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ABSTRACT

A novel two-stream relativistic klystron amplifier (RKA) is presented in which the

amplification of stimulated beam modulation is achieved via the unstable two-stream

interaction rather than the use of passive cavities. After a calculation of the limiting

current, the amplification and saturation of the stimulated beam modulation are analyzed

using a cold-fluid model and particle-in-cell simulation. Good agreement is found between

theory and simulation in the linear regime. Almost fully modulated intense relativistic

electron beams are obtained at saturation.

PACS numbers: 41.60.Cr, 41.75.Ht, 52.75.Ms, 52.25.Wz
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The generation of intense coherent radiation based on the principle of the relativis-

tic klystron amplifier (RKA) has been a subject of current experimental and theoretical

research [1]-[3]. High-power RKAs have applications in wide areas, including the devel-

opment of high-gradient, radio-frequency (RF) accelerators and high-power radar. The

primary goals of the RKA research attempt to address the following critical issues: (1) the

suppression of self-oscillations in high-gain, multi-cavity RKA operation, (2) the problem

of RF breakdown, particularly at the output cavity, and (3) the output coupling of an

intense electromagnetic wave with the space-charge waves on the electron beam.

In this Letter, we present a novel two-stream relativistic klystron amplifier in which

the interaction of the slow space-charge wave on a fast electron beam with the fast

space-charge wave on a slow electron beam leads to an amplification of stimulated beam

modulation. (The modulation comes about as a results of the beating of fast and slow

space-charge waves.) In this two-stream RKA concept, the input and output cavities

are connected with a smooth drift tube without intermediate passive cavities, as shown

schematically in Fig. 1. The removal of the passive cavities prevents the amplifier from

self-oscillation, a problem often arising from a traveling-wave tube (TWT) type of inter-

actions in the RKA with multiple passive cavities. The possibility of RF breakdown at

the passive cavities is eliminated. Thus, the two-stream RKA has an advantage over the

conventional single-stream RKA, particularly in high-gain, high-power operation.

Unlike the two-stream amplifier which was proposed by Pierce and Hebenstreit [4] in

the late 1940's and which yielded poor efficiency (< 5%) experimentally due to inefficient

helix input and output coupling [5], we propose using resonant cavities in the two-stream

RKA in the same way as in the conventional RKA. We also note that the basic system

configuration of this two-stream RKA differs from the recently proposed double-stream

cyclotron maser concept [6], which is more difficult to implement since it relies crucially

on the cyclotron motion of the electrons in the applied axial magnetic field. In contrast
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to previous work [4],[5], we address the important problem of the coupling of an input

electromagnetic wave with the relativistic electron beams. To substantiate our two-

stream RKA concept, we report the results of analytical and numerical studies of the

growth and saturation of stimulated beam modulation in a two-stream RKA.

We first consider two concentric annular relativistic electron beams co-propagating

in the z direction through a perfectly conducting drift tube of radius b immersed in an

applied uniform axial magnetic field Boe,. The assumptions in the present analysis are

(1) both beams are infinitely thin, (2) the strength of the applied magnetic field is infinite,

and (3) there is no background plasma. Under these assumptions, the equilibrium motion

of the electrons is one-dimensional; the two cold beams are described completely by the

axial velocities Vee,, currents I,, and radii aa, where the index a = 1,2 designates the

inner and outer beams, respectively. For given injection kinetic energies for the beams,

70a - 1, as measured in units of the electron rest mass energy mc2 , the time-independent

electrostatic potentials between the beams and the drift tube impose an upper bound

[7] on the beam currents under which beam propagation is possible. Indeed, energy

conservation requires that

71= 71 + 2 (1)
/I01 + P2102

and

702 ^2+ 1 + 2 (2)
A1102 + 2JO2

where # = V,/c > 0 and #2 = (1 - #2)1/2 are the normalized axial velocity and

relativistic mass factor of the ath beam in equilibrium, respectively, Io, = IA/[2 ln(b/a,,)],

IA = mc3/e a 17 kA is the Alfven current, c is the speed of light in vacuum, and -e is the

electron charge. In general, the upper bound on the beam current has to be determined

numerically by seeking physical solutions for 7y and 72 in Eqs. (1) and (2).

