispersion relation (58) clearly has a very rich harmonic content,

and Eq. (58) can be solved numerically retaining several terms in the

summation over n. For present purposes, we assume that the harmonics in

Eq. (58) are well isolated, and investigate stability behavior

near cyclotron resonance with polarity

w - (k+nk O)Vb = +wcb ' (59)

for a particular choice of harmonic number n. Equation (58) can then

be approximated by

(w2 -c2 k-a c 2/R )[w-(k+nk bV b 2
Ok c 0 nk)b cb]

=1 2 2 ("cb 6_B-
4 pb' n k b )

v2-
Vib

x gf1(W) [W-(k+nk O)Vb-wb] - 2 92 f2(W

(9 c

(60)
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where g, g2 fl, and f2 are defined in Eqs. (53), (54), (56), and (57).

For w = (k+nk)Vb+ cb' the first term on the right-hand side of

Eq. (60) is negligibly small, and the dispersion relation can be

approximated by

(W 2c 2k2 c2k 2 ) [w-(k+nkO b-b]
2

1 2 1 b 12 Icb6B(1

^ 2
+ 4 g2 w b~ \ObB) (61)

1 2 Vib 2 (wb B (knkc 2 -k2c2
4 52"wpb 2 ~n SOb BO nc Z

The dispersion relation (60) is solved numerically in Sec. IV.C,

and analytic estimates of the instability growth rate are made in

Sec. IV.B.

B. Analytic Results

For a tenuous beam with (w2b/c k )(2b/c2) << 1, we look for

solutions to Eq. (61) near the simultaneous zeroes of

S= (c2 k +c2 kZ)1/2

(62)

w = (k+nk0 Vb + W cb

Here, k ±Z= a Z/Rc is the effective perpendicular wavenumber, and we

have chosen the branch with positive frequency (w>O) in Eq. (62).

Shown in Fig. 3 are plots of w/ck0 versus k/k0 obtained from Eq. (62)

for the choice of parameters kZ/k0=9.58, Vb /c=0.86 6 , and cb /cko=4.783,

and several values of the harmonic number n. Denoting the simultaneous
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solutions to Eq. (62) by ( ,ik ), we find for the upshifted frequency

and wavenumber

2 2  1/2

(i =Y2 (n k W+a 1 Z 1(3
2n b 0 b cb +b 2 J , (63)

Yb(nk OVbcb

and

2 2 1/2

k 2 _____k _+k =b(nk b bbWb+ 1 - J Z (64)

Yb k0 b cb

where 8 and y are defined by b/c and 2 (-$2)-1/2. Noteb b b b db (1% bot

that (n ,k ) corresponds to the uppermost intersection points in Fig. 3.

Moreover, for k± -O, Eqs. (63) and (64) reduce to the familiar results

obtained in Ref. 1 for a uniform density beam with infinite transverse

dimension (Rb,Rco). For solutions to exist, it is clear from Eqs. (63)

and (64) that the inequality

2 2
22 c a0 2 2
c K = 2 < yb(nk OVbwcb) , (65)

c

must be satisfied, which we assume to be the case in the remainder

of Sec. IV.

For purposes of making an analytic estimate of the growth rate,

we express w=! +6w and k=k +6k in Eq. (61), treating (w2 k 2)(2 2
weexrsn n (lb/ n (VLb/c)

as a small parameter. To leading order, this gives

W- C2 1 gw I Lc2  6k) (6w-Vb6k) + g2wpb V 2 (66)

2 2
1 2 VLb 2 (knnk0-k.L )c

8 '22 pb c2 n (k +k )1/2
nI
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where denotes J2 (cb6B/k VbBo), use has been made of(! = (c k+c2 k 1)

[Eq. (62)], and (o ,k ) are defined in Eqs. (63) and (64). As a simplen n

analytic estimate of the characteristic maximum growth rate, we consider

Eq. (66) for 6k=0. Typically, the J contribution on the left-handn

side of Eq. (66) makes a small contribution in comparison with the

right-hand side, and Eq. (66) can be approximated by (for Sk=0),

2 2
3 r3 1 2 Lb 2 (knnk0-k) c

n 8  2wpb 2 n 2 2 1/2 (67)

c (kn+kig)

2
For sufficiently short emission wavelength that k nnk0 > kI,

Eq. (67) gives

2 2 2 1/3

V3 V3 2 2 Lb (knnk0-kZ )c

I2~ =- n ~4 22wpb n 2 ^ 2 2 1/2 '
2 "n c2  (k +k2 9)1 (8n (68)

