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Homogeneous Row-Continuous Bivariate
Markov Chains with Boundaries

J. Keilson
M. Zachmann

In a previous paper [ 8] a theoretical treatment of finite row-

continuous bivariate Markov chains B(t) = [J(t), N(t)] was developed,

providing an algorithmic basis for finding their ergodic distributions

and associated passage time moments. The continuous time chain B(t)

with state space B = {(j,n) : 0 < j < J, 0 < n < N) was described as

row-continuous in the sense that the marginal process N(t), indexed by

row coordinate n, changed at transition epochs by at most one. In the

present paper we restrict our discussion to those row-continuous chains

for which the transition rate matrices, vn , vn , describing rates
=n =n =n

local to row n, are independent of n for each 1 s n - N - 1. For n = 0,

one has vO = , and for n = N, = °0. Such processes may be described

as row-homogenous, row-continuous processes modified by two retaining

boundaries, as for earlier similar univariate contexts [ 2].

For all such processes the behavior of the bounded process is

intimately related to that of the associated row-homogeneous process

BH(t) = [J(t), NH(t)] on state space BH = {(j,n) : 0 - j < J. - < n < A}

with n, vn, n independent of n for all integer n. The distributions

governing the homogeneous process are as in [ 3] called Green's functions.

The treatment of the bounded process via such functions is brought about

through use of the same kind of compensation arguments and compensation
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functions employed in the earlier univariate studies. A quick intro-

duction to the ideas is given in [3 ].

A treatment of the ergodic distribution for the single boundary

process B(t) where N = - has been given by M. Neuts [11], with some dis-

cussion of simple aspects of the transient behavior. For many applica-

tions in congestion theory, where finite buffering is present [ 9], the

second boundary is of essential interest. Here we focus on two bounda-

ries and study theoretically and algorithmically the transient behavior

of such processes.

In section 1 the Green's function is defined and developed. An

explicit generating function is derived and the functional relationship

of the Green's function to the first passage time distribution is estab-

lished. The compensation method is employed in section 2 to describe

the dynamical behavior of the bounded process. In section 3, the invert-

ibility of the Laplace transforms of the Green's function matrices and

the first passage time matrix forms is demonstrated. The primary matrix

geometric results are then exhibited in section 4, for both bounded and

unbounded chains. Section S then develops algebraic and algorithmic

means for finding the first passage time distributions. In the conclud-

ing section 6, the mean first passage times and exit times are obtained.



§1 The Homogeneous Row-Continuous Markov Chain
and Related Green's Functions

To obtain the distribution of the process B(t) defined on the

state space 8 we first obtain that for the associated row-homogeneous

process BH(t) defined on the infinite lattice BH. The latter distribu-

tion is the time-dependent Green's function gn(t) defined formally below.

Two procedures for finding gn(t) will be developed. The ergodic Green's

function -Sn ef o n(t)dt is shown to be finite for all n under simple,

intuitive conditions on the row-homogeneous process.

The row-homogeneous row-continuous process BH(t) = [J(t), NH(t)] is

defined on an infinite lattice BH = {(j,n) : 0 < j < J, - X < n <}. The

behavior of B H(t) is governed by three transition rate matrices H', v=H'

and vH which define the transitions between the states of a row and the two

contiguous rows. Specifically, vH;ij is the hazard rate for transitions

from (i,n) to (j, n+l), vH;ij is that from (i,n) to (j,n-l), and vH;ij

is that from (i,n) to (j,n). As in [8], we uniformize by picking any

+ 0
v > max{(v i + H;i j + )} as a uniform rate. We then have, as

H;ij H;ij

in [ ],

+ 1+ 1 0 10 lD
Def 1.1 aH = =H 'H vH = H v H + I - v - H

where

D + 0
VH = Diag((H + V + )) .

