Transport Experiments in Alcator C-Mod


November 1994

\textsuperscript{1}ENEA-Frascati, Frascati, Italy.
\textsuperscript{2}Johns Hopkins University, Baltimore, MD.
\textsuperscript{3}University of Maryland, College Park, MD.

Submitted to Physics of Plasmas.

This work was supported by the U. S. Department of Energy Contract No. DE-AC02-78ET51013. Reproduction, translation, publication, use and disposal, in whole or in part by or for the United States government is permitted.
TRANSPORT EXPERIMENTS IN ALCATOR C-MOD


MIT - Plasma Fusion Center, Cambridge, Ma. 02139

F. Bombarda
ENA-Frascati, Frascati, Italy

M. May
Johns Hopkins University, Baltimore, Md.

B. Welch
University of Maryland, College Park, Md.

ABSTRACT

A series of transport experiments has been carried out in Alcator C-Mod. [Phys Plasmas 1 1511 (1994)] It is found that data from both ohmic and ICRF heated plasmas can be fitted with an L-mode scaling law. The ohmic $\tau_E$'s show no scaling with density in any regime and can reach values of 2-3 times neo-Alcator. Impurity confinement has been studied with the laser blow-off technique with $\tau_i$ showing nearly linear scaling with plasma current. Ohmic and ICRF H-modes are obtained over a wide range of discharge parameters, extending the range in the international database for nB, by almost a factor of 10. The power threshold for ELM-free discharges is in rough agreement with the scaling $P/S = 0.044$ nB. Energy diffusivities of ohmic and ICRF heated plasmas have been measured from local analysis of plasma profiles and power fluxes. The same analysis produces a value for plasma resistivity which lies between the Spitzer and neo-classical calculations. Analysis of plasma transients have yielded values for particle diffusivity and convection velocity.
I. INTRODUCTION

The Alcator C-Mod tokamak is a compact high field device capable of producing shaped diverted plasmas\(^1\). It has a major radius of 0.67 m, a minor radius of 0.21 m and is designed to operate at toroidal fields up to 9 T, plasma current up to 3 MA, \(\kappa\) up to 1.8, and ICRF heating power to 8 MW. All of the plasma facing components are made of molybdenum with no special wall coating or treatment. Confinement studies have been carried out in hydrogen and deuterium plasmas with \(0.35 < I_p(\text{MA}) < 1.05;\) \(3.5 < B_t(\text{T}) < 5.4;\) \(0.20 < a(\text{m}) < 0.24;\) \(0.65 < R(\text{m}) < 0.70;\) \(0.7 < n_e(10^{20} \text{m}^{-3}) < 2.4;\) \(1.1 < \kappa < 1.6;\) \(0 < P_{\text{ICRF}}(\text{MW}) < 1.8.\) The \(Z_{\text{eff}}\) is low, typically \(< 1.5\) for \(n_e > 1.5 \times 10^{20}.\)

II. GLOBAL ENERGY TRANSPORT STUDIES

The set of diagnostics available for transport studies on C-Mod includes electron cyclotron emission (ECE) for measuring electron temperature profiles, \(T_e(r,t);\) a two-color interferometer for determining \(n_e(r,t);\) an array of high resolution x-ray spectrometers for measuring \(T_i(r,t);\) neutron emission diagnostics for determining \(T_i(0,t);\) a visible bremsstrahlung array for measuring \(Z_{\text{eff}}(r,t);\) a bolometer array for measuring radiated power profiles, \(P_{\text{rad}}(r,t);\) various spectrometers for determining impurity content; and a full set of magnetic diagnostics for calculating the MHD equilibrium and related quantities. The plasma stored energy is calculated by integration of the density and temperature profiles (\(W_{\text{kin}}\)) and by analysis of the equilibrium with the EFIT code\(^2\) (\(W_{\text{mhd}}\)). These generally agree to within 20%; however for ICRF plasmas, \(W_{\text{mhd}}\) is systematically higher than \(W_{\text{kin}}.\) This systematic difference is probably attributable to energy in the minority ion tail. When “no plasma” shots are available for subtraction of stray field effects, we can also obtain
the stored energy by analysis of the diamagnetic loop signals. These are in good agreement with Wmhd. Shots for confinement analysis were chosen with "standard" criteria: quasi-steady state, sawtooothing, and non-disruptive.