Re6w =- 2n

Several points are noteworthy from Eq. (68). First, for a given

harmonic number n, the characteristic maximum growth rate Im6w defined

in Eq. (68) will be largest whenever the argument of Jn corresponds

to the first zero of J'(x) = 0, i.e., when
n

Wcb 6B = (69)
k0 b B0 n,l'

where a is the first zero of J' (x)=0. Second, since Im6w scales
n,l n

as (\±b/c) 2/31/3, the growth rate for the longitudinal wiggler FEL

can be substantial. Third, the growth rate increases as the geometric

factor g2 is increased (see also Fig. 2). Moreover, the free

electron laser instability described by Eq. (61) is inherently
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broadband in the sense that many harmonics are unstable, even when

(Wcb/k0 Vb) (SB/B0 ) is chosen to maximize emission for a particular

value of n [Eq. (69)]. Finally, in the limit of very short emission

2
wavelength with nnk 0 > kik, it follows from Eq. (68) that Imdw can

be approximated by

1/3

Im6 W = g ( 2wbnkocJn .Lb (70)

C. Numerical Results

The dispersion relation (60) is a fourth-order algebraic equation

for the complex eigenfrequency w. Equation (60) has been solved

numerically over a wide range of system parameters. In this section,

we summarize selected numerical results for 6B/B0 # 0 (longitudinal

wiggler free electron laser) and for SB= 0 (cyclotron maser).

Longitudinal Wiggler Free Electron Laser: Shown in Figs. 4 and 5

are plots of the normalized growth rate Imw/ck 0 versus k/k0 obtained

numerically from Eq. (60). The parameters common to both Figs. 4 and 5

are kO AbOl Yb 2 , aOi =3.83 (Z=1), ViJb/c =0.1, Vb/c= 0.8 6 6 ,

Spb/ck 0=0.25, and 6B/B0 = 1/3. In Fig. 4, we have chosen the parameter

(6B/BO (cb/ck0) = a 1 = 1.841, which maximizes the growth rate for n= 1.

On the other hand, in Fig. 5 we have chosen (6B/Bc 0 cb/ck0 )= a3,1= 4 .201,

which maximizes the growth rate for n= 3. For example, comparing Figs.

4(a) and 5(a), we note that there is a considerable upshift in maximum

growth from normalized wavenumber k/k 0= 31.5 in Fig. 4(a) (n=1) to k/kO

97.3 in Fig. 5(a) (n= 3), as the parameter (6B/B( cb/ck 0) is increased

from 1.841 to 4.201. Figures 4 and 5 also illustrate the strong depen-

dence of growth rate on finite radial geometry. In particular, the plots
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in Figs. 4(a) and 5(a) are presented for the case where the conducting wall

is relatively close to the electron beam (Rb/Rc=0.25, gl=3.792 xl0 2

and g2 =1.314 x10-2 ), whereas the plots in Figs. 4(b) and 5(b) correspond

to the case where the conducting wall is much further removed from the

-3 -4
electron beam (Rb/Rc 0.1, gl 1.105 x 10, and g2 = 3.704 x 10). As

/Rc is decreased, we note that there is both an upshift in the value of

k/k0 corresponding to maximum growth as well as a significant reduction in

growth rate. [Compare Figs. 4(a) and 4(b) or Figs. 5(a) and 5(b).] It is

clear from the analytic results in Secs. IV.A and IV.B and the numerical

results in Figs. 4 and 5, that there is a strong influence of radial

geometry on the growth properties of the longitudinal wiggler free elec-

tron laser. Indeed, as expected from Figs. 2 and Eqs. (60) and (61), the

closer the conducting wall (R c) is positioned to the beam radius (s), the

larger the instability growth rate becomes. Of course, this is associated

with the fact that g2 increases as Rb/Rc is'increased [Fig. 2 and Eq. (54)].

Another striking feature of Figs. 4 and 5 is that the instability is

relatively broadband. Even though (6B/B )(Wcb /ck0 ) is chosen to maximize

Imw for a particular value of n, adjacent harmonics still have relatively

strong growth. (See also the discussion at the end of Sec. IV.B).

Cyclotron Maser Instability: In the limiting case where 6B= 0 and the

applied magnetic field is given by the uniform value B 9z, only the n= 0

term survives in Eq. (60) with J (0) = 1. The resulting dispersion rela-

tion applies to the cyclotron maser instability for the choice of solid

electron beam equilibrium distribution in Eqs. (6) and (16). The dispersion

relation (60) has been solved numerically for the growth rate Imw assuming

6B= 0. Typical results are summarized in Fig. 6, where the normalized

growth rate Imw/wcb is plotted versus kRb for the choice of parameters
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Yb = 2, a % =3.83 (Z= 1), Vb /c0. 1, Vb/c =0.866 and Wpb Wcb = 2. 29 x 10-2

To illustrate the influence of finite radial geometry, we have chosen

-2
Rb/Rc = 0. 2 5 in Fig. 6(a) (corresponding to g, = 3. 792 x 10- and g2

1.314x 10-2 and b/R= 0.1 in Fig. 6(b) (corresponding to gl= 1.105 x

10-3 and g2 = 3.704 x 104 ). As for the case of the longitudinal wiggler

free electron laser (B# 0), it is clear from Fig. 6 that the relative

positioning of the beam radius (Rb) and the conducting wall radius (Rc)

also has a large influence on the strength of the cyclotron maser

instability. Indeed, the growth rate increases as {/Rc is increased.