We have derived with a cold-fluid model a dispersion relation describing the lowest

azimuthally symmetric, small-amplitude space-charge waves on the two relativistic elec-
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tron beams subject to transverse-magnetic (TM) like boundary conditions. The result

is:

2 k R,(c2k2 - w2 ) ln(a 2/ai) Cle 2R12R2(c2k - w2 )2 = . (3)
D(w, k2 ) =. 1- 0 (3

1 (-kV,) 2  ln(b/al) (w - kV 1 )2(W - k.V 2)2

In Eq. (3), w = 22rf and k. are, respectively, the angular frequency and axial wave

number of the wave,
2 I b

e,-In(- (4)
P#, IA a,

is the dimensionless coupling constant for the ath beam. The quantities

R= b 1 Io(paa) [Io(pb)Ko(pa.) - Io(paa)Ko(pb)] (5)

and

R2= I Io(pai) [Io(pa2)Ko(pa1) - Io(pa1)Ko(pa2)] (6)
ln(a 2/al) Io(pa2)

are wavelength-dependent geometric factors, and Io(x) and Ko(x) are the first- and

second-kind modified Bessel functions of the zeroth order, respectively, where p2 =

_ w2/c 2. Note that the single-beam dispersion relation in Ref. [8] can be recovered from

Eq. (3) by setting E2 = 0. In the long-wavelength limit with kib2 < , and kb 2  -Y2,

dispersion relation (3) can be approximated by

1- fa(c 2k - w2 ) + ln(a 2 /al) EE 2(c2 k - 0 (7)
1 (w - kV,)2  ln(b/al) (w - k.VI) 2 (W - kz 2 ) 2  0

where use has been made of the approximation R1 ~ R2 ; Rn 1.

In order to find the condition for the two-stream instability and how the maximum

growth rate scales with system parameters, such as , e, a, and b, we first consider,

for simplicity, a special long-wavelength case in which one electron beam overlaps the

other beam (a, = a 2), both beams are tenuous, and have the same coupling strength

(C1 = C2 = E < 1). Making the approximation c2kz - 2 (742 c2ki, it is readily shown

from Eq. (7) that the space-charge waves on the electron beams are unstable whenever
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(AP)2 < 8(7)- 2e, and that for a given f the maximum spatial growth rate of the field

amplitude squared,

r = - (8)

occurs when (A#) 2 = 3(y)-2c. Here, we have introduced the notations A# = 102 - #1| ,

(fl) = (01 + 02)/2, and (y) = (1 - (#) 2 )-1/ 2 . Such a two-stream instability is convective

for co-propagating beams. These results are analogous to those for the one-dimensional

two-stream system if one makes the identification that the corresponding nonrelativistic

plasma frequency is w, = E1/2w [9]. It is this two-stream instability that is responsible for

the amplification of stimulated beam modulation in the two-stream RKA. Furthermore,

the spatial period of the envelope of the current modulation is found be to approximately

A, = 0.5r/F. Therefore, for this special long-wavelength case (a1 = a2 and f = e2 = f <

1), the maximum gain in the beam current modulation amplitude squared is about 14

dB per spatial modulation period. Typically, as the beam separation Ia2 - aI increases,

the maximum gain decreases due to the third (stabilizing) term in Eq. (7).

It should be emphasized that based on Eq. (4), comparable coupling strengths for

both beams can also be achieved using beams with quite unequal currents and voltages;

that is, a high-power (high-current, more energetic) outer electron beam and a low-power

(low-current, less energetic) inner electron beam. Hence, the density modulation of the

high-power, primary driving electron beam can be amplified by employing a low-power,

secondary electron beam of the two-stream RKA, as will be shown later in our simulation

(see Figs. 2 and 3). This unique feature makes the two-stream RKA an attractive concept

from a practical point of view, because the addition of the secondary electron beam will

not result in any significant degradation in the overall efficiency.