Much of the data taken for the scaling studies described below were obtained as the machine and its subsystems were brought on line. Relatively few dedicated parameter scans were performed. While a fairly large range in operating parameters was obtained, the full multi-dimensional space available to us was not explored. This is summarized in Table I which gives the average, standard deviation, and correlation matrix for eight independent variables. From the table we see "natural correlations" such as that between Ip and κ or between Ip and Pin for the ohmic plasma, as well as "accidental correlations" such as that between κ and ion mass which are simply the result of not running in all of the available operating space. Note that total input power is necessarily well correlated with ion mass since our main ICRF heating scheme is hydrogen minority in deuterium majority. The table also quantifies our limited range in R, a, and BT.

A. Ohmic L-Mode

Contrary to our expectations, stored energy in the ohmic plasmas increased with Ip but not with ne. For most discharges, the measured $\tau_E$ is greater than the neo-Alcator value\(^3\). The increase in stored energy with Ip suggested an L-mode behavior; a linear regression can be performed to calculate the best fit to a power law scaling for the data. The range of some parameters (a, R, BT) in our data base is too limited to include in the regression, however significant results were obtained by fitting against Ip, Pin, ne, and amu (effective ion mass). The results, which include data for ICRF plasmas, are shown in figure 1. The coefficients are not distin-
guishable from ITER89-P$^4$ within the error bars of the two fits. Our conclusion is that our ohmic confinement is following an L-mode like scaling which for low densities and high currents can exceed neo-Alcator by as much as a factor of three.$^5$

B. ICRF Heating and Confinement

ICRF heating was performed using a dipole antenna (two current straps spaced toroidally and driven out of phase) with up to 1.8 MW of power at 80 MHz.$^6$ The heating scenario was hydrogen minority in deuterium at $BT = 5.3$ T. Antenna loading was 3-25 ohms, increasing with plasma density and decreasing with antenna-plasma spacing. Efficient heating was observed, roughly doubling electron and ion temperatures at the higher RF powers. There were substantial variations in the relative temperature increase of the electrons and the ions; the best results at current power levels being $\Delta T_e = 1.4$ keV and $\Delta T_i = 1.3$ keV. The minority concentration deduced from analysis of the $H\alpha/D\alpha$ lines, was typically 2-3%.

Traces of $T_e(0)$ and $T_i(0)$ vs. time are shown in figure 2. The electron and ion temperatures are strongly modulated by sawtooth activity. The sawtooth period increases by factors of 2-4 over otherwise similar ohmic plasmas. TRANSP$^7$ calculations (discussed in the following section) indicate that $q(0)$ drops from $\sim 0.8$ to $\sim 0.6$ as the RF stabilizes the sawteeth. Despite a small increase in density and Zeff, $Prad/Pin$ is unchanged. Zeff shows the same scaling with density and input power for both ohmic and RF discharges (fig. 3). For a typical ICRF plasma, with $Pr_f = 1.8$ MW, $I_p = 0.8$ MA, and $n_e = 1 \times 10^{20}$, the calculations show that more than 90% of net RF power is absorbed and thermalized; 80% of which is absorbed within $r/a = 0.5$, creating an ion tail with approximately 15-20 kJ out of a total
stored energy of 60kJ. This is in quantitative agreement with measurements of $\Delta W$ from kinetics, MHD, and diamagnetism as shown in figure 4. The energy confinement follows an L-mode like scaling as demonstrated in figure 1.

III. LOCAL TRANSPORT STUDIES

To calculate local transport quantities we have used the TRANSP\textsuperscript{7} code. This code uses measured plasma profiles as inputs then calculates the electron and ion heat balance, particle balance, and magnetic diffusion with a fixed boundary equilibrium. For ICRF heated plasmas, the full wave SPRUCE\textsuperscript{8} code linked to the Fokker-Planck solver FPPRF\textsuperscript{9} is used to calculate the heating power to ions and electrons. For the ohmic shots at $I_p = 0.8$ MA, $n_e = 1 \times 10^{20}$, we have found $\chi_e (a/2) \sim 0.2-0.8$ m$^2$/sec. At low densities, where electron and ion transport can be separated, $\chi_i \sim \chi_e$ and is mildly anomalous with $\chi_i / \chi_{neo} = 1-3$ with large uncertainties. Figure 5 shows the time evolution of plasma temperatures, stored thermal and tail energies, electron and ion heating powers, and electron and ion diffusivities for a typical ICRF plasma. In this case, $\chi_e$ rises to about 1.0 m$^2$/s with apparently little change in $\chi_i$.