The transition probabilities for the row-homogeneous chain, from (i,O) to

(j,n) are the components of the time-dependent matrix Green's function

gn(t) = [gij;n(t)]. In particular, we have
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Def 1.2 gij;n(t) = P[NH(t) = n,J(t) = jNH(O) = 0, J(0) = i]

We will call the set {gn(t): - X < n < }1 the time-dependent Green's

function for B(t). Because of the row-homogeneity,

P[NH(t) = n, J(t) = jINH(0) = m, J(O) = i] = gij;nm(t). The generating
ij;n-m

function g(u,t) = gn(t)un for the two-sided sequence (gnc(t will be

of value. Questions of summability and analytic structure have been dis-

cussed at length in [6,7].

Prop 1.3 The generating function g(u,t) = g (t)u satisfies
; nn-O

AV t a+ 1-
g(u,t) e -V eLV + uH u=HR 0 < lul <

proof: The forward Kolmogorov equations for B H(t) are

d + ~0 (a-
(1.4) d g (t) = - g (t) + vg (t)=aH + t)= Hvggn H t¥n=t =n-l H =n =gn+ l =Hal

as the reader may verify from the component equations. Multiplying (1.4)

by un and summing we get

dA + 0 1
(1.5) g(u,t) = - vg(u,t)[I - (uaH + -=a H }]dt =u=t =H H u I-

and the result follows. D

Corollary 1.6 For the marginal process J(t) with transition proba-

bility matrix p(t) we have

p(t) = g(l,t) = e -t[I-aH ] and the principal left eigenvector

T o + +
e of =aH = H + + =aH is the ergodic probability vector for J(t).



Proof: The proof follows directly from (1.3).

Although Proposition (1.3) is usefrl for its structural insights, it may

also be used for direct calculation of the gn(t) when, for example,

+ -

=H >> aH so that the cross-products converge quickly.

From (1.3) we have

(1.7) -gn(t) = k evt (vt) k
k=O

where ~bkn is the matrix coefficient of un in [a0 + uaH + 1 

The following approach may be used to find

_n(s) = £[gn(t)] = jf e - st gn(t)dt when the upwards and downwards first

passage time probability matrices are known. Formally, as in [ 8] we

define the first passage times

Def 1.8 (a) sH(t) = [sij(t)], _H(t) = [s.i(t)]

(b) a+(s) = £[sH(t)], a (s) = £[sH(t)]

(c) where

s.i(t)dt = P[a first arrival at row n+l in (t,t+dt) and
that arrival is at state (j,n+l)l at state
(i,n) at time 0]

sij (t)dt = similary except to row n-l.

We first need a prelimary result

Lemma 1.9

I - (s-) + aH a (s) + aH a (s)} is invertible
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def T.for s a 0, if e [aH a def 1 MH 0, where eT is the principal left

eigenvector of a =aH + aH + aH

proof:

It is known [6,7] that when the asymptotic drift rate MH > 0

we have a+(O) stochastic and ac(O) strictly substochastic. Similarly,

when MH < 0, a (0) is strictly substochastic and a (0) is stochastic.

In either case, _aH is stochastic and thus =a + 0 (O)_aH + a (O)aH

is strictly substochastic. This quantity, therefore, has a spectral

radius < 1 when s=O and the lemma follows for that case. For s real,

s : 0, the matrices g (s), g_(s) are monotone decreasing (element-wise),

as is v/v+s so that the spectral radius of

(-+ ){+aH a (s)aH + a (s)aH} is decreasing [1]

and the lemma is proven. D

TNotice that e may be interpreted as the ergodic distribution of

+ - 0
the underlying row process J(t) governed by v = v + v + v .

The next two propositions describe the second procedure for finding

gn(t)' in principle.

Prop 1.10 10(s) = [ -V 0 +- +- a+ h >0Prop 1.10 s+v [v{aH + a (s) + =a (s

proof: The argument given in [ 8 ] is applicable immediately

for the case s > 0 in our row-homogeneous setting. One need only make

these identifications

(1.11) go(t) = Enn(t)Vn' since Enn(t) = poo(t) from row-homogeneity

(1.12) + - a
a~ A$ -a) An -n 0n
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(1.13) - (s) <-> a (s) ; a+ (s) -> + (s)_n+l n- 1

The invertibility for s 2 0 is a consequence of (1.9)

Prop 1.14

(a) n (S) = [a (s)]n 0(s) for n > 0,

(b) Cn(s) = [a (s)] o_(s) for n < 0.

