PFC/JA-95-40

Measuring Implosion Symmetry and Core Conditions in the National Ignition Facility

R.D.Petrasso, C.K.Li

PFC, Massachusetts Institute of Technology

M.D.Cable, S.M.Pollaine, S.W.Haan, T.P.Bernat, J.D.Kilkenny

Lawrence Livermore National Laboratory

S.Cremer, J.P.Knauer, C.P.Verdon, R.L.Kremens

LLE, University of Rochester

Accepted for publication in Physical Review Letters

July, 1996

This work was supported in part by LLNL subcontract No. B313975 and Univ. of Rochester subcontract No. 410025-G. Reproduction, translation, publication, use and disposal, in whole or in part by or for the United States governement is permitted.
Measuring Implosion Symmetry and Core Conditions on the National Ignition Facility

R. D. Petrasso, C. K. Li
Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA

M. D. Cable, S. M. Pollaine, S. W. Haan, T. P. Bernat, J. D. Kilkenny
Lawrence Livermore National Laboratory, Livermore, CA

S. Cremer, J. P. Knauer, C. P. Verdon, R. L. Kremens
University of Rochester, Laboratory for Laser Energetics, Rochester, NY

Abstract

Tertiary protons with birth energies from 27 to 30.8 MeV result from the implosion of ignition-scale inertial confinement fusion targets, such as those planned for the National Ignition Facility (NIF). Measurement of the terriaries' slowing can provide a determination of the imploded areal density of the fuel capsule, as well as information about implosion asymmetry that results from anisotropy of the areal density and plasma temperature. To determine the utility of terriaries for all phases of ignition experiments, we analyze three representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite (15 kJ); and a cryogenic fuel capsule that ignites and burns (13,000 kJ). In each case, terriaries escape from the capsule and convey critical information about implosion dynamics. Tertaries might also prove useful for current laser facilities such as the newly completed OMEGA.

Submitted to Physical Review Letters, 29 March 1996

PACS 52.25.Tx, 52.40.Nk, 52.70.Nc
In both the US1-4 and France5 widespread attention has focused on new initiatives in inertial fusion, the National Ignition Facility in the US and the MegaJoule Laser Facility in France. The goal is to generate at least 10 times more energy from fusion than the laser energy (≤1.8 MegaJoule) used to drive the capsule implosions. In such experiments, densities and areal densities will be immense (\(\sim 10^3 \text{ g/cm}^3\) and \(\sim 1 \text{ g/cm}^2\)). Precisely because of such extremes (see Fig. 1-3), new diagnostic methods will be required to measure critical parameters such as capsule implosion symmetry1,6-8 and areal density9-12. Here we identify a solution to these particular issues based on detection of tertiary protons that have birth energies between \(\sim 27\) and 30.8 MeV. We concentrate on these high-energy tertiaries both because of their ability to escape the capsules envisioned for all phases of the NIF and because they convey pivotal information.

Diagnosis of tertiary protons will be useful during three phases of the approach to ignition. In the first phase, conditions for symmetric drive will be established using non-igniting DT gas-filled capsules, with small fusion yields (0.7 kJ). In the second phase, the drive pulse-shape for igniting cryogenic (solid fuel) capsules will be determined, as well as further fine-tuning of drive symmetry. Ignition itself will not yet be achieved, but the yields will typically be much larger (15 kJ) than for gas capsules. In the final stage, fully ignited cryogenic capsules with large yields (13,000 kJ) will be diagnosed. Below we analyze the tertiary production and spectra from each of these cases. In addition to these considerations of the NIF implosions, we briefly examine the potential utility of tertiary protons for current laser experiments such as the recently-completed OMEGA.

High-energy tertiary protons are generated in a 3-step process starting with the primary fusion between deuterium (D) and tritium (T) ions

\begin{equation}
D + T \rightarrow \alpha (3.5 \text{ MeV}) + n(14.1 \text{ MeV}),
\end{equation}
where the short range of the α particles propagates the fusion burn from the igniting core outwards into the dense fuel region12,14. The second step involves the 14.1-MeV neutron elastically scattering off a plasma deuteron:

\begin{equation}
\text{n}(14.1\text{MeV}) + \text{D} \rightarrow \text{n'} + \text{D}(11 \rightarrow 12.5 \text{MeV}).
\end{equation}