Electrical resistivity, like other parallel transport quantities, is usually measured to be near its classical value. Corrections for trapped particles and related effects are embodied in the neo-classical theory\textsuperscript{10}. Experiments on other machines have found values ranging from classical\textsuperscript{11} to neo-classical\textsuperscript{12} and in between\textsuperscript{13}. For C-Mod we have investigated this issue by using TRANSP to solve the poloidal field diffusion equation with $I_p$, $T_e(r,t)$, $Z_{eff}(r,t)$ as inputs. The code calculates the evolution of the current profile and parallel electric field. The calculated surface voltage is then compared to the value measured with our magnetic diagnostic set. The re-
results are shown in figure 6 where the surface voltage calculated with the neo-
classical model and the Spitzer model are both plotted against the measured sur-
face voltage. Data for the “correct” model would fall on the slope = 1 line. In-
stead, data from both models straddle this line, indicating that our resistivity values fall in between the calculations of the two models.

IV. H-MODE

Ohmic ELM-free H-modes were first achieved by ramping down the toroidal field
at constant plasma current, $I_p = 0.65$ MA, and moderate density, $n_e = 1.0 \times 10^{20}$
m$^{-3}$, with the grad-B drift toward the single null divertor$^{14}$. The H-mode transi-
tions occurred with $3.0 < BT < 3.3$ at an ohmic power of about 1 MW and were
followed by a rapid density rise for up to 50 msec before the plasma either re-
turned to L-mode or disrupted at about $q = 2$. Estimates of the energy confine-
ment time, not including dW/dt corrections (which can be as much as 60% of the
input power), are between 40 and 60 msec, which is in the range of the ITER
H-mode scaling$^{15}$. H-mode enhancement factors for energy confinement and
global particle confinement are typically about 2 above L-mode. At higher toroidal
field, up to 5.3 T, ELMy ohmic H-modes have been observed as the toroidal field
starts to ramp down at the end of a discharge or during the flattop following the
injection of lithium pellets. While these H-modes had longer durations (up to 350
msec), the increases in the density and stored energy were typically about 20% due
to the rapid (5-6 kHz) ELMs. However, for the best of these shots, the H-mode
enhancement factor can be as high as 1.5.

ICRF heating has also been used to achieve H-modes with up to 1.5 MW of addi-
tional power$^{16}$. The equilibria, while nearly single null diverted plasmas, were in
fact marginally limited. ELM-free H-modes of 10-15 msec duration and ELMy H-
modes of up to 50 msec duration have been observed during ICRH at constant

toroidal field of 5.3 T with densities in the range of $1.2 < n_e < 1.8 \times 10^{20} \text{ m}^{-3}$. The duration of these H-modes is often limited by the reduced coupling of the RF power due to reduced loading resistance during the H-mode. The drop in power makes it more difficult to maintain the H-mode. A feedback system on the RF frequency and/or plasma position will be implemented in the future to maintain good coupling through the changes in the edge plasma at the L-H transitions. The particle confinement again doubles during the H-mode, but the improvement in energy confinement is difficult to quantify due to the short duration and change in RF power during these H-modes.

The H-mode power threshold observed in C-Mod is in good agreement with the ITER scaling$^{17}$, $P/S \ (\text{MW/m}^2) = 0.044 \ \text{nB} \ (10^{20} \ \text{m}^{-3} \ \text{T})$ for ELM-free discharges, while the ELMy H-modes tend to have a significantly lower threshold power. However, considering both sets of data, there is no clear dependence on $n_e$ or $B_T$. No special wall conditioning techniques were necessary to achieve most of these H-modes, though the lowest power threshold ELMy H-modes were obtained after injecting lithium pellets into the plasma, which may have helped condition the plasma facing components. Note that the first wall is composed of all molybdenum tiles and the ICRF antenna Faraday shields and protection tiles are made of molybdenum which have been coated with titanium carbide. The present results extend the international database for the H-Mode threshold up to values of $P/S = 0.33 \ \text{MW/m}^2$ and $n_B > 9 \times 10^{20} \ \text{m}^{-3} \ \text{T}$, which are in the expected range for ITER.

