2l - nl' X-Ray Transitions from Neonlike Charge States of the Row 5 Metals with 39 ≤ Z ≤ 46

J.E. Rice, K.B. Founier¹, J.L. Terry, M. Finkenthal², E.S. Marmar, W.H. Goldstein¹, U.I. Safronova³

March 1996

¹Lawrence Livermore National Laboratory, Livermore, CA 94550.
²Racah Institute of Physics, The Hebrew University, Jerusalem, Israel 91904.
³Institute for Spectroscopy, Russian Academy of Sciences, Troitsk, 142092, Russia.

Submitted to Proceedings of 10th APS Topical Conference on Atomic Processes in Plasmas.

This work was supported by the U. S. Department of Energy Contract No. DE-AC02-78ET51013. Reproduction, translation, publication, use and disposal, in whole or in part by or for the United States government is permitted.
2l - nl' X-ray Transitions from Neonlike Charge States of the Row 5 Metals with 39 ≤ Z ≤ 46

J. E. Rice, K. B. Fournier+, J. L. Terry, M. Finkenthal†,
E. S. Marmar, W. H. Goldstein+ and U.I. Safronova*

Plasma Fusion Center, MIT, Cambridge, MA 02139-4307

+ Lawrence Livermore National Laboratory, Livermore, CA 94550
† Racah Institute of Physics, The Hebrew University, Jerusalem, Israel, 91904
* Institute for Spectroscopy, Russian Academy of Sciences, Troitsk, 142092, Russia

Abstract

X-ray spectra of 2l - nl' transitions with 3 ≤ n ≤ 12 in the row five transition metals zirconium (Z=40), niobium (Z=41), molybdenum (Z=42) and palladium (Z=46) from charge states around neonlike have been observed from Alcator C-Mod plasmas. Accurate wavelengths (± .2 mÅ) have been determined by comparison with neighboring argon, chlorine and sulphur lines with well known wavelengths. Line identifications have been made by comparison to ab initio atomic structure calculations, using a fully relativistic, parametric potential code. For neonlike ions, calculated wavelengths and oscillator strengths are tabulated for 2p-nd transitions in Y (Z=39), Tc (Z=43), Ru (Z=44) and Rh (Z=45) with n = 6 and 7. The magnitude of the configuration interaction between the (2p5)6d1/2 J = 1 level and the (2p5)7d1/2 J = 1 levels is demonstrated as a function of atomic number for successive neonlike ions. Measured spectra of selected transitions in the aluminum-, magnesium-, sodium- and fluorinelike isosequences are also shown.
Introduction

Recently there has been considerable interest in x-ray transitions in high Z atoms with charge states around the neonlike isosequence1-11. X-ray lasing12,13 has been demonstrated in neonlike ions, and a need to understand the kinetics of this system has motivated development of very precise collisional-radiative modelling tools14. The identifications of many x-ray lines from neonlike ions allow high resolution experimental data to be used for benchmarking multi-electron atomic structure calculations15-19. Most of the work which has been done in the past has been limited to 3-3, 2-3 and 2-4 transitions in the Ne-I isosequence and adjacent charge states. The high temperature, optically thin tokamak plasmas enable the measurement of many lines originating in transitions from levels having \(n \geq 5 \); in fact, all of the transitions in the 2p-nd series in Mo32+ lying under the ionization potential have been measured10. The availability of a large number of transitions in several adjacent elements provides the opportunity to study the systematics of configuration interaction effects.

In this paper are presented spectra of selected 2p-nd transitions with \(n \) between 3 and 7 in near neonlike Zr, Nb, Mo and Pd, obtained from Alcator C-Mod plasmas20. A comprehensive study of numerous transitions in these elements is given in Ref.(11). The 2p-nd transitions considered here are strongly split by the \(j \)-value (in \(jj \)-coupling) of the 2p hole in the ionic core. The splitting is very apparent in the neonlike ions, where the resonance transitions with upper states containing a 2p\(\frac{1}{2} \) hole are at much shorter wavelengths than the corresponding transitions with a 2p\(\frac{3}{2} \) hole. This splitting can lead to significant configuration interaction when a (2p\(\frac{5}{2} \))\(n'd \) orbital is close in energy to a (2p\(\frac{5}{2} \))\(n'd \) orbital. Interaction between the orbitals will perturb transition wavelengths and re-distribute oscillator strength within a class of transitions21. The magnitude of the configuration interaction between the (2p\(\frac{5}{2} \))\(6d \) \(J = 1 \) level and the (2p\(\frac{5}{2} \))\(7d \) \(J = 1 \) levels has been measured as a function of energy level spacing for the neonlike ions of Zr, Nb and Mo11. In this paper calculations are presented for these interacting levels in
neonlike ions with $39 \leq Z \leq 46$.