Proof: In the scalar setting, where J=O, the equation

yn(s) = [o+ (s)]nyO(s) is the familiar counterpart of the general equation

n (t) = smn(t)*pnn(t) for any chain. For a scalar, skip-free spatially

homogeneous process, one has son(t) = s(l)(t). In our matrix setting,

gnt) = on(t)*go(t) where SOn(t) is, as in [ 8], the matrix p.d.f. for

the first passage time from row 0 to row n, since to be in row n at

time t, there had to be a first visit to row n at t', O<t'<t, and one

had to be in row n at time t. From the row-homogeneity and row-continuity

_On(t) = (s+(t)) (n), so that aon(S) = a (s) where n>O, and similarly,

for n<0.

Thus, knowledge of a+ (s) and a-(s) enables us to calculate Xn(s)

for all n.

The ergodic Green's density is another quantity of interest. We

next define the ergodic Green's density matrix g

Def 1.15

gn = [g;ij] ; gn;ij = 0 gij;n (t)dt
-- ~~~~~~~0
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§2 The Bounded Process and Compensation

We are now in a position to relate the probability distribution

for the bounded process B(t) to the Green's function g(n,t) of section 1.

By using the compensation method developed earlier [ 2 ] we are able

to express the distribution of B(t) in terms of the probability vectors

for the boundary rows at 0 and N.

The bounded process B(t) is the row-continuous process on

B = {(j,n) : 0 - j < J, 0 < n < N} whose transition matrices coincide

with those of BH(t) for row 1,..,N-l, but differ at rows 0 and N. At

those rows the transition rate matrices v and v are replaced by .

(For some applications, the transition rate matrices v+ 0, and 0

may have yet other values without affecting the applicability of the

method. In this paper we consider only the process B(t) specified.)

Let v, aH, aH, and a be as for the underlying homogeneous matrix.

Let En(t) be the probability vector for row n, i.e., let

(t) =(Pjn(t))J where Pjn(t) = P[J(t) = j, N(t) = n]. The forward

Kolmogorov equations for the process have the form

T
(2.1) dp(t) T TO 0 T 

dt = - vEo(t) + Vfoao + vPl(t)=aH

T
dE-(t) T + T g0 T + + T -

dt v_= v -(t)+ (t)aH + vnl(t)aH + VEn+l(t)aH

1 < n < N-1

d4( it) + T T +)a

dt = -V(t)+ vpN(t)N + VN-lt)H
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0 0 0
where a0 and aN differ from aH due to the modified boundary rates.

This finite set of equations may be replaced by the infinite set

of vector differential equations,

T
(2.2) dp(t)_ T T T + T

(t = V vPn(t) + vP-n(t)§H + 'Pn l(t)=aH + vPn+l(t)gH

T T T T

,- - N nN+l < -N+

T T T T
where C (t) , LC1 (t), (t), and CT l(t) will be chosen in such a way as

to have the resulting solution T'(t) coincide with that for (2.1) and

T T
p (t) = 0 for n < -1 and n > N+1. The functions Cj(t) which do this

-- -j

are called compensation functions. Their intuitive meaning is asso-

ciated with the point of view motivating the compensation method.

The virtual transitions for the homogeneous dynamics are neutralized by

the injection at rows n = -1 and n = N+l of negative source density into

the probability space and positive source density at rows n = 0 and n = N,

reflecting the dynamics of the bounded process. The source injection

T
rate at state (j,n) is C ,n(t) and the rate vectors are C (t). A more

complete discussion of the procedure may be found in [ 2 ]. A quick

introduction is given in [ 4 ]. A more recent alternate development

that is concise and clear, is given in [5].