11 (12.5) MeV corresponds to a collision in which the deuteron scatters at 20 (0) degrees with respect to the incident neutron direction. The total cross-section for this reaction is $\sigma_p = 620$ mb. Because the differential cross section is strongly peaked in the forward direction15, about 13% of the reactions result in deuteron energies at or above 11 MeV. (This corresponds to the factor F_p in Table 1 and Eq. 4.) The third and final step involves these very energetic deuterons fusing with plasma ^3He ions, with tertiaries being emitted within 30\textdegree[20\textdegree] degrees of the forward direction:

\begin{equation}
\text{D}(11--12.5\text{MeV}) + ^3\text{He} \rightarrow \alpha + \text{P}(27.6[28.5] \rightarrow 30.8 \text{MeV}).
\end{equation}

The total cross-section for this reaction is $\sigma_{^3\text{He}} = 40$ mb. Because this differential cross section16 is also strongly forward peaked, about 17\% of all tertiary protons are emitted with energies at or above 27.6[28.5] MeV (the factor F_p in Eq. 4). This reaction requires the presence of ^3He, with which the capsule is seeded during fabrication (related to the factor $\gamma_{^3\text{He}}$)17,18.

To determine the energy loss of the tertiary protons on the NIF we construct, through the use of hydrodynamic-radiative codes such as HYADES19, representative profiles of temperature and density near peak burn for a gas-capsule implosion (0.7 kJ, Fig. 1); for a cryogenic capsule that fails to ignite (15 kJ, Fig. 2); and for a fully ignited cryogenic capsule (13,000 kJ, Fig. 3)12. For the non-igniting cryogenic capsule (Fig. 2), it fails because it is over-driven. A typical starting capsule for these indirect-drive implosions1 is shown in Figure 2 (inset), with details of the laser irradiance parameters

3
For the gas capsule, the solid cryogenic layer is removed and the brominated CH ablator thickened to maintain constant areal density. The gas density is still left at about 0.3 mg/cm3. Combining these profiles with stopping power calculations, the energy loss during capsule transit is calculated for tertiaries that originate near capsule center (Table 1). From the point of view of energy loss, this is a worst case analysis. In the capsule interior (exterior), tertiary slowing is dominated by plasma electrons from DT (CH). Ion stopping is totally negligible, as are scattering effects. Fig. 4 summarizes the tertiary range for relevant temperatures and densities.

Focusing first on the gas-capsule implosion (Case A, Table 1), 10.1 MeV to 11.7 MeV is lost during capsule transit for tertiaries with birth energies of 30.8 MeV and 27 MeV, respectively. Most of this loss results from electron stopping in the CH pusher/ablator plasma that encloses the fuel (Fig.1).

For igniting cryogenic capsules (Case C, Table 1), only about 5 MeV is lost in capsule transit by tertiaries with birth energies of 27 - 30.8 MeV. Despite the immense capsule densities, the high temperatures keep the plasma relatively “transparent” (Fig.3). Energy loss is more important for non-igniting cryogenic capsules (Case B, Table 1). This is a consequence of the fact that areal densities are still substantial while temperatures are relatively low (Fig.2 and 4). The energy loss is 9.9 to 11.4 MeV for 30.8 and 27 MeV protons, respectively. (Because ~ 0.5 MeV loss in deuteron energy occurs before fusing with 3He, an additional 0.5 MeV is removed from the low-energy end of the proton spectrum.)

To estimate the magnitude of the tertiary yields, we utilize the cross sections associated with Eqs. 2 and 3 as well as the characteristic temperature/density profiles (Fig. 1-3). The yield is

$$ Y_p \sim \{(\sigma_D)(F_\theta)(\gamma_D)\}\{(\sigma_{He})(F_\phi)(\gamma_{He})\} (m_{\text{eff}})^2(\rho \Delta R)^2 (F_n Y_c) , $$

(4)
where Table 1 lists the interpretation and value of the parameters. Note that the tertiary yield is proportional to the neutron yield \((Y_n)\) and the square of the areal density \((\rho \Delta R)\).

An additional source for tertiary protons, with maximum energy of 28.9 MeV, are those from fusion reactions of knockon \(^3\text{He}\) ions with plasma deuterons. (In Eq. 2, \(^3\text{He}\) replaces \(D\), and then the roles of \(D\) and \(^3\text{He}\) are reversed in Eq. 3.) On the basis of the knockon and fusion cross sections, this contribution is important for the gas capsule targets when the \(^3\text{He}\) fraction is large. [It amounts to multiplying Eq. (4) by a factor of about 3 for the conditions of Table 1.]