The x-ray observations described here were obtained from the Alcator C-Mod20 tokamak, a compact high field device with all molybdenum plasma facing components. For these measurements, the plasma parameters were in the range of $7.7 \times 10^{13}/\text{cm}^3 \leq n_{e0} \leq 2.0 \times 10^{14}/\text{cm}^3$ and $1500 \text{ eV} \leq T_{e0} \leq 3400 \text{ eV}$. A laser blow-off impurity injection system22, which has been used to study impurity transport, was used to inject niobium, palladium and zirconium into Alcator C-Mod plasmas.

The spectra presented here were recorded by a five chord, independently spatially scannable, high resolution x-ray spectrometer array23. Wavelength calibration2,3 has been achieved by determining the instrumental dispersions in reference to H- and He-like argon, chlorine and sulphur lines and previously measured molybdenum10 lines.

Ab initio atomic structure calculations for the aluminum- through fluorinelike isosequences (ground states $2p^63s^23p$ to $2s^22p^4$, respectively) have been performed using the RELAC code24,25, which solves the Dirac equation by optimizing a parametric potential. RELAC has been used to calculate the full multi-configuration transition wavelengths and oscillator strengths for all lines observed in this paper.

X-ray Transitions

Shown in Fig.1 are the time histories of several quantities of interest for a typical Alcator C-Mod 5.3 T, deuterium discharge. There was a niobium injection into this particular discharge at 0.5 seconds, when the plasma current was 0.9 MA, the central electron temperature was 2200 eV and the central electron density was $1.3 \times 10^{14}/\text{cm}^3$. The niobium stayed in the plasma for about 100 ms, as shown by the bottom frame of the figure, indicative of anomalously fast impurity transport22. In Fig.2 is shown an x-ray spectrum taken during an injection which demonstrates the strongest niobium line which falls within the wavelength range of the spectrometer,
the $2p^6 - (2p^5)\frac{1}{2}d\frac{1}{2}$ transition in neonlike Nb^{31+} at 3957.3 mÅ. Also apparent in this spectrum are some sodiumlike Nb^{30+} 2p-4d lines at 4008.4 and 4011.3 mÅ, and some weaker lines from the magnesiumlike and fluorinelike charge states. A synthetic spectrum, generated using calculated wavelengths11, typical instrumental and Doppler line widths, and line amplitudes proportional to the oscillator strengths11 within a given charge state, is shown at the bottom of the figure. The observed niobium lines are within 1 mÅ of the calculated wavelengths11. Wavelength calibration was obtained from several nearby Ar16+ lines26,27, Si14+ lines26 and Si15+ lines28. A calibration spectrum showing several sulphur lines is shown in Fig.3. This spectrum includes the (unresolved) Lyman β doublet and the $1s^2-1snp$ series in Si14+ with n between 5 and 13. Calculated wavelengths and radiative transition probabilities for this series are given in Table I.

Another strong neonlike Nb^{31+} line, the $2p^6 - (2p^5)\frac{1}{2}d\frac{1}{2}$ transition at 3843.8 mÅ, is shown in Fig.4a. Also prominent in the figure are the 2p-4d lines at 3892.8 and 3822.9 mÅ, from sodium- and fluorinelike niobium, respectively. The corresponding 2p-5d transitions are shown in Fig.4b. At the bottom of each figure is a synthetic spectrum and the wavelength agreement is very good.

