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ABSTRACT

The linearized Vlasov-Maxwell equations are used to investigate detailed
free electron laser (FEL) stability properties for a tenuous relativistic
electron beam propagating in the z-direction through the planar wiggler

magnetic field BO(x) = -Bwcosk 0z . Here, BW = const. is the wiggler
amplitude, and X0 = 2n/k0 = const. is the wiggler wavelength. The theo-
retical model neglects longitudinal perturbations (6 = 0) and transverse
spatial variations (a/ax = 0 = D/ay). Moreover, the model is based on the
Vlasov-Maxwell equations for the class of self-consistent beam distribution
functions of the form fb(z,p,t) = nb6(px )6(Py )G(z~p zt), where p = Ymv is the
mechanical momentum, and Py is the canonical momentum in the y-direction. For
low or moderate electron energy, there can be a sizeable modulation of beam
equilibrium properties by the wiggler field and a concomitant coupling of the
k'th Fourier component of the wave to the components k±2k0, k±4k,--- in the
matrix dispersion equation. In the diagonal approximation, investigations of
detailed stability behavior range from the regime of strong instability (mono-
energetic electrons) to weak resonant growth (sufficiently large energy
spread). In the limit of ultrarelativistic electrons and very low beam
density, the kinetic dispersion relation is compared with the dispersion re-

lation obtained from a linear analysis of the conventional Compton-regime FEL
equations. Finally, assuming ultrarelativistic electrons and a sufficiently
broad spectrum of amplifying waves, the quasilinear kinetic equations appro-
priate to the planar wiggler configuration are presented.
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ABSTRACT

Use is made of the linearized Vlasov-Maxwell equations to investi-

gate detailed free electron laser (FEL) stability properties for a

tenuous relativistic electron beam propagating in the z-direction

through the constant-amplitude planar wiggler magnetic field B 0(x)

=-B wcosk0 z . Here Bw =const. is the wiggler amplitude, and X0 = 2/k 0
= const. is the wiggler wavelength. The theoretical model neglects

longitudinal perturbations (6$= 0) and transverse spatial variations

(W/ax=0= 3/3y), and the beam density and current are assumed to be

sufficiently low that equilibrium self fields have a negligible effect.

The radiation field is assumed to be plane polarized, and the theoret-

ical model is based on the Vlasov-Maxwell equations for the class of

self-consistent beam distribution functions of the form fb(z,p,t)

=nb (p )6 (Py)G(z,pz t), where k=ymv is the mechanical momentum, and

Py is the canonical momentum in the y-direction. The linear stability

analysis makes no apriori restriction to ultrarelativistic electrons.

Indeed, for low or moderate electron energy, there can be a sizeable

modulation of beam equilibrium properties by the wiggler field and a con-

commitant coupling of the k'th Fourier component of the wave to the com-

ponents k±2k0, kt 4ko *. In the diagonal approximation, the matrix

dispersion equation is used to investigate the detailed dependence of

free electron laser growth rate on the choice of distribution function

G+(Y0 ). Investigations of stability behavior range from the regime

of strong instability (monoenergetic electrons) to weak resonant growth

(sufficiently large energy spread). In the limit of ultrarelativistic

electrons and very low beam density, the kinetic dispersion relation

is compared with the dispersion relation obtained from a linear

analysis of the conventional Compton-regime FEL equations. This

comparison is made for general beam equilibrium G+ ( 0 ). Differences

between the two dispersion relations are traced to the eikenol

approximation and the assumption of very narrow energy spread made

in the derivation of the conventional Compton-regime FEL equations.

Finally, assuming ultrarelativistic electrons and a sufficiently

broad spectrum of amplifying waves, the quasilinear kinetic equations

appropriate to the planar wiggler configuration are presented.
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I. INTRODUCTION

Free electron lasers, as evidenced by the growing

theoretical5-33 and experimental34-47 literature on this

subject, can be effective sources for the generation of

coherent radiation by intense electron beams. Recent

experimental investigations 7 have been very successful

over a wide range of beam energy and current ranging from

experiments at low energy (150-250keV) and low current

(5A-45A),45 to moderate energy (3.4MeV) and high current

(0.5kA), 46,47 to high energy (20MeV) and low current (40A).44

Theoretical studies have included investigations of nonlinear

effects 5-15 and saturation mechanisms, the influence of finite

16-21geometry on linear stability properties, novel magnetic

field geometries for radiation generation,21-26 and

fundamental studies of stability behavior. 27-33 Because of

the increased experimental emphasis on planar wiggler

44,46,47.geometry, in the present analysis we make use of

the linearized Vlasov-Maxwell equations to investigate

detailed free electron laser (FEL) stability properties

for a tenuous relativistic electron beam propagating in

the z-direction (Fig. 1) through the constant-amplitude

planar wiggler magnetic field [Eq.(1)I

0 AB (x) = -B cosk ze
^VPU w 0 x

Here, Bw = const. is the wiggler amplitude, and

X = 2i1/k0 = const. is the wiggler wavelength. The

theoretical model neglects longitudinal perturbations

(6$=Q) and transverse spatial varizations (D/Dx = 0 = a/Dy),
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and- the beam density and current are assumed to be sufficiently

low that equilibrium self fields have a negligible effect

(E = 0 = B ). As illustrated in Fig. 1, the radiation

field is assumed to be plane polarized with electric and

magnetic field components 6E = 6E (z,t)e and 6B = 6B (z,t)e
'V y ,,y (V x _.x

Moreover, the theoretical model is based on the Vlasov-Maxwell

equations for the class of self-consistent beam distribution

functions of the form [Eq.(9)]30,31

fb(z,p,t) = nb 6ipx) MP )G(z,pz#t),

where p = ymv is the mechanical momentum, and P
I\; (V y

= Py -(eBw/ck 0 )sink0 z -(e/c)dA (z,t) is the canonical

momentum in the y-direction, which is exactly conserved.

Note from Eq.(9) that the transverse motion of the beam

electrons in the x- and y-directions is assumed to be "cold."

The kinetic stability analysis in Secs. II-V is based on a

detailed investigation of the linearized Vlasov-Maxwell

equations for the perturbed distribution function 6G(z,p zt)

= G(z,p ,t) - G (Z,pz) and the perturbed vector potential

6A y(z,t). Althoguh the principal emphasis is on temporal

growth (FEL oscillator), extension of the analysis to

spatial growth (FEL amplifier) is relatively straightforward.

As motivation for this article, we remind the reader

that conventional treatments8,9 of the Compton-regime free

electron laser instability for a planar magnetic wiggler

are based on an analysis of the single-particle orbit

equations assuming a monochromatic waveform. The self-

consistent evolution of the wave amplitude and phase are



4

then calculated8 ,9 from Maxwell's equations, where the wiggler-

induced current is determined by a statistical average over

the single-particle orbits. While such an approach8,9 has

appealing features (e.g., the model is nonlinear and

incorporates trapped-electron dynamics), there are also

some shortcomings. For example, the analyses in Refs. 8 and 9

assume a monochromatic waveform for the radiation field,

ultrarelativistic electrons, and an eikenol approximation

to the wave field. Moreover, the statistical averaging

procedure is partially based on an intuitive superposition

of particle orbits. The present kinetic analysis, based

on the Vlasov-Maxwell equations, is intended to investigate

linear stability properties for a planar wiggler FEL from

a different perspective. The outline and objectives of the

article can be summarized as follows:

(a) We make use of the linearized Vlasov-Maxwell equa-

tions (Secs. II and III) to provide a thorough examination

of free electron laser stability properties for perturbations

about the general class of self-consistent beam equilibria

Go(z,pz) = U(Pz)G'(y ) [Eq.(16)]. Here, U(p ) is the

Heaviside step function defined by U(p ) = +1 for pz >0,

2 2 4 2 2and U(p )=O for p<0. Moreover, y0 mc = [m c + c p2

2 2 2 2 1/2+ (e B2/k )sin k is the electron energy in thew 0 k0 ]

equilibrium wiggler field. The basis for performing

statistical averages is well established in the Vlasov-

Maxwell formalism.
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(b) In Sec. III, to evaluate the perturbed distribution

function 6G(z,pZt), use is made of the exact particle

trajectories in the equilibrium wiggler field

-Bwcosk~z . The analysis makes no apriori restriction to

ultrarelativistic electron. Indeed, for low or moderate

electron energy, there can be a sizeable modulation of beam

equilibrium properties by the wiggler field and a concommitant

coupling of the kth Fourier component of the wave field to

the components k t 2ko, k t 4k0 '," . This is evident from

the formal matrix dispersion equation (58) and the definition

of electron susceptibility X(k,w,k0 z) in Eq.(63).