By comparing the parameters in a time-slice database of ohmic H-mode discharges and ohmic L-mode discharges, an attempt was made to determine what were the most important characteristics that may have helped to achieve H-mode.
The parameters considered were the inner and outer gap, lower triangularity, mid-plane neutral pressure, $Z_{\text{eff}}$, and the input power density, $P/S$. While the statistics are somewhat limited, the strongest apparent dependence of the threshold for well diverted discharges (which presently includes only ohmic H-modes) is on the mid-plane neutral pressure, $P_0$. The H-modes fall on a line with $P/S \sim P_0$, representing the minimum in neutral pressure for both L and H-mode deuterium discharges. Figure 7 shows the input power density versus $P_0$ for L-mode and ohmic H-mode discharges. The H-mode discharges have lower midplane neutral pressure than almost all of the L-mode discharges. For the ICRF heated plasmas, the midplane neutral pressure was high in both L-mode and H-mode discharges, perhaps because of the requirement to run the plasma near the outboard limiter and antenna to obtain good RF coupling.

V. IMPURITY CONFINEMENT

Impurity particle confinement has been measured using the laser blow-off technique. Trace amounts (about $3 \times 10^{17}$ atoms) of non-recycling impurities are ablated from a 1 micron thick target located about 1 meter from the plasma using a 2J, 30ns Q-switched ruby laser pulse and are injected at the horizontal midplane. The spatial and temporal evolution of these impurities is observed with a number of spectroscopic diagnostics in the x-ray, VUV, and visible regions of the spectrum. Typically, observations of central charge states show a very fast rise time (few milliseconds) as the impurities are transported inwards. This is followed by a nearly exponential decay as the impurities diffuse out of the plasma. The decay time is used to characterize the impurity particle confinement time.

Scaling studies have been conducted to measure this time as a function of various
plasma parameters. It was found that the confinement time scales almost linearly with plasma current, although the range in BT is insufficient to distinguish between a current and a q scaling. The observed dependence on electron density and mass of the working gas was found to be weak. This result is summarized in figure 8. No dependence on $Z_{\text{eff}}$ of the plasma or $Z$ of the injected impurity (in the range from 13 to 42) was observed. Impurity transport coefficients have been deduced on the basis of these times and measured impurity emissivity profiles. Anomalous diffusion coefficients of about 0.4 - 0.7 m$^2$/s and convective velocities of about 2.0 - 3.5 m/s at the edge are consistent with observed measurements. These are somewhat higher than the corresponding transport coefficients for the majority species.

**VI. TRANSIENT TRANSPORT EXPERIMENTS**

A series of gas modulation experiments has been performed to measure core particle transport. The gas flow is modulated at 10 Hz with the amplitude adjusted to produce approximately 5% variations in the line integral density as measured by an interferometer. The density perturbations were observed with the visible bremsstrahlung array. This array has 30 channels, views tangentially on the midplane and covers from $R = 0.60$ to 0.90 m. with 1 cm chordal resolution. The array is filtered to look at continuum at 536 nanometers; the signal is usually dominated by free-free bremsstrahlung. By assuming toroidal symmetry, standard Abel inversion techniques can be applied to get the local emissivity profile ($\sim n_e^2Z_{\text{eff}}/T_e^{37}$) from the measured brightness profile. Then assuming that the $Z_{\text{eff}}$ profile is flat (this assumption should be best when $Z_{\text{eff}}$ is close to 1) we can calculate a “pseudo” density profile using the measured emissivity and $T_e$ profiles. While this profile is only
qualitatively correct, the transport coefficients D and V depend mainly on the timing and relative amplitude of changes across the profile. The visible bremsstrahlung signals with their excellent spatial and temporal resolution are well suited for these purposes. D(r) and V(r) are obtained by solving in a least squares sense:

$$\frac{1}{r} \times \frac{\partial}{\partial t} \int \rho n_e d\rho = D \frac{\partial n_e}{\partial r} + V n_e$$

For a typical case (figure 9), D is roughly constant and V goes like r. $\chi_e$ calculated from power balance was 0.2 m$^2$/sec for this shot giving $\chi_e/D \sim 1-2$. There are no clear trends with plasma density. After divertor detachment$^{19}$, transport appears unchanged; however following a full poloidal detachment, V increases substantially while D is relatively unchanged. A slightly different analysis can be performed to look at impurity transport when $Z_{eff} >> 1$. In some cases, after Li pellet injection where the electron density becomes peaked, impurities accumulate and $Z_{eff}(0)$ rises to about 7. Assuming the plasma consists of molybdenum plus a background species of charge $Z_b$, we use the approximation:

$$n_{mo} = n_e \times \frac{(Z_{eff} - Z_b)}{(Z_{mo}^2 - Z_{mo})}$$

Using the same analysis as before, but substituting $n_{mo}$ for $n_e$, we find that $V(a/2)$ is 30 m/sec, over an order of magnitude larger than is typical for electron transport, while D is 0.25 m$^2$/sec about a factor of 2 smaller than electron transport. This result is in quantitative agreement with the neo-classical accumulation of impurities which was also observed following pellet injection on Alcator C$^{20}$.