We have conducted an extensive simulation study of the amplification and satura-

tion of stimulated beam modulation in two-stream RKAs using MAGIC [10], a two-

dimensional particle-in-cell code. Particle-in-cell simulations are needed in order to study
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the effect of the time-independent space-charge associated with the intense relativistic

electron beams as well as the coupling between the beams and the RF field at the input.

A configuration similar to the one shown in Fig. I is used in the simulations. The cou-

pling of the input RF power to the electron beams is modeled with an input cavity, while

the output cavity has not been included. The results of the simulations on the beam

modulation are summarized in Fig. 2 and 3.

The amplitude of beam current modulation is plotted as a function of the interaction

length z in Fig. 2. The center of input cavity gap is at z = 0. In the linear regime,

the intensity growth rate is found to be 30 dB/m from the simulation, which is in good

agreement with an intensity growth rate of 31 dB/m as calculated from the full dispersion

relation in Eq. (3). By calculating the Poynting flux through the input cavity window, the

input RF power is estimated to be P = 0.9 MW; the input cavity admittance, Y = 0.02

(Ohm)-. The saturated current modulation amplitude at z ~ 110 cm is 61 = 3.4 kA

(that is, a current modulation of 68%) for the outer beam, and 12 = 0.9 kA (or 90%

current modulation) for the inner beam.

Figure 3 shows the longitudinal electron phase space of the two beams, (z, yv,),

as obtained from the simulation for the case corresponding to Fig. 2. Electrons are

emitted axially from two annular cathodes located at z = 43.5 cm. Because of the

time-independent electrostatic potentials between the drift tube and the beams, the

electrons experience significant momentum depression shortly after being emitted. As

they pass through the input cavity gap which is located 10 cm downstream from the

cathodes (at z = 53.5 cm), there is additional momentum depression due to an increase

of the electrostatic potential near the input cavity gap. Further downstream, the axial

momenta of the electron beams are modulated spatially with a wavelength corresponding

to an input frequency of f = 3.375 GHz. The phase difference between the inner and

outer beam modulations is about 180', as expected for two-stream interactions. The
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amplitude of the modulation grows till it reaches saturation at z ::: 170 cm, where the

momentum modulation amplitude is approximately equal to the momentum difference

between the fast and slow electron beams in equilibrium.

The production and transport of two relativistic electron beams and the conversion

from the beam modulation to an electromagnetic wave at the output cavity are being

investigated. With two split cathodes, two intense relativistic electron beams with voltage

difference up to 100 kV have been demonstrated in the experiment by Fink, et al. [11].

Such a voltage differece, or larger, appears necessary to achieve spatial growth of the

modulated beams. In fact, recent experiments and calculations [12] have indicated that

two annular electron beams with the same injection energy from a single cathode appear

to yield a stable two-stream interaction. Finally, the conversion efficiency at the output

cavity in the two-stream RKA is expected to be comparable to that in the conventional

single-stream RKA.
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FIGURE CAPTIONS

Fig. 1 Schematic of a two-stream relativistic klystron amplifier.

Fig. 2 Amplitude of the beam current modulation vs the interaction length obtained

from the simulation. The triangles are for the inner beam; the circles for the

outer beam. The parameters are: a, = 2.08 cm, a2 = 2.29 cm, b = 2.54 cm,

1= 1.0 kA, 12 = 5.0 kA, yo, = 1.43 (7i = 1.32), 702 = 1.78 (72 = 1.69), and

f = 3.375 GHz. The beam thickness is 0.1 cm for both beams. Total power in

the outer beam is 2.0 GW; total power in the inner beam is 0.22 GW.

Fig. 3 Longitudinal electron phase space of the two beams:
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