(c) In the diagonal approximation, Eq.(58) reduces

to the dispersion relation (77). In Sec. IV, we make use

of Eq.(77) to investigate the detailed dependence of the free

electron laser growth rate on the choice of distribution

funtion G (y0 ). Investigations of stability behavior range

from the regime of strong instability (monoenergetic

electrons) to weak resonant growth (sufficiently large

energy spread). For the case of weak resonant growth,

the growth rates are calculated numerically for parameter

regimes characteristic of the Los Alamos experiment,44 and

the Livermore experiments planned on the Advanced Test

Accelerator (ATA).47

(d) The limiting case of ultrarelativistic electrons

and very low beam density is considered in Sec. V. We

compare the resulting kinetic dispersion relation (106)
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with the dispersion relation (127) obtained from a linear

analysis of the conventional Compton-regime FEL equations. 8 ,9

This comparison is made for a general beam equilibrium G (Y0 ).

Differences between the two dispersion relations can

be traced to the eikenol approximation and the assumption

of very narrow energy spread made in Refs. 8 and 9.

(e) Finally, assuming ultrarelativistic electrons and

a sufficiently broad spectrum of amplifying waves, in Sec. V

we summarize the quasilinear kinetic equations appropriate

to the planar wiggler configuration considered in the present

analysis. This represents a straightforward extension of the

quasilinear theory development for the case of a helical

magnetic wiggler field.1 5 The quasilinear dispersion

relation (128), the kinetic equation (129) for the dis-

tribution of beam electrons G 0(yt), and the kinetic

equation (131) for the wave spectral energy density k (t)

describe the self-consistent nonlinear evolution of the

beam electrons and radiation field in circumstances where

the wave autocorrelation time is short in comparison with

the characteristic growth time [Eq.(92)].
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II. THEORETICAL MO[EL AND ASSUMPTIONS

A. Theoretical Model

In the present analysis, we consider a relativistic electron beam

propagating in the z-direction through the planar wiggler magnetic

field (Fig. 1)

B x) = -Bwcoskoz (1)

Here, Bw = const. is the wiggler anplitude, and X0 = 2ir/k 0 is the

wiggler wavelength. The electron beam is assumed to have uniform

cross section, and the beam density and current are assumed to be

sufficiently small that the effects of equilibrium self-electric and

self-magnetic fields can be neglected. Moreover, for a tenuous

electron beam, the analysis is carried out in the Conpton regime; thus

longitudinal perturbations are neglected (60=0).

We consider transverse electromagnetic fields with one-dimensional

spatial variations, where 3/3x=0=a/Dy, and a/az is generally non-

zero. Introducing the perturbed vector potential

64(gt) = 6Ay (z, t)(y (2)

the electramagnetic field perturbations, 6 (, t) and 6d(5, t), can be

expressed in the Coulanb guage as

6E(x,t) = - L- (gCt) = - 6Ay(z,t) ,c at c~t at kEA~ y

(3)

5B(x,t) = Vx5A(g,t) = - - 6A (z,t)tx

There are two exact single-particle constants of the motion in the

canbined equilibrium and perturbed field configuration described by

Eqs. (1) and (3). These are the mechanical mmentum p and the
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canonical mranentum P transverse to the beam propagation direction.

Here, P is defined by
y

P = p - A0 (z) - A (z -,t) ,(4)y y c yw c y

where -e is the electron charge, c is the speed of light in vacuo,

and A (z) is the vector potential for the equilibrium wiggler fieldYW
in Eq. (1), i.e.,

B
A (z) = w sinkoz (5)

In general, the beam distribution function fb(z,R,t) evolves

according to the nonlinear Vlasov equation 3 0 , 31

-+ Z - 2-- e + = 0 . (6)

The particle velocity Z and moentumR are related by

(= 2 2c2 r/2 '

where m is the electron rest mass. In Eq. (6), the field polarization

is prescribed by Eq. (3), and 6A (z,t) is determined self-consistently

fran the Maxwell equation

a - A(z,t)= - ±Le f d3p v f(z,(,t)-f0 (z,o) . (8)
c at Y32t

0
Here, fb(z,R) is the equilibrium distribution function (3/3t=0) in

the absence of perturbed fields (6dA=0).

B. Nonlinear Vlasov-Maxwell Description

In the present analysis, we consider the class of exact solutions

to the nonlinear Vlasov equation (6) of the form

(9)fb(z,,t) = ^b6(pi)6(P )G(z,pz,t) ,
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where P is defined in Eq. (4), fi=const. is the ambient electron density,

and G(z,pz,t) is the one-dimensional distribution function in the

phase space (z,pz). In Eq. (9), the effective transverse motion of the

beam electrons is "cold". Making use of the fact that px and P

are ecact constants of the motion in the cobined equilibrium and

perturbed fields [Eqs. (1) and (3)], we substitute Eq. (9) into

Eq. (6) and integrate over p and p . This readily gives for the

nonlinear evolution of the one-dimensional distribution function

G(z,pz,t) 30,31

+ v - Mc2(j Y) G(z,pz,t) = 0 . (10)

In Eq. (10), YT(z,pz,t)mc2 is the particle energy evaluated for p=O and

PY:=py- (e/c) (A0 +6A)=0,

p 2 2 1/2
YT(zpz,t) = (1 + + [A (z)+6 (z,t)] (11)

and vz is the axial velocity defined by v =a(y2 mc 2/apz, i.e.,

pzv= (12)z y

Moreover, substituting Eq. (9) into Eq. (8), the Maxwell equation

for 65A(zt) becames 3 0 , 3 1

1 2 a 2 2  0 r r pz2)2
--- 6A (z, t) =- (~ y + f ) G

C. at - az2 Y c I T(3
(13)

0 dz
AYw fYO GO

^ A2 -4re2/mi h
where G(z,pz,t) evolves according to Eq. (10), wp=4 2

nonrelativistic plasma frequency-squared, and Y0 (z,pz) is defined by

[see Eq. (11) with 6A =0],
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p2 e22 Y/2

yO (z,pz) =(1 + m22 + 2 2 sin Oz (14)
.2. M2 c 4k 0

In Eq. (13), G0 (z,pz) is the beam equilibrium distribution that satisfies

the steady-state Vlasov equation (10) with 3/a t=O and 6A ,=0. That is,

Go(z,pz) solves

vz - 2 z Go(z,pz) = 0 , (15)

where y 0 (z,pz) is defined in Eq. (14), and vz is defined by vz=(y 0mc 2 )/Dpz

pz/y0 m.

C. Beam Equilibrium Properties

Any distribution function Go(zpz) that is a function of the

single-particle constants of the motion in the equilibrium field

configuration described by Eq. (1) is a solution to the steady-state

Vlasov equation (15). Unlike the case of a helical wiggler, 3 1 the

axial namentum pz is not an exact invariant in the planar wiggler

described by Eq. (1). However, the particle energy y0m 2 defined in

Eq. (14) is an exact invariant in the equilibrium field configuration.

Therefore, in the present analysis, we consider the class of equilibrium

solutions to Eq. (15) where the particles are noving in the

positive z-direction (pz>O) and G0 (z,pz) has the general form

GO(z,pz) = U(pz)G6(yo) . (16)

Here, U(p z) is the Heaviside step function defined by

Uzp
U(pz) +1 pz>0  (17)

0 pz<0 .
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It is assumed that none of the electrons are "trapped" by the equilibrium

wiggler field. That is, the form of G (y0 ) in Eq. (16) is such that

Y > 1 + a , (18)

where a is defined byw

eB
a= (19)

mc0

Otherwise, the choice of G6(y 0 ) in Eq. (16) and in the stability

formalism developed in Secs. II and III is quite general.

'T illustrate the spatial modulation (in z) of beam equilibrium

properties by the wiggler field, we consider the example of a nonoenergetic

electron beam where

G (y0) 6(y 0-i) (20)

-2 2
and the constant j satisfies y > 1 + a . Making use of dpz -

(ym 2c 2 /pz)dy0 , the equilibrium electron density n (z)=i dpzGo(z,pz)

can be expressed as

0 (Z) = N 2_1) 1/2 dpz 6 (y 0~)
nb ~b Y mc TO

(21)
2_(2 1/2 - y

= c dy0 p 6(y 0 -i)
Y z

where use has been made of Eqs. (16) and (20). Fran Eq. (14), we

substitute pz=+ic[y 2-1-a sin2 koz]1/ 2 in the integrand in Eq. (21) and

obtain

0 (z) = 2 (22)
(1-K sin2 k z0Z) 1 2

where ^2 <1 is defined by
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2
2awa i 2 

(23)
y -l

Depending on the size of ^2, we note fran Eq. (22) that there can be a

substantial modulation of the equilibrium beam density by the wiggler

field. For exanple, if k0=l n-1 , j=3, and Bw=l.7 kG, then aw=1 and

K =1/8, and the peak-to-minimum density modulation in Fq. (22) is

about 6%.