VIII. SUMMARY

We have found that data from both ohmic and ICRF heated plasmas can be fitted with an L-mode scaling law. The ohmic $\tau_E$'s show no scaling with density in any
regime we’ve investigated and can reach values of 2-3 times neo-Alcator. Overall, the confinement properties of the ohmic and ICRF plasmas are apparently distinguished only by the level of input power. Impurity confinement has been studied with the laser blow-off technique and shows a nearly linear scaling with plasma current. The diffusivity for the impurities was in the range 0.4-0.8 m²/sec, somewhat higher than that of the majority species. Analysis of plasma transients have yielded profiles of particle diffusivity and convection velocity; D is typically flat and close to $\chi_e$. Using the TRANSP code and plasma profile data, $\chi_e$ and $\chi_i$ have been calculated for ohmic and ICRF heated plasmas. For ohmic plasmas, $\chi_e(a/2)$ is in the range 0.2-0.8 m²/s, increasing sharply with the application of RF power. The ion thermal diffusivity is somewhat lower, is typically in the range of $1-3 \times \chi_{\text{nc}}$ and does not increase with RF power. We also calculate a value for the plasma resistivity which lies between the Spitzer and neo-classical calculations. Ohmic and ICRF H-modes are obtained over a wide range of discharge parameters, extending the range in the international database for nB by almost a factor of 10. The power threshold for ELM-free discharges is in rough agreement with the ITER database scaling $P/S = .044 \, \text{nB}$. ELMy H-modes were obtained at powers at least a factor of two lower than the ELM-free ones. Ohmic H-modes are distinguished by having a low midplane neutral pressure.

ACKNOWLEDGMENTS

The authors would like to thank our able and hardworking computer, engineering and technical staff without whose efforts this research could not have been performed. The authors are also indebted to the developers of the various computer codes cited here. This work is supported by US Department of Energy contract #DE-AC02-78ET51013.
REFERENCES


6 M. Porkolab and Alcator Group, "Overview of Recent Results from Alcator C-Mod", to be published in Plasma Physics and Controlled Nuclear Fusion Research (Proc. of 15th Int. Conf. Sevilla, 1994, IAEA)

7 Hawryluk, R., Physics of Plasmas Close to Thermonuclear Conditions, Proceedings of the course held in Varenna, Italy, 1, 19 (1979)


19 B. Lipschultz, J. Goetz, B. LaBombard, G.M. McCracken, J.L. Terry, M. Graf, R.S. Granetz, D. Jablonski, C. Kurz, A. Niemczewski, J. Snipes, "Dissipative Divertor Operation in the Alcator C-Mod Tokamak", to be published in the proceed-
ings from the 11th International Conference on Plasma Surface Interactions, May 1994, Mito, Japan.

TABLE CAPTIONS

I. Correlation matrix, giving the mean, range and correlations for the independent variables in our data set. Note the "natural correlations" such as that between Ip and κ or between Ip and Pin for the ohmic plasma, as well as "accidental correlations" such as that between κ and ion mass which are simply the result of not running in all of the available operating space.

FIGURE CAPTIONS

1. The measured τₑ for both ohmic and ICRF heating plasmas is plotted against the best fit to a power law scaling expression. The result is very close to the ITER89-P equation[3].

2. Traces of plasma temperatures, density, Zeff and Picrf for a typical ICRF heated discharge.

3. (Zeff(0)-1)/Pin vs line averaged density. At densities above 1.5 x 10^20, Zeff is near 1 for all powers up to 2 MW.

4. Wmhd vs Wkin for the confinement database. These are in good agreement for the ohmic data. The discrepancy in the higher power ICRF data is likely due to energy stored in the ion tail. Wmhd - Wkin is close to the Wtail calculated by FP-PRF.