For higher n transitions in neonlike systems, the upper levels of certain lines in the $2p^6 - (2p^5)\frac{1}{2}nd\frac{1}{2}$ series and the $2p^6 - (2p^5)\frac{1}{4}nd\frac{3}{2}$ series can have nearly identical energies, giving rise to significant configuration interaction. In particular, the effect is seen in the enhancement of the intensity of the $2p^6 - (2p^5)\frac{3}{2}7d\frac{1}{2}$ transition at the expense of the $2p^6 - (2p^5)\frac{1}{2}6d\frac{3}{2}$ transition10,11 in Mo32+, where the difference in the upper state energy levels is 3.5 eV, and the interaction is quite large. A spectrum of these two lines in Zr30+ is shown in Fig.5. In the case of zirconium, the separation is 11 eV (11 mÅ) and there is little configuration interaction at all (the two lines are within a factor of 2 in intensity). This effect is summarized in Fig.6a where the calculated oscillator strengths of the $2p^6 - (2p^5)\frac{1}{2}6d\frac{3}{2}$, the $2p^6 - (2p^5)\frac{1}{4}6d\frac{3}{2}$, the $2p^6 - (2p^5)\frac{3}{2}7d\frac{1}{2}$ and the $2p^6 - (2p^5)\frac{1}{2}7d\frac{3}{2}$ lines are plotted as a function of atomic number. The oscillator strengths of the $2p^6 - (2p^5)\frac{1}{2}6d\frac{3}{2}$ lines and the $2p^6 -$
(2p⁵)⁵/₂ 7d⁵ lines are relatively insensitive to atomic number. The magnitude of the configuration interaction between the 2p⁶ - (2p⁵)⁵/₂ 6d⁵ level and the 2p⁶ - (2p⁵)⁵/₂ 7d⁵ level is quite apparent; as the atomic number increases from Y to Mo, the g*f value of the 7d⁵ line increases while the value of the 6d⁵ line decreases. At technetium (Z=43), this effect dramatically switches; for Tc and above, the 2p⁶ - (2p⁵)⁵/₂ 6d⁵ line is at shorter wavelength and the 2p⁶ - (2p⁵)⁵/₂ 7d⁵ line is the weaker of the two. The wavelength differences between the two levels is shown in Fig.6b.

For the electron temperatures of Alcator C-Mod, palladium can just reach the neonlike state, and the lower charge states are present in abundance. Shown in Fig.7 is a spectrum of Pd 2-3 transitions in the vicinity of the 2p⁶ - (2p⁵)⁵/₂ 3d⁶ line at 3731.7 mÅ. The corresponding lines in Pd⁴⁺, Pd⁵⁺ and aluminumlike Pd⁶⁺ are clearly identified.

Conclusions

X-ray transitions in the magnesiumlike through fluorinelike charge states in zirconium, niobium, molybdenum and palladium have been observed from Alcator C-Mod plasmas. Line identifications have been made by comparison to the results of ab initio calculations and overall wavelength agreement is very good. The magnitude of the configuration interaction between the (2p⁵)⁵/₂ 6d⁵ level and the (2p⁵)⁵/₂ 7d⁵ level has been calculated as a function of atomic number for 39 ≤ Z ≤ 46. 2p-3d transitions in aluminumlike Pd⁶⁺ have also been identified.

Acknowledgements

The authors would like to thank F. Bombarda for assistance with the spectrometer system, J. Irby for electron density measurements, A. Hubbard for electron temperature measurements and the Alcator C-Mod operations group for expert running of the tokamak. KBF would like to thank M.H. Chen for useful conversations and
References

23 J.E.Rice and E.S.Marmar, Rev. Sci. Instrum. 61, 2753 (1990)
Table Captions

Table I Calculated $1s^2-1snp$ transition wavelengths and radiative transition probabilities for heliumlike S^{14+}.

Table II Calculated neonlike $2p-nd$ E1 transition wavelengths and oscillator strengths for $n = 6$ and 7 in Y^{29+}, Tc^{33+}, Ru^{34+} and Rh^{35+}. The upper level designations in the first column are indicated by three jj-coupled orbitals where '-' indicates $l-s$ coupling and '+' indicates $l+s$ coupling; the first two orbitals show the occupancy of the $2p_{\frac{1}{2}}$ and $2p_{\frac{3}{2}}$ subshells, respectively, and the third orbital is where the $2p$-electron has been promoted. It’s the third orbital that makes the transition to fill the inner-shell vacancy.
Table I