Other equilibrium properties calculated from Eqs. (16) and (20)

are also modulated as a function of z. For example, the average beam

velocity in the z-direction is defined by Vi(z) =- [iz (pz/yo)Go/(fdpzGo)

Following the procedure used in the previous paragraph, it is readily

shown fran Eq. (20) that

V(z) = Vbl sin ,_ 2 z)/ 2 ,24)

^2 1/2where Vb=c(y -l) /.y Conbining Eqs. (22) and (24), it follows that

n (z) (z)=%b=axnst. (independent of z). This corresponds

to a constant flux of electrons, which is expected from the continuity

equation under steady-state conditions.

D. Linearized Vlasov-Maxwell Euations

We now make use of Eqs. (10) and (13) to derive the linearized

Vlasov-Maxwell equations for small-amplitude perturbations,

6G(z,pz,t) and 6A (z,t), about the beam equilibrium described by

Eq. (16) for general choice of Gt(yo). In this regard, it is useful

to introduce the normalized perturbed vector potential ay (z, t)

defined by

a (z,t) = - - A (z,t) (25)
y 2ic y

and express Eq. (11) in the equivalent form,
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E 2 1/2YT (z,pzt) = 1 + + a sin2k0 z + 2asinkzay(z,t) + a2 (z,t)]

(26)

where a =eBw/mc 2 k0 . For small-anplitude perturbations, Eq. (26) can be

expanded to give the approximate results

awsink0 z

YT YO + Y .y(z,t)

(27)

1 1 awsink0 z
T T - ay(z,t),

~T Yo

where yo(z,pz) is defined by

2

y + + 2sin 2 0 z) 2  (28)

Fquation (27) is valid to leading order in the perturbed vector potential

a (z,t), assuming 2|a <<y2

We now express the distribution function G(z,pz,t) as its equilibrium

value plus a perturbation,

G(z,pz,t) = G0 (z,pz) + 6G(z,pz,t) , (29)

and make use of Eqs. (27) and (29) to simplify Eqs. (10) and (13).

Retaining only the linear terms proportional to 6G( z,pz, t) and a (z, t),

the Vlasov equation (10) gives

+ mC2 a 6G(z,pz,t)

Pz a
=3 awsink0 z ay (z,t) L Go(z,pz) (30)

i do

+ mc 2aw 5 0 ay (z,t) Go (z,pz)'

which describes the evolution of the perturbed distribution function.

Making use of Eq. (15) to simplify the right-hand side of Eq. (30),

the linearized Vlasov equation can be expressed as
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+ a- mc2 6G(,pz,t)at Yomfl3z P

2 (31)
mc aw -L [sinkozay(zt)] G0 (z,p

where y0 (z,pz) is defined in Eq. (28), and GO(z,pz) has the general

form in Fq. (16) . Finally, the perturbed vector potential ay(zt)

evolves according to Eq. (13). Linearizing Eq. (13) and making use

of Eqs. (27) and (29), we obtain

i 2.a2+ ̂  2 ~)-2 dp
-2 2 + Go(z,pz) - a sin 2 z GO(z,pz a(z,t)

'tO 0 3s

J2 Y (32)

= - asink z J G(z,pZt)
c 0

where & =4irIe 2/m, and 6G(z,p ,t) evolves according to Eq. (31).

Equations (31) and (32) are the final versions of the linearized

Vlasov-4axwell equations used in the formal stability analysis in

Sec. III. Keep in mind that Eqs. (31) and (32) are valid for

small-amplitude perturbations about the general class of spatially-

modulated beam equilibria GO(z,pz) = U(pz)Gt(y ) [Eq. (16)).

No a priori restriction has been made to a specific choice

+ 2 22Of G0 yo), nor has K -=a/(yo-l) << 1 been assumred.
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III. DERIVAION OF 'IHE GENERAL EIGENVALUE EQUATIC

In this section, we make use of the linearized Vlasov-Maxwell

equations (31) and (32) to investigate free electron laser stability

properties. First a formal solution for 6G(z,pz,t) is obtained from

Eq. (31) using the method of characteristics (Sec. III.A), and then the

particle orbits are calculated in the equilibrium field configuration

(Sec. III.B). Following a derivation of the exact eigenvalue

equation for ay(z,t) (Sec. III.C), we then simplify the eigenvalue

equation in the diagonal approximation (Sec. III.D), where the coupling

of the k'th Fourier couponent of a to the k2ko, k±4k0,.... components

is neglected.

A. Solution for 6G by the Method of Characteristics

The formal solution for 6G(z,pz,t) can be obtained from the

linearized Vlasov equation (31) by using the method of characteristics.

For the case of temporal growth (single-pass FEL oscillator), the

solution to Eq. (31) is given by

2 t'
6G(z,pz,t) = mn a dt' [sink z'ay(z',t') - -r GO(z',p')

(33)

where the initial value (at t'=--) has been neglected. Here, z' (t')

and p (t') =y mdz' /dt' are the phase-space trajectories in the

equilibrium wiggler field -Bwsinkezk. Since Y6=yo=constant (independent

of t'), the axial orbit z'(t') satisfies

dz' 2 (34)
Ty dE 0 -awsin 0z') ,(
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where p'>O is assumed, and use has been made of Eq. (28). In Eqs. (33)

and (34), the boundary conditions on z' (t') and p'(t') are z' (t'=t)=z and

p' (t'=t)=Pzy 0mz. That is, the phase-space trajectory (z',p')

pass through (z,pZ) at time t'=t.

We examine Eq. (33) for p >0 and make use of GO(z,pz)=U(pz)G(0Yo)

[Eq. (16)] . It readily follows that

a + v' z G 9(y6)

5 G6 (y6) =3 .-2 (35)
Smc 3yO

in the integrand in Eq. (33). Since y6y 0 =const. along an equilibrium

trajectory, the factor 3G6/3y0 can be taken outside of the t'-integral

in Eq. (33). This gives

a 3G (yO) t'
6G(z,pz,t) = wO - dt'v a [sinkz'ay (z',t'), (36)

YO 3Y0  z

for pz>0. We further sinplify Eq. (36) by making use of

di- [sink z'a (z',t')] =( + v' -Lz) [sinkoz'a (z',t')] , (37)

where d/dt' is the time derivative along an equilibrium orbit.

Substituting Eq. (37) into Eq. (36) and integrating by parts with

respect to t', we find (for pZ>0)

= awsink0 za (z, t) 3G

YO 3GYOt

dt'sink z' ay(z',t') ,
0 o 0 at

where use has been made of z' (t'=t)=z, and ay (z',t'+-o)=0 is assumed.

In Sec. III.C, the formal solution for 6G(z,pz,t) in Eq. (38)

is substituted into the linearized Maxwell equation (32), and properties
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of the resulting eigenvalue equation for a (z,t) are investigated.

Although the principal emphasis in the present analysis is on temporal

growth (FEL oscillator), for future reference, we conclude this

section by stating the generalization of Eq. (38) to the case of

spatial growth (FEL amplifier). Same straightforward algebra gives

(for pz

awsink 0 za (z,t) aG+
6G( z, pz,t) = ---0

YO ay

(39)
a aG+ Z dz' Z a

W _ sink0z' a (z',t')

where a (z'- , t') = 0 is assumed, and t' (z') is the inverse solution

of Eq. (34) with boundary conditions t' (z'=z)=t and v' (z'=z)=vz z

B. Particle Orbits in the Equilibrium Wigler Field

The orbit integral on the right-hand side of Eq. (38) requires a

determination of the particle trajectory z' (t') in the equilibrium

wiggler field 0 ()=-Bwcosk 0 z*x Defining

80 =( 12) , (40)

YO

and 
2

2 w,
K= 2 (41)

YO-

the equation of motion (34) can be expressed as

d (k z') = k0 ac [1- csinn 0 z ']/2 (42)

The solution to Eq. (42) can be expressed in terms of the elliptic

integral of the first kind
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F(n',K) =2 d / (43)
S[1-IC sin nI]

In this regard, we introduce the shorthand notation

F = F(n/2, c)

F' = F~n/2, (1-K 2 )1/ 2  (44)

Fz = F(k 0 z,1) .

Integrating Eq. (42) fra t'=t to time t' gives

F(k0 z',K) - F(k 0 z,K) = 0 ck0(t'-t) , (45)

where z' (t'=t)=z. moreover, Eq. (45) can be inverted to give the

explicit solution for z' (t'). We find48

z'(t') = z + BFc(t'-t) + I zn(sin2n($z+BFck T)-sin2nz. (46)
n=1

Here, r=t'-t, and the phase z and average speed BF are defined by

$= f Fzz 2iF z

(47)

8F 2F 0

Moreover, the oscillation amplitude zn in Eq. (46) is defined by4 8

2 1an , (48)'n k 0 ni1+a~

where

a = exp(-wF'/F) . (49)

Equation (46) is a very useful representation of z'(t') for the subsequent

simplification of the orbit integral [Eq. (38)] in Sec. III.C and

Sec. IV. In this regard, no a priori assumption has been made that
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2 2 2
S=-a(Y-l)<<l in deriving Eq. (46) fran Eq. (42). That is, depending

on the size of 2, the oscillatory modulation of the axial orbit in

Eq. (46) can be strong.