5. Heating power, temperatures, stored energies and thermal diffusivities of the plasma electrons and ions as calculated by TRANSP. During the ohmic phase χₑ
\[ \chi_i \] but when the ICRF is applied, \( \chi_e \) rises to about 1.0 m\(^2\)/s with apparently little change in \( \chi_i \).

6. Values of the plasma surface voltage, \( V_{surf} \), calculated with TRANSP with the Spitzer and neo-classical resistivity models is plotted against the measured \( V_{surf} \). Our results indicate resistivity somewhere in between the two calculations.

7. Surface power density, \( P/S \), plotted against midplane neutral pressure, \( P_0 \), for ohmic L-mode and H-mode discharges. The H-mode discharges have the lowest values of \( P_0 \) in the database.

8. Impurity confinement times plotted against a power law fit. The dominant scaling is a nearly linear dependence on \( I_p \).

9. Profiles of particle diffusivity, \( D(r) \), and convective velocity, \( V(r) \) calculated by from the plasma response to a set of gas puffs.
### Table 1

**Correlation Matrix for L-Mode Database**

<table>
<thead>
<tr>
<th></th>
<th>(\ln(R))</th>
<th>(\ln(R/a))</th>
<th>(\ln(Ip))</th>
<th>(\ln(BT))</th>
<th>(\ln(M))</th>
<th>(\ln(ne))</th>
<th>(\ln(K))</th>
<th>(\ln(P_{tot}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>-0.38</td>
<td>1.13</td>
<td>-0.41</td>
<td>1.64</td>
<td>0.59</td>
<td>0.13</td>
<td>0.37</td>
<td>0.07</td>
</tr>
<tr>
<td>sigma</td>
<td>0.014</td>
<td>0.024</td>
<td>0.27</td>
<td>0.063</td>
<td>0.25</td>
<td>0.36</td>
<td>0.084</td>
<td>0.54</td>
</tr>
<tr>
<td>(\ln(R))</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(R/a))</td>
<td>-0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(Ip))</td>
<td>0.27</td>
<td>-0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(BT))</td>
<td>-0.09</td>
<td>0.14</td>
<td>0.45</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(M))</td>
<td>0.26</td>
<td>0.10</td>
<td>0.65</td>
<td>0.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(ne))</td>
<td>0.18</td>
<td>0.06</td>
<td>0.73</td>
<td>0.47</td>
<td>0.41</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(K))</td>
<td>0.54</td>
<td>0.22</td>
<td>0.52</td>
<td>0.13</td>
<td>0.63</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(\ln(P_{tot}))</td>
<td>-0.01</td>
<td>-0.19</td>
<td>0.72</td>
<td>0.42</td>
<td>0.44</td>
<td>0.64</td>
<td>0.22</td>
<td>1.00</td>
</tr>
</tbody>
</table>
\( T_E \) VS \( \tau_{\text{fit}}(\text{Amu, } n_p, n_{\text{tot}}) \)

- \( A_0 = 0.38 \pm 0.03 \)
- \( \gamma_{\text{Amu}} = 0.27 \pm 0.04 \)
- \( \gamma_{n_p} = 0.90 \pm 0.04 \)
- \( \gamma_{n_{\text{tot}}} = 0.06 \pm 0.03 \)
- \( R = 0.939 \)

\( \tau_E (\text{fit}) = 0.038 \text{ Amu}^{0.27} n_p^{0.90} n_{\text{tot}}^{-0.49} \)

Figure 1

18
Figure 2

Shot #940602019

Te(0)

Ti(0)

ne(0)

Zeff(0)

Prf

Time (sec)
Figure 5

Transport Analysis for Shot #940622006

- Qe
- Qi
- Wtotal
- Wthermal
- Wtail
- Te(O)
- Ti(O)
- Xe(a/2)
- Xi(a/2)
Calculated \( V_{\text{surf}} \) (V)

Comparison of Resistivity Models

Figure 6
Ohmic H-Mode Power Threshold vs. Midplane Neutral Pressure

\[ P/S = 6.97 \times P_0 \]

- **ELM Free OH**
- **ELMy OH**
- **ELMy OH (Li Inj)**
- **OH L-mode**
Impurity Particle Confinement Time

$A_0 = 0.027$
$\gamma_p = 1.34 \pm 0.17$
$\gamma_p = -0.36 \pm 0.13$

$\tau_{\text{fit}} = 0.027 l_p^{1.34} p^{-0.35}$

Figure 8
Figure 9