For the NIF gas-capsule implosion (Case A, Tab. 1), the tertiary yield is approximately \(1.5 \times 10^7\) and, for a detector with fractional solid angle of \(-10^4\), the signal would be of order 1500 counts. Since this signal is connected with the entire fuel \(\rho R\) (Fig. 1), this diagnostic is similar in spirit to proposed tertiary neutron measurements (in Eq. 3, the \(^3\text{He}\) is replaced with \(T\), resulting in tertiary neutrons with maximum energy of 30.1 MeV).

At the other extreme, the ignited cryogenic implosion results in approximately \(2.0 \times 10^{11}\) tertiaries and, in contrast to the gas capsule, they would be largely slowed in the main fuel \(\rho R\) (Fig. 3). For a detector with fractional solid angle of \(-10^6\), the resulting signal would be of order \(2 \times 10^5\) counts. Another important feature is the substantial energy of the escaping tertiaries, well in excess of the 14.1-MeV neutrons. In such instances, tertiary diagnostics might expeditiously be based on time-of-flight separation from the 14.1-MeV neutrons.

For more complicated implosion scenarios, the situation should be even more interesting than these illustrative cases. For example, 2-dimensional hydrodynamic calculations for ignited capsules indicate that pole-to-waist angular variations in the cryogenic fuel \(\rho R\) can vary by as much 40% from the 1-dimensional density profiles.
depicted above. Such asymmetries might be discernible from measurements of the escaping proton spectrum22. With several multiple proton spectrometers simultaneously viewing the implosion from various angles, differences in their spectra should be directly related to variations in fuel ρR and electron temperature along the different lines-of-sight27.

The previous calculations concerned implosions on the NIF. Here we show that terriaries might also be useful for present facilities. Utilizing LILAC hydrodynamic calculations24 and Eq.4, we list in Column D (Table 1) neutron yield and $\rho \Delta R$ values expected for OMEGA direct-drive gas-capsule implosions (Fig.5). Treating nascent terriaries from 20 to 30.8 MeV, the calculated yield is 1.0×10^6. For OMEGA implosions, 20 MeV can be used for the low-energy end of the proton spectrum since only about 4 MeV is lost by the escaping terriaries. In principle, these terriaries should be detectable with a CCD-based charged-particle spectrometer25 that we are building for OMEGA. (The spectrometer’s main function is to detect the numerous charged particles from other implosion processes26,11.) With a fractional solid angle of 3×10^{-5}, it should detect about 30 terriaries27. Thus even for the present, new class of facilities like OMEGA, terriaries might expeditiously be used to help diagnose implosion dynamics.

In summary, penetrating tertiary protons with birth energies from \sim 27 to 30.8 MeV are shown to be sensitive to central fuel conditions and implosion symmetry on the National Ignition Facility, including those implosions with peak density of $\sim 10^3$ g/cm3 and areal density of ~ 1 g/cm2. Because the sequence of experiments on the NIF will proceed from gas to cryogenic capsules, we treated three cases that were representative of this anticipated sequence: First, a gas capsule implosion; second, a cryogenic implosion that fails to ignite; and third, a cryogenic implosion that fully ignites. In each case, energetic terriaries will convey useful information about fuel and core areal density and implosion symmetry. Furthermore, even for present facilities such as the newly operational
OMEGA, it is possible that tertiary protons can effectively diagnose important aspects of the implosion dynamics.

Acknowledgments. The authors thank Dr. John Lindl for detailed comments and Prof. Arthur Kerman for helpful suggestions, Profs. Robert McCrory and Miklos Porkolab and Dr. E. Michael Campbell for support and encouragement, and Mr. Damien Hicks and Dr. Fredrick Seguin for extensive discussion of charged-particle spectroscopy with CCDs. This work was supported in part by LLNL Subcontract B313975 and Un. of Rochester Subcontract 410025-G.
References