<table>
<thead>
<tr>
<th>Transition</th>
<th>wavelength (mÅ)</th>
<th>A (10^{12}/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s^2 1S_0 - 1s4p 1P_1</td>
<td>4088.46</td>
<td>7.28</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s5p 1P_1</td>
<td>3997.73</td>
<td>3.63</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s6p 1P_1</td>
<td>3950.10</td>
<td>2.07</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s7p 1P_1</td>
<td>3921.92</td>
<td>1.29</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s8p 1P_1</td>
<td>3903.84</td>
<td>.860</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s9p 1P_1</td>
<td>3891.54</td>
<td>.602</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s10p 1P_1</td>
<td>3882.79</td>
<td>.438</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s11p 1P_1</td>
<td>3876.34</td>
<td>.323</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s12p 1P_1</td>
<td>3871.45</td>
<td>.252</td>
</tr>
<tr>
<td>1s^2 1S_0 - 1s13p 1P_1</td>
<td>3867.66</td>
<td>.198</td>
</tr>
<tr>
<td>Upper level</td>
<td>Y$^{29+}$</td>
<td>Tc$^{33+}$</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>λ_T (mÅ)</td>
<td>g^*f</td>
</tr>
<tr>
<td>(2p$^-$)2(2p$^+$)$^36d_+ J=1$</td>
<td>3856.8</td>
<td>.112</td>
</tr>
<tr>
<td>(2p$^-$)(2p$^+$)$^36d_+ J=1$</td>
<td>3765.6</td>
<td>.0516</td>
</tr>
<tr>
<td>(2p$^-$)2(2p$^+$)$^37d_+ J=1$</td>
<td>3749.9</td>
<td>.0733</td>
</tr>
<tr>
<td>(2p$^-$)(2p$^+$)$^37d_+ J=1$</td>
<td>3663.0</td>
<td>.0334</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1 Plasma current, electron temperature, electron density and Nb x-ray (3.96 Å) brightness time histories in a discharge with a niobium injection at .5 sec.

Fig. 2 2p-4d transitions in Nb^{29+} - Nb^{32+}. Theoretical lines for neonlike Nb^{31+} (solid), Nb^{30+} (dotted), Nb^{29+} (dashed) and Nb^{32+} (dash-dot-dash) are shown at the bottom, where the relative intensities within a given charge state are proportional to the oscillator strengths of each transition.

Fig. 3 1s^2-1snp transitions in S^{14+} with n between 5 and 12. Also apparent is the Lyman β doublet of S^{15+}, a 2p-4s line of Mo^{32+} at 3886.3 mÅ, and a satellite of Cl^{15+} Kβ at 3863.7 mÅ.

Fig. 4 a.) 2p-4d and b.) 2p-5d transitions in neonlike Nb^{31+} (solid), Nb^{30+} (dotted) and Nb^{32+} (dash-dot dash).

Fig. 5 2p_{\frac{1}{2}} - 7d_{\frac{3}{2}} and 2p_{\frac{1}{2}} - 6d_{\frac{5}{2}} transitions in neonlike Zr^{30+}, and the calculated neonlike (solid), sodiumlike (dotted) and fluorinelike (dashed) lines. Also shown are 2s-5p transitions in Zr^{30+} (solid) at 3510.3 and 3515.1 mÅ.

Fig. 6 Calculated oscillator strengths (a.) of 2p-6d and 2p-7d transitions and calculated wavelength differences (b.) between 2p_{\frac{1}{2}} - 6d_{\frac{3}{2}} transitions and 2p_{\frac{1}{2}} - 7d_{\frac{5}{2}} transitions as a function of atomic number Z.

Fig. 7 2p-3d transitions in Pd^{33+} - Pd^{36+}. Theoretical lines for neonlike Pd^{36+} (solid), Pd^{35+} (dotted), Pd^{34+} (dashed) and Pd^{33+} (dash-dot-dash) are shown at the bottom, where the relative intensities within a given charge state are proportional to the oscillator strengths of each transition. Molybdenum transitions are shown by the thin dash-dot-dot-dotdash lines.
Figure 1

- I_p (MA)
- T_e (keV)
- $n_e (10^{14}/\text{cm}^3)$
- Nb$^{31+}$ 3.96 Å

t (s)
Figure 2

Figure 2
Figure 4 (a)

Figure 4 (b)
Figure 5

Brightness (arb scale)

Wavelength (mA)

Zr

30+ 2p$_3/2$–7d$_5/2$

30+ 2p$_1/2$–6d$_3/2$
Figure 6
Figure 7