[Compare Figs. 6(a) and 6(b).] As in Figs. 4 and 5, there is a con-

commitant upshift in k/k0 corresponding to maximum growth as Rb/Rc is

decreased.
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V. CONCLUSIONS

In this paper, we have investigated the influence of finite radial

geometry on the longitudinal wiggler free electron laser instability.1

The analysis is carried out for a thin, tenuous electron beam propagat-

ing down the axis of a multiple-mirror (undulator) magnetic field (Sec.

III). It is assumed that k2 <<l and that the amplifying radiation

field has TE-mode polarization with perturbed field components (6E,'

6B, 6B ). A very important feature of the linear stability analysis

(Secs. III and IV) is that the positioning of the beam radius relative

to the conducting wall radius (as measured by Rb/Rc, say) can have a

large influence on the growth rate and detailed stability properties

for perturbations about the choice of equilibrium distribution f '

in Eq. (16).

Several points are noteworthy from the stability analysis in Sec.

IV. First, for a given harmonic number n, the characteristic maximum

growth rate [Eq. (68)] is largest whenever the argument of J corre-

sponds to the first zero of J'(x)= 0, i.e., when (wcb/k Vb)(6B/BO

a where cc is the first zero of J' (x) =0. Second, the growth
n,l' n,l n

2/3^ 1/3
rate scales as (VJLb/c) nb , which can lead to substantial gain for

the longitidunal wiggler free electron laser. Third, there is a strong

dependence of stability properties on the positioning of the beam

radius (R) relative to the conducting wall radius (Rc). In particular,

the growth rate Imw increases as Rb/Rc is increased, and the detailed

dependence of Imw on Rb/Rc was examined numerically in Sec. IV. Another

important feature of the results is that the instability is inherently

broadband in the sense that many harmonics are unstable, even when

(Wcb /k0 b )(6B/B 0 ) is chosen to maximize emission for a particular value

of n.
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Finally, also in Sec. IV, we investigated stability properties in

the limiting case where 6B= 0. This corresponds the cyclotron maser

instability for perturbations about the solid electron beam equilibrium

f0(x,) specified by Eq. (16). The numerical results for 6B= 0 also

exhibited a strong dependence on radial geometry (R./Rc).
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FIGURE CAPTIONS

Fig. 1 Longitudinal wiggler free electron laser configuration and

coordinate system.

Fig. 2 Plot of geometric factors (a) g1 [Eq. (53)] and (b) g2 (Eq. (54)]

versus R./Rc for several values of Z.

Fig. 3 Plot of w/ck0 versus k/k0 obtained from Eq. (62) for yb 2,

V b/c =0.866, aO= 3.83, w cb/ck= 4.78 and k Rc = 0.4. The upshifted

interception points (wn n ) correspond to Eqs. (63) and (64), where

k = a k/RC

Fig. 4 Plot of normalized growth rate Imw/ck0 versus k/k0 obtained

numerically from Eq. (60) for kORb0., b 2, /c = 0.1,

Vb /c=0.866, at = 3.83 (Z= 1) w pb /ck = 0.25, 6B/B = 1/3, and

(6B/B0 cb /k0 V) = 1.841 for (a) k0R c = 0. 25, g,=

-2 - 20c
3.792 x 10 and g2 = 1. 314 x 10-, and for (b) k R = 1.0, R/Rc

-3 -4
0.1, g=1.105 x 10 and g2 = 3.704 x 10

Fig. 5 Plot of normalized growth rate Imw/ck0 versus k/k obtained

numerically from Eq. (60) for kO '1' b = 2, V b/c = 0.1,

Vb/c= 0.866, a =3.83 (Z= 1) , a) /ck =0.25, 5B/BO = 1/3, and
0 P, pb 00

(6B/BO)(b/ck) 4.201 for (a) k Rc= 0.4, Rb/Rc= 0.25, =

3.792 x 10 2 and g2= 1.314 x 10- 2, and for (b) k Rc = 1.0, /R

0.1, g, = 1.105 x 10 3 and g2 = 3.704 x 10 4
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Fig. 6 Plot of normalized cyclotron maser growth rate Im/w cb versus k

obtained numerically from Eq. (60) for 6B= 0, yb 2, V Lb/c = 0.1,

V/c =0.866, a =3.83 (Z= 1), and w b = 2.29 x 10-2 for
b 09. pb cb
(a) Rb/R=O. 2 5 , g1 372l9 -2=

=and g2 = 3.314 x 10-, and for

(b) Rb/Rc .1, 1.105 x 10 3 and g2 =3.704x10.
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