3. Lawrence Livermore National Laboratory, Energy & Technology Review, December 1994. (This issue was devoted entirely to discussion of the National Ignition Facility.)
12. Tertiary processes with energetic neutrons as the final product, have also been reviewed [H. Azechi, M. D. Cable, and R. O. Stapf, Laser and Particle Beams 9, 119 (1991)]. The signal of these neutrons should be proportional to the square of the fuel areal density. This diagnostic will probably not be directly sensitive to implosion asymmetries.
17. For an imploded core 3He fraction of 5%, the initial vapor-space fraction would have to be 0.5, or about 0.15 mg/cc. This increases the natural time constant for forming the solid layer by "beta layering" from about 25 minutes to about 200 minutes (five to ten time constants are required to produce a smooth, symmetric layer). The presence of the 3He will not otherwise directly affect the solid layer, but if the time constant becomes too long, 3He bubbles can form in the solid, leading to deleterious effects. For further information on beta layering, see T. P. Bernat, E. R. Mapoles, and J. J. Sanchez, "Temperature- and age-dependence of redistribution rates of frozen deuterium-tritium", Lawrence Livermore National Laboratory 1991 ICF Annual Report, UCRL-LR-105820-91, p55, June, 1992, and references therein.
18. Only for fully ignited cryogenic implosions (Case C) will an important fraction of tertiary protons originate from \(^3\)He generated from D-D fusion. Specifically, for the conditions of Table 1 and Fig. 3 (i.e. 5% \(^3\)He fraction at peak burn), monte-carlo/hydrodynamic calculations indicate that the in situ D-D component will be smaller by a factor of 3. (This and other time-dependent calculations of tertiary protons and neutrons, of secondary charged products, and of knockons, will be treated in the future by S. Cremer and coworkers.) Experimentally these two tertiary components can also be distinguished by imploding capsules with and without \(^3\)He seeding. Furthermore hydro calculations indicate that ignition still occurs for 12% \(^3\)He seeding at peak burn, so in principle even more distinct contrast could be achieved between these two components.

22. There is a trade-off between the signal size and the degree to which asymmetries can be determined. Specifically the larger \(F_0\) and \(F_8\) (of Eq. 4 and Table 1), the larger the signal, but the smaller the information content that can be obtained about the implosion asymmetry. In a similar vein, if the tertiary source is too extended, it can wash out short spatial scale \(\rho R\) variations, of which \(P_2\), \(P_4\) and \(P_6\) are of particular interest. Such issues will have to be treated in the actual NIF experiments and through further detailed simulations.

23. Additionally, for all tertiaries it is desirable that their escape energy exceed 14 MeV in order to avoid potential confusion with 14-MeV (and lower energy) protons that might originate from neutron knockons with the (CH) ablator hydrogen.

27. The important issue of detector noise – from neutrons, gammas, etc. – will be carefully assessed when the spectrometer is actually interfaced to OMEGA. This will ultimately determine whether the tertiaries will be observable. Similar considerations will also need to be addressed for the NIF.
<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
<th>Case C</th>
<th>Case D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion yield (kJ)</td>
<td>0.7</td>
<td>15</td>
<td>13.000</td>
<td>0.028</td>
</tr>
<tr>
<td>Tertiary birth energies (MeV) [from near capsule center]</td>
<td>30.8, 27.0</td>
<td>30.8, 27.0</td>
<td>30.8, 27.0</td>
<td>30.8, 20</td>
</tr>
<tr>
<td>Tertiary energy loss (MeV) (after capsule transit)</td>
<td>10.1, 11.7</td>
<td>9.9, 11.4</td>
<td>4.5, 4.6</td>
<td>3.2, 4.6</td>
</tr>
<tr>
<td>Tertiary escape energy (MeV)</td>
<td>20.7, 15.3</td>
<td>20.9, 15.6</td>
<td>26.3, 22.4</td>
<td>27.6, 15.4</td>
</tr>
<tr>
<td>Y_n: Primary neutron yield</td>
<td>2.5x10^{14}</td>
<td>5.3x10^{15}</td>
<td>4.6x10^{18}</td>
<td>1.8x10^{13}</td>
</tr>
<tr>
<td>F_θ: Fraction of Y_n passing thru 3He-doped fuel</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>D: 3He / 4He ratio in the fuel and/or core</td>
<td>0.5: 0.25: 0.25</td>
<td>0.475: 0.475: 0.05</td>
<td>0.475: 0.475: 0.05</td>
<td>0.475: 0.475: 0.05</td>
</tr>
<tr>
<td>(Fraction of D [Yp] and 3He [Ye] in the fuel)</td>
<td>0.475: 0.475: 0.05</td>
<td>0.475: 0.475: 0.05</td>
<td>0.5: 0.25: 0.25</td>
<td>0.5: 0.25: 0.25</td>
</tr>
<tr>
<td>$\rho \Delta R$: "Active" part of fuel areal density [g/cm2]</td>
<td>0.07</td>
<td>0.50</td>
<td>0.54</td>
<td>0.038</td>
</tr>
<tr>
<td>F_ϕ: Factor for knockon deuteron to be scattered within 20(^\circ) of forward direction</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>F_ϕ [α]: Factor for tertiary proton to be emitted within α(deg) of forward direction</td>
<td>0.17 [30(^\circ)]</td>
<td>0.17 [30(^\circ)]</td>
<td>0.17[30(^\circ)]</td>
<td>0.58[80(^\circ)]</td>
</tr>
<tr>
<td>m_{eff}: Effective ion mass of fuel ($m_p=1.67x10^{-24}$ g)</td>
<td>2.50m_p</td>
<td>2.52m_p</td>
<td>2.52m_p</td>
<td>2.50m_p</td>
</tr>
<tr>
<td>Y_p: Tertiary proton yield</td>
<td>* 1.5x107</td>
<td>2.0x108</td>
<td>2.0x1011</td>
<td>* 1.0x106</td>
</tr>
</tbody>
</table>