The probability vectors Tn(t) are the response, for the homogeneous

process, to the initial distribution and to the injected sources. One

then has, for any initial distribution (fJ)O ,

~~~~~~~ ~~~~~~~~~~- 
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(2.3) T T T (t) +T
~~Et(2.3) !n;E-m m(t) + (t () I(t)*&-_ltt))

mCO

+_ T(t)* _N(t) + i_1 (t)* (1+N) (t)

Equation (2.3) may also be obtained by taking the two-sided generating

function of both sides of (2.2), taking the Laplace transform, solving

for the resultant generating function transform and making the identifi-

cation (2.3).

We now have the tools for the major result of this section.

Theorem 2.4 For any initial distribution {f_ : 0 < n < NI we have
-n

T T - T + T +
n(t) = vEo(t)=aD*gn(t) - vE(t)aH*gn+l(t) + vN(t)aD*gnN(t)

T + NT(t)-aH gn-(N+ 1 (t) + T gnm(t) , for all n
m=- -- m0

where aD = diag (aHI), =aD = diag (=aH) and the * denotes convolution in

time.

proof:

Examination of (2.1) and (2.2) shows that setting

(2.5) c_(t) = v (t) diag(a), (t) = vp(t) diag(a=)

converts the subset of equations {(2.2n) : 0 c n < NI to those for the

set.of equations in (2.1). The formalism, as developed in [ 2 ],

demonstrates that. the compensation functions c (t, T(t) have precisely

that form and that one needs
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T , T + T ,T
(2.6) s+iCt) - vN(t)tH , v t lat) = -EV(t)aH

with all other CT(t) - O. Equations (2.6) describe the neutralization

of the virtual transitions to rows -1 and N+l, and (2.5) the return of

the probability to rows 0 and N.

Theorem 2.4 provides the basis for relating T(t) to T(t) and

T T T T
PN(T) and subsequently e T to eT and e. By setting n=O and n=N in

(2.4) one obtains a coupled pair of integral equations for poCt) and

T
pN(t) permitting one in principle to evaluate these. An alternative

procedure for finding p (t) and/or P (t) is to make use of the formalism

developed in [8] and, in particular, in sections 2 and 3 there. A

judicious combination of both procedures will be seen to be useful.
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§3 Structure of First Passage Times and Invertibility
of the Green's Function Matrices n(s)

The Green's function matrices are vital to the solution of Theorem 2.4.

They are available as functions of o+(s) and a-(s), which we now find

equations for. We first demonstrate that a+(s) and a-(s) satisfy simple

matrix quadratic equations.

Prop 3.1

(a) a (s) = a(s) + a(s) [a+ (5)12

(b) a (s) = 6(s) + a(s) [I (s)]

where

(3.2) a(s) = vx*(s)a H , 6(s) = vY*(s)aH

and

(3.3) y*(s) = [(s+v)I - va] -1

proof:

The proof is based on the results in section 2 of [ 8 ].

The matrix y*(s) is the Laplace transform of the transition probability

matrix for the loss process on {(j,O) : 0 < j < J} governed by H ,

and H when the adjacent rows n=l and n=-l are absorbing. Equation (3.3)
H' an

is the analog of (2.4) of [8] in the notation of this paper.

Associated with the loss process on row 0 are the pair of exit time

matrix densities a(T) = [ajk(T)] and b(r) = [bjk(T)] with the transforms

a(s) and §(s) respectively. Here ajk(T) is the probability density that
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exit is to state (k,l) at time T given start at state (j,O) at time 0

and bjk(T) is the probability density that exit is to state (k,-l) at

time t given start at state (j,O) at time 0. The quadratic equation (a)

states that to reach row 1 at state (k,l) one either goes to row 1

(at state k) before row -1, or one goes to row -1 and thence to row 0 and

thence to row 1 at state (k,l). Equation (b) has the same meaning for

downward transitions. 0

We will now discuss the non-singularity of the matrices a (s),

a (s), and y0(s).

Prop 3.4

Let B H(t) be irreducible. Let the asymptotic drift rate MH be

non-zero. Then, for s > 0