In the special limiting case where K2 <<l, the oscillatory modulation

in (46) is weak, and the various elliptic integral factors defined in

Eq. (44) and Eqs. (47) - (49) can be approximated by48

2F/7r = 1+K2

F' = In(4/K)

Fz = (1+K2/4)k0z , (50)

z = koz ,

a = 2/16

z2 -n

when K2 <<l. Of course, Eq. (50) leads to a corresponding sinplification

in the expression for z' (t') in Eq. (46). In particular, when K 2c,

Fq. (50) can be approximated by

z'(t') = z + OFc(t'-t) + zn[sin2n(k0z+BFckOT) - sin2nk0Z]
n=1

(51)

2 2where BF=(l K/4)O8 and zn= /8k 0 n. With n=l, Eq. (51) is the familiar

approximate expression for longitudinal notion in a planar wiggler.

C. General Eigenvalue Equation for a (z,t)

We now examine the linearized Maxwell equation (32) for the case of

temporal growth (FEL oscillator). Substituting Eq. (39) for aG(z,p zt)
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into Eq. (32) gives the equation for a (z,t),
y

-2 + PS(kz) a (zt)

2 2s G pz -+ta(52)
"p 2 .dp a2 GO t

-2 asink Z 0 dt'sink z' a (z,t')
c2 w 0 -o Y2~ a z' t')0

C 0

where wp=4wne /m, z' (t') is the axial orbit defined in Eq. (46) for

K2<1, and S(k0z) is the spatially modulated form function defined byIo [Gz+( 2 G__ 0_y__1"__ (3
S(k 0 z) = G (y ) - awsin2k (z 0 ) aG(y 0) . 3

While the formal stability analysis in Secs. III.C and III.D is

presented for general G (y0 ), for future reference, we state here the

explicit functional form obtained for S(k 0 z) for the special case where

G %(y) corresponds to monoenergetic electrons [Eq. (20)] . Substituting

Eq. (20) into Eq. (53) and carrying out the integration over pz gives

1 1
S (k z) = (54)

0 Y .(1-k22sin 2 0Z) 3/2'

~2 2 222where k =a2/( -1), and use has been made of dpz 0mec z)dyo

(see Sec. II.C). As expected, the strength of the spatial modulation

2of S(k 0 z) depends on the size of 2

Equation (52) is analyzed using a normal mode approach, where

ay(zt) is assumed to be of the form31

ay(z,t) = ay(z)exp(-iwt) , Imw>0. (55)

Substituting Eq. (55) into Eq. (52) gives the eigenvalue equation for

AY(z),
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22 2 a2 '2W + c a - opS(k0 z) a (z)

2 2 dp zaGo t= iww a sink0 z dt'exp[-iw(t'-t)] sink z'a (z'),p w 2ay0 L 0 y0 Y

where z' (t' ) is defined in Eq. (46). In general, Eq. (56) should be

solved numerically for the eigenfunction A (z) and eigenfrequency w.

For present purposes, it is useful to represent & (z) as the Fourier

series

&y(z) = ykexp(ikz) , (57)

where k=2/rVL, n is an integer, L is the periodicity length in the z-

direction, and the summation extends fran n=-- to n=+-. Substituting

Eq. (57) into Eq. (56), we obtain

k 2-k2- (koz)- x(k,w,k,,z)j aykexp(ikz) = 0 . (58)

Here, X (k, w,k0 z) is the dimensionless wiggler-induced susceptibility

defined by

aG+
1 -. 2 z aG0X(k,w,k 0 z) W fY- iaw 2 y

0

x J - dTexp(-iWT) jexp[i(k+k0 ) (z'-z)] [exp(2ik0 z)-1]
(59)

+ exp[i(k-k0 ) (z'-z)] [exp(-2ik0 z)-1],

where T=t'-t, and the axial orbit z' (t') is defined in Eq. (46).

Substituting Eq. (46) into Eq. (59) readily gives
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.2 dp~ aGc
X(k,w,k0z) = -l i 0 2 9-y dT

0

x [exp (2ik 0z) -1]expl-i [w-(k+k 0 )aEC)TJ

x exp i(k+k 0) z n[sin2n( z +k 0 FcT)-sin2noz1
n=l (60)

+ [exp(-2ik0z)-1]exp)-i[-(k-k0 Fc] T

x exp i(k-k0 ) z n[sin2n(z +k0 FcT)-sin2noz]

where 8F' Z, and zn are defined in Eqs. (47) and (48). 'TI sinplify

the exponential factors exp Z . in Bg. (60), we make use of the

identity

exp(ibsina) = Jm(b)exp(ima) , (61)
mr=--

where J m(b) is the Bessel function of the first kind of order m. Defining

S(k±k)z 0 2 ann 0 n 0 n 1+a 2n (62)

where a is defined in Eq. (49), the expression for the susceptibility

X(k,w,k 0 z) in Eq. (60) can be expressed in the equivalent form

X(k,W,k z) =- iwAa 0 dT

y0

x [expc(2ikJ0 z)-1]exp -i[o-(k+k O) TI

x r1 1 [ I I' -- m(b )J (b )exp~im(2nko$FcT)]exp[i(m-m')2nozi]

+ [exp(-2ik0z)-1]exp -i[w-(k-k0) 6F9 T (63)

x n ( Jm(bn)m' (bu exp[iM(2nkoFPT)]exp[i(M-M') 2n '
n=i =-w m =-
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The expression for X(k,w,k 0 z) in Eq. (63) can be further simplified,

depending on the parameter regime and frequency range under investigation

(Sec. IV) .

T summarize, Eqs. (58) and (63) are the final results of this

section, and are fully equivalent to the eigenvalue equation (56)

for A (z). In this regard, several points are noteworthy. First, in

the limit of zero wiggler amplitude, Eqs. (58) and (63) give the familiar

dispersion relation w2=c +W p for electromagnetic waves propagating

in the z-direction. [Here, a = J dpzG6(yO)/YO follows from Eq. (53)
a 2

for aw=0.] Second, the susceptibility x(k,w,koz) defined in Eq. (63)

depends on koz. This spatial modulation occurs through the factors

exp(±2ik0 z), through the dependence of Z on k0 z [Eq. (47)], and

through the integration over pZ in Eq. (63) (see also Sec. II.C).

As a consequence, the k'th Fourier omponent wave amplitude Ayk in

Eq. (58) is generally coupled to the wave components ay
Y,k±2k0'

0 , etc. Third, in deriving Eqs. (58) and (63), no a priori

assumption has been made that the spatial modulation (k0 z dependence)

2 =2 2
of S(k0 z) and X(k,w,k0z) is weak or that the parameter K = a;/(y0 -1)

is small. Finally, Eqs. (58) and (63) have been derived for

perturbations about the general beam equilibrium GO(zp ) = U(pz)Gt(yo),

and the formalism can be used to investigate detailed free electron

laser stability properties over a wide range of system parameters con-

sistent with the assumptions and theoretical model described in Sec. II.
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D. Diagonal Approximation to the Dispersion Relation

The sinplest approximation to Eq. (58) is where we retain

diagonal terms and neglect the coupling of &yk to the k±2k0, k±4ko''''

Fourier carponents. In this regard, the quantities S (k0 z) and X (k, w,k0z)

can formally be expressed as average values plus terms that depend

explicitly on k0 z. That is,

S(k 0Z) = <S> + Z Sexp(iz2k0z)

(64)

X(k,w,koz) = <x>(k,w) + Z xtexp(i2k0 z)

where the average values <S> and <X>(k,w) are defined by

<S> = 2 1T d(k0Z) S(k z) ,

fo 2 7r d0~ (65)

<x>(k,w) = 2ir d(k0Z) X(k,w,k z)

Substituting Eqs. (64) and (65) into Eq. (58) and retaining only the

diagonal terms gives the dispersion relation

2 _2 2 _2
D(k,) =2 - c k -wp<S> - w <x>(k,w)=O. (66)

p p66

In Eq. (66), the average quantities <S> and <x>(kw) are calculated

fran Eq. (65), making use of the definitions of S(k0 z) and X(k,w,k0z)

given in Eqs. (53) and (63) for general G6(y 0 ).

The diagonal dispersion relation in Eq. (66) is used in Sec. IV

to investigate free electron laser stability properties over a wide

range of system parameters. It is important to ephasize that

neglecting the coupling to off--diagonal terms in Eq. (58) is likely

2 2 2to be a good approximation insofar as the parameter K =a/ (o0-l)

is sufficiently small.
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IV. FREE EIECIT'N IASER STABILITY PREPERTIES

In this section, we make use of Eqs. (53), (63), (65) and the

diagonal dispersion relation (66) to investigate detailed free electron

laser stability properties.