Table 1. Tertiary energy loss and yield (Y_p) expected from 3 NIF capsules: A) Gas-capsule; B) Cryo-capsule that fails to ignite; C) Cryo-capsule which ignites. D) Expected OMEGA gas-capsule tertiary yield.

* Also includes the 3He knockon component
Fig. 1. Calculated density and temperature profiles, at peak burn, for a gas-capsule implosion (0.7 kJ) on the National Ignition Facility (NIF). From such profiles, estimates are made of the yield of ~ 27 to 30.8 MeV tertiary protons and their energy loss as they transit the capsule (Case A, Table 1). In this instance, they lose between 10 and 12 MeV. The dashed/dot line indicates the cross-over from DT to CH-ablator plasma. For the first few years, gas-capsule implosions will be the focus of the NIF.
Fig. 2. Calculated density and temperature profiles, at peak burn, for a NIF cryogenic-capsule implosion (15 kJ) that fails to ignite (Case B, Tab. 1). This simulated failure was achieved by over-driving the implosion. The dashed/dot line indicates the cross-over from DT to CH-ablator plasma.

Inset: Typical starting capsule1 for indirectly-driven implosions of Figures 2 and 3. Laser irradiance parameters are given in Ref. 1. In our simulations, the initial gas mixture is typically 0.15 mg/cc of DT and 0.15 mg/cc of He3. (Simulations ignite even when the gas density is comprised entirely of He3.)17 For the gas-capsule implosion of Fig. 1, the solid cryogenic layer is removed and the CH ablator thickened to maintain constant areal density; the initial gas mixture (D:T:He3) is then 0.5: 0.25: 0.25.
Fig. 3. Calculated density and temperature profiles, at peak burn, for a NIF cryogenic-capsule implosion (13,000 kJ) that ignites (Case C, Tab. 1). In this instance, the fusion energy is about 10 times greater than the laser energy used to drive the implosion. The dashed/dot line indicates the cross-over from DT to CH-ablator plasma.
Fig. 4. Range calculations for 30.8-MeV tertiary protons in DT plasmas relevant to simulated implosions on the NIF and OMEGA. In contrast to 3.5-MeV α's, the high energy of tertiary protons results in negligible slowing with plasma ions, even for the ignited cryogenic capsule (Fig. 3) that has an ion temperature of ~ 40 keV. Scattering effects are also inconsequential. It is for closely related reasons that, by simply multiplying each ρR curve by 0.74, this same family of curves also applies to 30.8-MeV tertiaries in the CH-ablator plasma.
Fig. 5. Calculated density and temperature profiles, at peak burn, for a directly-driven OMEGA implosion (0.028 kJ)24. For this particular simulation, tertiary protons may be the only charged particle species that can unambiguously convey information about the fuel 23,27. For example, knockon deuterons and tritons are ranged out, while knockon protons from (H)fuel seeding could be overwhelmed by proton knockons from the CH ablator. For this reason tertiaries could prove useful even for present-day, non-ignited experiments. The dashed/dot line indicates the cross-over from DT to CH-ablator plasma.