A. Simplified Dispersion Relation

For present purposes, two main approximations are made in

evaluating <X>(k,w) from Eqs. (63) and (65). First, it is assuned that
2 2 2K =a /(y 0-l) is sufficiently small that z can be approximated by

Oz = koz (67)

in the expression for x(k,w,koz) in Eq. (63). Refering to Sec. III.B

and Eqs. (47) and (50), it is evident that K2/4 << 1 is the appropriate

small parameter for validity of Eq. (66). Second, the T-dependence

in the integrand in Eq. (63) is generally of the form

exp -iw- (k+k0 ) OFc-m(n 8Fc) t , (68)

and

exp{-i[w-(k-k0) Fc-m(2nko) 8Fc (69)

In the subsequent stability analysis, we retain contributions to the T-

integral in Eq. (63) that exhibit resonant behavior at the simple

upshifted FEL resonance '9

w 5 (k+k0 )Fc . (70)

That is, in contributions to Eq. (63) associated with the factor in

Eq. (68), we retain only the m=0 term, and in contributions to Eq. (63)

associated with the factor in Eq. (69), we retain only the nil, n=l term.
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Making use of Eqs. (63) and (65) and the assumptions in the preceding

paragraph, the susceptibility <X>(k,w) can be expressed as

1 2 2r d (k 0Z) - dpz 3G +0
<x>(k,w) = - a i aw 2z 2 fy dTexp{-i[w-(k+k0) Fc]T

0 0 0 0 0 -

x ([exp (2ik0 z) -1] nI J (b+) J (b )exp [-im' (2n)k 0 z] (71)
n=1 m=-< 0 n n

+ [exp(-2ik0 z) -l]J1 (b~) I Jm (b ) exp[i(l-m')2k0z])

We carry out the T-integration in Eq. (71) and average over the (fast)

k0 z oscillations in the integrand. For example, the first term in

the factor [exp(2ik0z)-1] ccmbines with the m'=l, n=l term to give a

non-zero average value, whereas the -l term in the factor [exp(2ik0z) -1]

ccbines with the m'=0 term to give a non-zero average value.

After some straightforward algebra, we obtain

1 21r d(k Z) - dpz 3G /y
<x>(k,w) = - 27 2d20 w-(k+k )sFc K(y0) (72)

where K(y0 ) is defined by

K(y0) = 0 % 0 (b )J1 (b )

(73)

- J0b )J l) + J )(b .

Here, for small values of aix2 /16, it follows frorn Eqs. (50) and (62)

that bA can be approximated by

-nb= k+2)

For the range of k-values of interest for the free electron laser

instability, (kk 0 )/k 0>>l, b is typically of order unity, and

bx
b« < 1 for n > 2. Therefore, an excellent approximation to Eq. (73)
n
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is given by

K (y0 ) = J0 (b+) [JO (b) -J (b+)]+J (b) Ji (bi) -J (b-)] (75)

Moreover, if we approximate b b -=b (k/k 0 ) 2/8) for k>>k 0 , then

Eq. (75) reduces to the familiar factor K(YO =0(b1)1(b1)]2

which occurs in standard single-particle analyses 8 of the free

electron laser instability in the Ccopton regime. As a further point,
2n d(k0 Z

it should be noted that we have retained the spatial integral j 2 z

in the expression for <x> (k, w) in Eq. (72). This averages over the

(weak) dependence on koz of the nanentum integral

0dpz 0 (76)

0 1 yON 1) 2 (l-1 2 sink 0Z) 1 / 2

that occurs in Eq. (72).

Substituting Eq. (72) into Eq. (66) gives

2 2 2 2 1 ~2 2 2w d(koz) - dp 3G+/ y0=D(k,w)=w -c k -w <S> + ap 2^ a - k ) K(y )Wp 0 27 0 2w-(k+k O)VF

(77)

which is the final form of the dispersion relation used in the

remainder of this paper. Here, K(y 0 ) is defined in Eq. (75) with

b ±_ [(k kO)/kOc2/8, and 8F is defined by aF =i1/ 2 F=(l-K2/4)%a where

0 (l-l/y2)1 2 [see Eqs. (47) and (50)].
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B. Resonant Free Electron Laser Instability

The dispersion relation (77) can be used to investigate

detailed free electron laser stability Procerties over a wide

range of system parameters when K2 = a2 /(y2 -1) is suffi-
w 0

ciently small. In this section, we calculate the growth rate

Yk Im w in circumstances corresponding to weak resonant in-

stability. In particular, it is assumed that the growth rate

is sufficiently small and the energy spread of the beam elec-

trons is sufficiently large that the inequality

(k+k )Av < < 1 (78)
(kk0 )Vz

is satisfied. Here, Avz is the axial velocity spread charac-

teristic of G (Y0 ) over the range of unstable phase velocities.

Of course, Avz is also related to the beam emittance. In

Eq. (77), we express w = wk + iYk and expand for small growth

rate Yk. This gives

0 = D(k, k+iyk) = D r(k,wk

+ i[D (kwk )+Y Dr (kw (79)

where D (kk = im Re D(k,w +iYk) andr k + Ikk ) 0 + k ) ki

D.(k,wk = im Im Dkw+Y Making use of1 k k -00+ D k ~ik)
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Zim 1 P

Yk*0+ Wk-(k+k0) Fc+iYk k(k+k0) Fc

- i7rS[Wk-(k+k0)F C]

where P denotes Cauchy principal-value, we set the real and

imaginary parts of Eq. (79) separately equal to zero. This

readily gives

2_ 2 2_^2
0 = D r(k,w k = k c k 2W <S>

27T 2T + (80)

1^2 2 fd(kz) dpZ P G 0/ay+ Twpawwk 27 f Y k--(k+ko)aF K(y0

0 0 0

and

D (k,w)

k aD r/awr /~k (81)

^2 2 2r 00 +
4rwawk d2 (k) K(y) 6 [w k(k+kO )F ,
4Dr k 27r 0 k 0

where 3Dr/3Wk denotes Dr(k,k /Wk. Equation (80) is the

dispersion relation that determines the real oscillation

frequency Rew = wk, whereas Eq.(81) determines the growth rate

Im = kfor specified beam distribution function G + (Y

Note from Eq.(81) that the instability is driven by

resonant electrons with velocity

Wk

0(82)
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Here, for small K , F is defined in terms of y0 by 62
F 0 F

= %(1-K /2), where 2 = 1-l/y . That is, BF can be expressed

as 2
2 1+aw/2
F 2 (83)

Y0

We denote by y0 = yr the resonant energy where aF r)c

Wk/(k+k) . Making use of Eq.(83) then gives for yr

1+a 2 1/2

Yr 2 la_2  2l (84)
1- k/c (k+k0 )

To simplify Eq. (81), we convert the pz integral to an

integral over y0 [Eq. (75)] and make use of the identity

6 [Wk- (k+k0 6FcI

3
YrIwkI6( Y( 5
2 2 2 0 ~ r),( )

(1+</2) c . (k+k 0)

where use has been made of Eqs. (83) and (84). Moreover, in

typical parameter regimes of interest, the principal-value

term in Eq. (80) makes a negligibly small contribution to

Dr /k , and it is valid to approximate 3Dr k 2wk*

Carrying out the integration over k0 z in Eq. (81) for small

K2, and making use of Eq. (85), we obtain after some straight-

forward algebra

^a2 rG
ImW = W a w K(y )y mc 0 (86)

0 (1+a W/ 2 ) 0 

Here, the resonant energy yr is defined in Eq. (84), and

K(y 0 ) is defined in Eq.(74).
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The expression for the growth rate in Eq.(86)

has a wide range of validity, subject to the inequality

in Eq. (78). Note from Eq. (86) that instability exists

(Y > 0) over the entire range of yr for which 3G /3Y =

>0 (Fig. 2). The corresponding real oscillation fre-

quency wk of course is determined self-consistently from

Eq.(80).

We now make use of Eq. (78) to determine the range of

validity of Eq.(86). From Eq.(83), the characteristic

velocity spread Avz is related to the characteristic

energy spread Ay by FAV z/c = (1+a /2)Ay/y3. For

$F ~ and yy , where Ymc and ac are the mean energy

and mean axial velocity, respectively, of the beam

electrons, we obtain the estimate for AvZ'

2
(l+aW2) gy

Av = c -- . (87)
z -2

Moreover, for "2 << C k , the characteristic wavenumber
p

of the instability (denote by k) can be estimated from

the simultaneous solution to wk = kc [Eq.(80)] and

Wk = (k+k0 ) ac. This gives the familiar result

^ 2
k = 8 (1+ ) k0 - S (+6) y k, (88)

(1-8 ) (1+a / 2 )

where use has been made of Eq. (83). Finally, if we

further estimate 3G +/YI ,,,% 1/mc(Ay) 2 in Eq.(86),
0 r
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then the inequality ly^/(k+k )AvzI << 1 in Eq.(78) can

be expressed in the equivalent form

"2 ^ ^ 2
T p wK(y)a ( (89)

8 2k2 2 3 +2 4

Equation (89) is equivalent to Eq.(78) and can be satis-

fied by relatively modest values of fractional energy spread

Ay/y.

It should also be noted that the instability bandwidth

Ak is readily estimated from the simultaneous resonance

conditions kc = wk = (k+k O)F. This gives

(Ak) (l-s) = (k+k0 )AV Z/c, (90)

where we have approximated F~ and k~k [Eq.(88)].

Making use of Eqs. (87), (88), and (90), the normalized

bandwidth Ak/k can be expressed as

Ak 1 Ay
- -::- (91)

k Y Y

Equation (91) gives a simple estimate of Ak/k in terms of

the fractional energy spread Ay/^.

To summarize, the expression for weak resonant growth

rate in Eq.(86) is valid within the context of Eq.(89). In

Sec. IV.C, we make use of Eq.(86) to investigate numerically

the linear growth properties in parameter regimes character-

istic of the Los Alamos FEL experiment, '04 and the Livermore

FEL experiment planned on the Advanced Test Accelerator(ATA). 4 7
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In conclusion, the analysis in this section also has

fundamental implications for the range of validity of

different nonlinear models for describing the evolution

of the free electron laser instability. For a very narrow

wave spectrum, the nonlinear development is coherent,

and the dynamics of electrons trapped in the pondermotive

potential play a critical role in determining the evolution

of the system.8,9 On the other hand, if the instability is

sufficiently broad band that the wave autocorrelation time

(denote by Tac) is short in comparison with the charac-

-lteristic growth time (yk then a multi-wave quasilinear

model1 5 is appropriate, and particle trapping is unimportant.

The basic condition for validity of the quasilinear de-

scription is that the wave spectrum be sufficiently broad

that 15,49,50

Tac a AWk-(k+k0 )vz -1 < (92)

where A[wk- (k+kO)vz] = (Ak)c(l-^O) is the characteristic

spread of [wk-(k+ko)vzl over the extent of the amplifying

wave spectrum. Equation (92) can then be expressed in

the equivalent form

k -. (93)
c(Ak)(1-6)
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Making use of c(Ak)(1-a) = (k+k0 )AVz, Eq.(93) reduces to

the inequality Yk/(k+k0)Avz << 1, which is identical

to Eq. (78). That is, the condition [Eq. (78) or Eq. (89)] for

weak resonant instability and validity of the expression

for Yk in Eq. (86) is identical to the condition [Eq. (92)

or Eq. (93)] that the unstable wave spectrum be sufficiently

broad that quasilinear theory gives a valid description

of the nonlinear evolution of the system. This of course

assumes that the bandwidth of the initial (input) signal

is comparable to Ak defined in Eqs. (90) or (91).
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C. Stability Properties for Weak Resonant Growth

In this section, we make use of Eqs. (86) and (89) to

investigate numerically the stability properties for weak

resonant growth. As one example, which corresponds to the

parameter range planned for the Livermore FEL experiments 4 7

on the Advanced Test Accelerator (ATA), we consider the case

where the beam energy is Y = 100, the beam current is Ib 

I-e|lb7r ac = 1.9 kA, the beam radius is rb = 0.45 cm., the

wiggler amplitude is Bw = 2.3 kG, and the wiggler wavelength

is X0 = 2w/k 0 = 8.0 cm. This gives nb = 6.3x10 1 cm- 3

aw = eB w/mc k0 = 1.7, W2 /c2 k0 = 4rnb2 e /mc 2k2 = 3.6,

b = 0.23 [from Eqs.(73) and (88)], and K(Y=100)= 0.78

[from Eq. (74)]. The inequality in Eq.(89) then reduces

to (Ay/y) >> 6 x 107 , which requires a fractional energy

spread in excess of 0.9% for the growth rate expression

in Eq.(86) to be valid. The total effective value of Ay/y for

the Livermore FEL experiment on ATA may be in the range of

1-2%. As a second example, which corresponds to typical

operating parameters for the Los Alamos FEL experiment,
1 1'4 4

we consider the case where y = 41, Ib = 40A, rb = 0.09cm,

Bw = 3kG, and X = 2.73cm. This gives nb = 3.3x101 cm-3

a = 0.76, ^2 /c2 k2 = 0.21, b± = 0.113, and K(Y=41) = 0.89.
w p 0 1

The inequality in Eq.(89) then reduces to (Ay/y) >> 2.OxlO

which requires a fractional energy spread in excess of 1.3%.

The effective value of Ay/y in the Los Alamos FEL experiments

is typically 1-2%.
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Typical numerical results obtained from Eq. (86)

are presented in Figs. 3 and 4, where Yk/koc is plotted

versus k/k 0 for the two choices of beam and wiggler para-

meters given in the previous paragraph. '44'4 Here, Eq. (80)

has been approximated by wk kc, and the beam distribution

function G ( 0 ) is assumed to be gaussian with

+~y = 1 (Y 0 xp YY (94)GO ON 
2

(r) mcAY YO 2(Ay)

where y >> 1 and Ay/y << 1 are assumed. In both Figs. 3

and 4, the growth rate has been plotted for values of

Ay/y corresponding to fractional energy spreads of 1%,

2% and 3%. Note that as the energy spread is increased,

the decrease in maximum growth rate is proportional to

(Ay ) -2, and the increase in instability bandwidth Ak is

proportional to Ay [Eq. (91) ]. Furthermore, in Figs. 3

and 4, we have chosen the energy spread to be consistent

with the validity criterion in Eq. (89), with Ay/Y = 1%

corresponding to the limit of the range of validity.

Some further comments are appropriate with regard to

the FEL experiments planned on ATA, 47 which will operate

in both the amplifier and (single-pass) oscillator modes.

Since the input signal in the amplifier configuration will

be provided by a laser with very narrow bandwidth,

Equation (91) is not the appropriate estimate of Ak/k

for the amplifying wave spectrum, nor will the criterion

in Eq. (93) (required for validity of quasilinear theory]
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be satisfied. Application of the present analysis should

therefore be restricted to the oscillator configuration

in which the signal grows from low-level broadband noise.

Furthermore, the energy spread applicable to ATA should be

estimated by including transverse beam emittance, which

has been assumed to vanish in the present analysis.

Therefore, the present model, which assumes weak resonant

instability, should be applied only if the total effective

energy spread exceeds 1%. From Fig. 3, for Ay/y = 1%, we

note that the maximum growth rate corresponds to an e-folding

distance of c/[Yk MAX = 3m.
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D. Stability Properties for Monoenergetic Electrons

We now consider free electron laser stability prop-

erties in circumstances where the beam energy spread

Ay is sufficiently small that the inequality in Eq. (89)

is not satisfied. In particular, we make use of the

diagnonal dispersion relation (77) to investigate stability

properties for monoenergetic beam electrons where

G (Y0 ) = (Ymc) i -2_ y 6(y 0 -y) [Eq(20)]. In this regard,

it is assumed that y is sufficiently large that K2

2 ^2
a w/(Y -1) can be treated as a small parameter. Therefore,

aF can be approximated by F = (1-K 2/4)a 0 in Eq.(76),

where a0 = (1-l/y ). Moreover, -from Eq.(54), <S> can be0

approximated by

<S> =(+ 2 (95)

^2 +
for K <<l and G 0 (y) specified by Eq.(20). We substitute

Eq.(20) into Eq.(77), convert the integral over pz to an

integral over Y [Eq. (75)], and integrate by parts with re-

spect to Y . This gives

2 ^2 2
2 2k2 1 wpa w w

W -ck A 4( =4

K(y) (l+K2 /4)F
X Y (k+k )c F(96)

[w-(k+k )ac] 2  ( cL
0 YO-Y

AA 2 [2
+Y (Y -1) a K (y ) (l+K /4)

[w-(k+k ) C] 3y _l ^
0 0 ) - Y 0=Y
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where K(Y 0 ) is defined in Eq.(74), F is defined in Eq.(83),

and = y =y) is given by

1+a 2/2 )
8 = -2 '(97)

Y

Making use of Eq.(83), we obtain

___ (1+a /2)
[ 3 - (98)

ayo ^ ^3

The dispersion relation (96) can then be expressed in the

compact form
A2

w2 - c2k2  - 1 + 2

2 wN_

1 P2 02

W 2 k+k 0)c N 2()

+ -- a w 2
Y [w-(k+k 0 )BcJ

A A

where N1 (Y) and N2 (y) are defined by

A 2(Y2~l~iI K(y0 )(1+ 2 /4)1
N1 (Y) = Y01 Y Y (Y 21) (100)

0 0
YO

and
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A ^2 2
N2 (Y) = ( K(y) (1+K /4) (1+a /2). (101)

6 w

Note that both N1 (Y) and N2 (Y) are typically of order unity.

Equation (99), supplemented by the definitions in

Eqs.(74), (97), (100) and (101), constitutes the final

dispersion relation for monoenergetic electrons.

Equation (99) is a fourth-order algebraic equation for

the complex eigenfrequency w, and can be used to investi-

gate detailed stability properties over a wider range of

the dimensionless parameters (uP/c 2k , aw and Y. For purposes

of obtaining a simple estimate of the characteristic

growth rate, we examine Eq. (99) for (W /c k )(a Y3

and (w,k) closely tuned to (w,k) satisfying the simultaneous

resonance conditions

2^= c2 2 W+ (1 + 1^2)

'Y (102)

w = (k+k0)ic.

Note that (w,k) determined from Eq. (102) differs slightly

2from Eq. (88) because of the inclusion of the w contribution
p

in Eq.(102). We now examine Eq.(96) for (w,k) close to

(w,k). Expressing w = w+ Sw and k = k+6k, then for 6k = 0

and 16w/wi << 1, Eq. (96) gives

^2 2

(6w)3 P w N2 (9)c(i+k) (103)
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Equation (103) can be used to estimate the character-

istic (maximum) growth rate for 6k = 0. This gives

r 2 2 1/3
(3) wp a wIm6W - p (()c(k+k104)
4 [ 0::

YI

Keep in mind that Eq. (104) is valid only for negligibly

small energy spread, and the range of validity of Eq.(99)

does not overlap with the range of validity of Eq. (86).

In circumstances where the approximation K 2«,

| k/k |>>l, and $2l are Valid, we find N2 () K(y)(l+a2).
02

Equation (104) becomes, after use of Eq.(88),

^2 2 - 1/3

Im6w - I wQL K1JLcko (105)

2 2Y3

which corresponds to the familiar expression for the cold-

beam Compton-regime growth rate.
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V. STABILITY PROPERTIES FOR ULTRARELATIVISTIC ELECTRONS

In this section, we consider Eq. (77) in the limit of

an ultrarelativistic, tenuous electron beam and compare the

resulting dispersion relation (Sec. V.A.) with the dispersion

relation obtained from a linear analysis51 of the standard

Compton-regime FEL equations8,9 based upon a superposition

of single-particle orbits (Sec. V.B.). Finally, in Sec. V.C.,

we extend the quasilinear kinetic equations derived by Dimos

and Davidson 1 5 for a helical wiggler magnetic field to the

case of an ultrarelativistic electron beam propagating

through a planar magnetic wiggler.

A. Kinetic-Dispersion Relation for

Ultrarelativistic Electrons

For an ultrarelativistic, tenuous electron beam with

^2 2 2 2 dpmz
y >> 1 and W P<<c k , we approximate K <<1 and ... =mc dy 0

0 0 1
in Eq. (77). In this case, the dispersion relation (77) can

be approximated by

0dy 3G + ao2_ 2 2+1^2 2 fd 0  G/ 0
0 = D(k,w) = w2-c k 2W a wmc -K(Y ) (106)

p w 0y2  F-(k+kOAFc 0

where K(y 0) and $F () are defined in Eqs.(75) and (83).

Here, G 0(y) is centered about YO=Y>>l with characteristic

energy spread Ay<<Y. For a F and Y0>>l, the axial velocity

F c occuring in Eq. (106) can be approximated by [see Eq. (83)]

2
a =1 +- (107)
F 2Y2

0
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Integrating by parts with respect to Y1 in Eq. (106) and

making use of Eq. (107), the dispersion relation (106) can be

expressed in the equivalent form

2 2 2 1^2 2+
w -c k = aw wmcdy0G (y0

(k+k0 )c K(Y 0) 1 a

S) 2 Y 5 (108)
[-(k+k0 cF 0

[2Y 3K(Y 2K/ 

[w-(k+k O)8 ci

In Eq.(108), for temporal growth (FEL oscillator case), the

wavenumber k is real and the oscillation frequency w is

complex. It is convenient to express

w = kc+Sw, (109)

where dw is complex and corresponds to the wiggler-induced

modification to the vacuum dispersion relation w=kc [see

Eq. (108) with aw=01. We also introduce the quantity Ai(y 0)

defined by
2

1+a;/2

Aw = -k 0 c + (k+k0 ) c 2Y2  (110)

0

Making use of Eqs.(107), (109) and (110), it is readily

shown that

w - (k+k0 8Fc = 6w+Aw, (111)

and the dispersion relation (108) can be expressed as
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2kc6w+(6w)2 = a (kc+6w)mc dyo G (y)CW~W =4w 0 00

1

(k+k 0 )cK(Y 0 ) a (112)
(6W+AW) 22

[2y -3K(y 0  -2 K/Dy 0

(6W+AW)

Here, Aw(y 0) is defined in Eq.(110), and the dispersion

relation (112) is fully equivalent to Eq.(108) with aF

approximated by Eq.(107).

B. Linearized Compton-Regime FEL Equations

For purposes of comparison, we now investigate linear

stability properties within the context of the standard

Compton-regime FEL equations8,9which describe the inter-

action of the beam electrons with a monochromatic electro-

magnetic wave with wavenumber k and frequency kc. For the

j'th electron, with energy Y., the phase function 3. and
J J

frequency shift Aw . are defined by
J

0. = (k+k 0 )z. - kct,
J J

c(k+k ) 2
AW = -k0 c + 2 k+a) . (113)

2Y.

In the notation of this paper, assuming ultrarelativistic

electrons, the Compton-regime equations8 ,9 are given by
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kca gd -_2w Im [a exp(iOe)I, (114)

d -tj + ck ag Re[a exp(i6e)], (115)

2Y

d i^2a Wg /exp(-ie)\

t a = -- (116)
dt Y2kc y,

I

Equations (114)-(116) describe the coupled nonlinear evolu-

tion of the electrons and the radiation field (assumed

monochromatic). In Eq. (116), <T '> denotes the ensemble

average over NT electrons,

NT

> Tit (117)) NT E
Tj=1

and the amplitude factor g is defined by

g =

= [K()(1

Hd ^ 2 2
Here, b is defined by b = by (" =Y) ~ a;(4+2aw),which is a

^ 2 ^2 2
valid approximation for Y>>l, K <<1 and k/k0  2y /(l+a/2)

[Eqs.(74) and (89)]. Moreover, the identification

g = [K ( )] has been made in the ultrarelativistic limit

[Eqs.(75) and (118)].
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In the small-signal regime, we linearize Eqs. (114)-(116)

and express 5'

e = ej 0 AWj 0 t + 6g.,

a = Sa , (119)

Y YO
y = Yj0 + 6y ,

where

Aw. -k c + (k+k0)c(ia 2 ). (120)
Jo 0 2Y 2 + w.

j0

Here, subscript "zero" labels unperturbed values in the ab-

sence of the radiation field (6a =0). Substituting Eq. (119)

into Eqs.(114)-(116) and retaining terms which are linear

in the perturbation amplitudes, we obtain

d kcawgdy= - 2w. Im[6a exp(ie 0 iAWj0t), (121)
Si 2y. yj

J0

d 6 . c(k+k 0) ) 2
dt = 3 + w

jo (122)

ck
+ 2y 2 awg Re [ayexp(ioj0 -iAwj0 t),

j0

iw 2a g expy(-i* 0+iA j~t) 6y-
d a i + i e. (123)
dt y 2kc k jo



47

In Eq.(123), the ensemble average < > denotes

2w

< (j j)> = mcf d 0dy G +(Y )( 0 'y 0 ) , (124)

0 1

where G (y0 ) is the energy distribution, and ejo is the initial

phase [Eq.(119)]. In Eq.(124), we have converted the summation

over discrete particles in Eq.(117) to a continuum integral

over the distribution G (y0 ). In obtaining Eq.(123), use

has been made of <Y 1exp (-ie. +iAWi t)> = 0.jo jo jo
In Eqs.(121)-(123), the vector potential 6a (t) is

expressed as 6ay = 4ay exp(-i6wt), where Im6w>O corresponds

to instability (temporal growth). Integrating Eq.(121)

from t=-- to time t, and neglecting "initial"' values (for

t+-'D), we obtain for 6y.(t)

kcawg i6ay exp(iej0 Ot -idot
6y. = - Im[ o~~ttw)

I2Yjo (w+Awj 0)

(125)

where Im(6w)>0 has been assumed. Similarly, making use of

Eq.(125), we obtain for 66.(t) from Eq.(122)
)

ck
68. = -- awg Re i6ay exp(i6j0 -iAwOt-ict)

2YjO

X 1 ( 1 +1 a 2) c (k+k 0)(1 6- - +22 . (126)
jo (6W+AW )

Substituting Eqs.(L25) and (126) into Eq.(123), and making

use of Eq.(124), we find after some straightforward algebra
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2kc6w W a (kc)mc dy0 G (y0)

(k+k0 )c K(Y) a2

(6w+Aw)2 (127)

2Y-3 K(Y)

(6w+Aw)

2Tr
In obtaining Eq.(127), use has been made of (21T) fd 0 exp(2iE 0)

0
= 0, and the factor 6a exp(-i 6wt) has been cancelled

from both sides of the equation.

We now compare the kinetic dispersion relation (112)

with the dispersion relation (127) obtained from a linear

analysis of the standard Compton-regime FEL equations.8 '9

First, comparing Eqs.(107), (109)-(111) and (120), it is

evident that 6w+Aw = w-(k+k0 )Fc in both dispersion relations.

Moreover, the kinetic dispersion relation (112) reduces direct-

ly to Eq.(127) provided we make the following approximations

in Eq.(112):

(a) 2kc6w + (6w) 2 ~ 2kcdw on the left-hand side of

Eq.(112).

(b) kc + 6w = kc on the right-hand side of Eq.(112).

(c) K(Y 0) K(Y) and 3K(Y 0 )/Y 0 ~ 0 on the right-hand

side of Eq. (112).

Approximations (a) and (b) are associated with the fact

that the eikenol approximation has been made in deriving the

Compton-regime equations (114)-(116). These approximations
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are indeed justified because 16w| << |kc| in the ultra-

relativistic, tenuous beam limit. Moreover, Approximation

(c) is also a reasonably good approximation because G+ (y)

is strongly peaked around y0= y, and the variation of K(y 0

with energy y0 is relatively weak.

This completes the proof of equivalence of the two

dispersion relations in the limit of an ultrarelativistic,

tenuous electron beam.

C. Quasilinear Kinetic Equations for a Planar Wiggler

For completeness, making use of the ultrarelativistic

tenuous electron beam assumptions enumerated at the beginning

of Sec. V.A., we conclude this paper with a summary of the

appropriate quasilinear kinetic equations for the planar

wiggler configuration considered in the present analysis.

This represents a straightforward extension of the quasi-

linear kinetic equations developed by Dimos and Davidson

for the case of a helical wiggler magnetic field.
1 5 ,5 0

In this regard, for the quasilinear analysis to be valid,

it is important to recognize that the amplifying wave

spectrum must be sufficiently broad that Tac < k 1

where T ac is the wave autocorrelation time defined in

Eq. (92).

In quasilinear theory, the average background distribu-

tion function G (Y01 t) is allowed to vary slowly with time

in response to the amplifying wave perturbations. The
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complex oscillation frequency wk (t) + iYk (t) is then

determined adiabatically in time from the linear disper-

sion relation [see Eq.(106)].

2 2 2 1'^2 2
(Wk +iYk - c k =- 1  a (Wk +iYk)mc

(128)

dyo K(y0 ) 3G (y0 ,t)/3y0

YO 2 wk-(k+kO)aFc+iyk

^2
where y >> 1, wp << c2k2 and K2 << 1 have been assumed,

and aF is defined in Eq.(107). For ultrarelativistic

electrons with pz Y0mc, the appropriate extension of the

particle kinetic equation (30) in Ref. 15 [or Eq.(12) in

Ref. 49] to the case of a planar magnetic wiggler is

G (y0 ,t) = 1D(y0 , t) G 0(yoit) , (129)

where the quasilinear diffusion coefficient D(y0 ,t) is

defined by

1 W 2 K(y ) ik~t
D(y0 ,t) = - 2 a _ _2

nbmc w 0 Wk-(k+k0) Fc+iyk
k=-oo (130)

Here, for k  >> k, k (t) = k2I6A (k,t)12 /8Tr is the

effective spectral energy dnesity of the magnetic field

perturbations, and 1k (t) evolves according to the wave

kinetic equation

a ek(t) = 2 Yk(t) ek(t) , (131)

where yk (t) is determined from Eq. (128).
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Equations (128) - (131) constitute a closed description

of the nonlinear evolution of the system in circumstances

where the amplifying wave spectrum is sufficiently broad-

band that the inequality in Eq. (92) is satisfied. To

summarize, as the wave spectrum amplifies [Eq. (131)1,

there is a corresponding redistribution of electrons in

Y0-space [Eqs. (129) and (130)] and a concommitant

modification of the growth rate yk (t) [Eq.(128)]. The

details of the time evolution and the stabilization process

of course depend on the specific parameter regime, the

initial distribution function G (y0 ,t=O), and the input

spectrum ek(t=0). It is sufficient for present purposes

simply to note that Eqs. (128) and (130) can be simplified

considerably in circumstances corresponding to weak

resonant instability15 (see also Secs. IV.B. and IV.C.),

and have been integrated numerically 5 0 for certain simple

functional forms of G (y0 ,t).
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VI. CONCLUSIONS

In this paper, we have mde use of the linearized Vlasov-

Maxwell equations (Secs. II and III) to investigate detailed

free electron laser stability properties for a tenuous

relativistic electron beam propagating through a constant-

amplitude helical wiggler magnetic field [Eq.(1)]. The

analysis was carried out for perturbations about the general

class ofself-consistent beam equilibria G (z,pz) =U(p )G (yo)

[Eq.(16)]. To evaluate the perturbed distirubtion function

6G(z,p , t), use was made of the exact particle trajectories

in the equilibrium wiggler field, and there was no apriori

restriction to ultrarelativistic electrons. Indeed, for low

or moderate electron energy, it was shown that there can be a

sizeable modulation of beam equilibrium properties by the

wiggler field and a concommitant coupling of the k'th Fourier

component of the wave field to the components k t2k0 , k ± 4k0'

This is evident from the formal matrix dispersion equation (58)

and the definition of electron susceptibility X(k,w,k0 z) in

Eq.(63). In the diagonal approximation, it was shown that

Eq.(58) reduces to the dispersion relation (77). In Sec. IV,

we made use of Eq.(77) to investigate the detailed dependence

of free electron laser growth rate on the choice of distribu-

tion function G ( 0 ). Investigations of stability behavior

ranged from the regime of strong instability (monoenergetic

electrons) to weak resonant growth (sufficiently large energy

spread). For the case of weak resonant growth, the growth
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rates were calculated numerically for parameter regimes

44
characteristic of the Los Alamos experiment, and the

Livermore experiments planned on the Advanced Test

Accelerator (ATA). 47

The limiting case of ultrarelativistic electrons and

very low beam density was considered in Sec. V. We compared

the resulting kinetic dispersion relation (106) with the

dispersion relation (127) obtained from a linear analysis

of the conventional Compton-regime FEL equations.8,9 This

comparison was made for general beam equilibrium G+ (Y0 ).

Differences between the two dispersion relations were traced

to the eikenol approximation and the assumption of very

narrow energy spread in Refs. 8 and 9. Finally, assuming

ultrarelativistic electrons and a sufficiently broad

spectrum of amplifying waves, in Sec. V we presented the

quasilinear kinetic equations appropriate to the planar

wiggler configuration considered in the present analysis.

This represented a straightforward extension of, the quasi-

linear theory developed for the case of a helical magnetic

wiggler field.15,50 The quasilinear dispersion relation (128),

the kinetic equation (129) for the distribution of beam

electrons G+(y0 ,t), and the kinetic equation (131) for the wave

spectral energy density ek (t) describe the self-consistent non-

linear evolution of the beam electrons and radiation field in

circumstances where the wave autocorrelation time is short in

comparison with the characteristic growth time [Eq. (92)1.
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FIGURE CAPTIONS

Fig. 1 Planar wiggler configuration and coordinate system

Fig. 2 Schematic of G (y0 ) versus y0 . The region of positive

slope with [G /ay0 I =Y >0 corresponds to instability
0 r

[Eq.(86)].

Fig. 3 Plot of normalized growth rate yk/kOc versus k/k 0

obtained from Eqs.(86) and (94) for parameters

characteristic of the Livermore FEL experiments

planned on ATA. 47 Here the dimensionless parameters

2 2 2
Y=100, Wp/c/ k = 3.6 and aw = 1.7 correspond to beam

current Ib = 1.9kA, beam radius r = 0.45cm, wiggler

amplitude Bw = 2.3kG, wiggler wavelength X0 = 8cm

11 -3
and beam density nb=6.3 x 10 cm . The figure

illustrates the dependence of the growth rate on

fractional energy spread for Ay/y = 1%, 2%, and 3%.

Fig. 4 Plot of normalized growth rate Yk/k0c versus k/k 0

obtained from Egs.(86) and (94) for parameters

characteristic of the Los Alamos FEL experiment.11'44

Here, the dimensionless parameters y = 41,

^ 2 2 2 =Sp/C k 2 0.21 and aw = 0.76 correspond to Ib = 40A,

rb = 0.09cm, Bw = 3kG, y0 = 2.73cm and nb = 3.3x1011cm 3

The figure illustrates the dependence of the growth

rate on fractional energy spread for Ay/y = 1%, 2%

and 3%.
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