(a) a_(s) is non-singular <= vH is non-singular (or aH)

(b) a (s) is non-singular <=-> H is non-singular (or aH)

proof:

From the proof of (3.1) we note that a(O) + _(O) is stochastic

and from irreducibility a(O) f 0 and _(0) 0 0. We have seen that

+(s) = a(s) + (s)[oa (s)]2. Consequently [I - 9(s)g+(s)]_ +(s) = a(s)

Since * (s)s is strictly substochastic

Since o (s) is substochastic and _~Cs) is strictly substochastic

[I - _(s)+ (s)] is non-singular. Moreover, since a0 is substochastic,

y*(s) is non-singular by (3.3) hence (a). Part (b) follows the same way. 0
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Corollary 3.5

Under the conditions of Prop 3.2, for s>O,

(a) yn(s) is non-singular, Vn>O<> =aH is non-singular

(b) n (s) is non-singular, Vn<0<'~ _ H is non-singular.

Proof:

From Lemma 1.9 and Prop 1.10 we have that XO(s) is non-singular

for s>0 when MH1 0. From Prop 1.14 the result follows immediately.



§4 The Ergodic Distribution

The results obtained in section 2 can now be employed to provide

ergodic probabilities. In particular, Theorem 2.4 leads to the follow-

ing result:

Theorem 4.1

Let B(t) be irreducible and ergodic, and let eT = lim T(t). Then

T T Tr·E-an- N -- aH -+ N+_)
=ve {aDg - ag} + {Ra - - (-nHO gND-on-N Hfwn

for 0 < n < N

proof:

This follows from Laplace transformation of (2.4), multiplica-

tion by s, and passage to the limit sO . In particular, sT n(s) _n

Yn(s)+gcn, and syn(s)-+O, by the usual Tauberian argument.

From 4.1 we can obtain at once the matrix geometric form of M. Neuts

[10,11] for the ergodic distribution when the homogeneous process is modi-

fied by a single boundary at n=O. We have

Corollary 4.2

For B(t) ergodic with one boundary at n=0 (i.e., N=o) the

ergodic row probabilities are matrix geometric, that is,

T Tne = e for all n 0 O
-when re

where
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-1 +

(4.3) e = go + (0) g.0

and

T.
eO is an eigenvector satisfying

(4.4) eT= {aH + aHa (0) + aD -a

proof: By the same method as that for Theorem 4.1 we can write

T T- -
(4.5) en = v{aD=gn - aHgn+ ) n > 0

In particular, letting n=O, and using (1.9) we have

(4.6) eT v .aD 
K41 -0 = v.E-O 'aD- H- (0o) o ·-O

-1
We use prop 1.8 evaluated at s=O, then multiply (4.6) by (vgO)1 to

get (4.4).

We recall, from (1.8) that gon = (= + ( O)) n g . O for n > O, hence

(4.7) e T ()g (g an =O {D - =a ( ° ) )

Setting n=O gives

(4.8) a = a[-{aD - H (O)}g

Substituting into (4.7) gives the desired equations. O
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Remark:

The matrix b of (4.4) is irreducible when B(t) is irreducible.

TThus, 0 is the principal eigenvector of b. To see that b is irreducible

we present the following argument:

We wish to show, for all i,j there exists a k>O such that (bk)ijo0.

Now B(t) is irreducible, so there exists a path (in, say 2 steps) from

(i,O) to (j,0). There are two cases:

(1) the path stays on the row n=O.

If so, we have (aH)j .0. But, b aH, hence (b )i0

(2) the path leaves the row n=O at the kth step. We then see that

H{(=)k H ()}. ij.0. But, b 1 (a- )kaHa (0) and the argument concludes. 0

There is a matrix geometric result for the two boundary B(t). We see

that eT decreases in relation to the maximal eigenvalue of oa(O).

Corollary 4.9

We have,

T T n T + +- N-ne = (va- - a- (V~a a a (O))g= ({-a aH (0) }0 oO)Pl + N(v{=aD =H ()}g 0 )P2

where

-1 + -1 -
(4.10) P= (0)g P = (0)

=1 = -0 =2 = go0= g.0

Proof:

The proof is immediate from (4.1) and (1.9). 0

We may let n=O,N in (4.9) to get 2 sets of matrix equations with

2 vector unknowns. The solvability of this set of equations has not

been proven.
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We now use Theorem 4.1 to find the ergodic distribution for the

two boundary B(t) explicitly.

Prop 4.11

When a +(O) is strictly substochastic

T T -+N 0 + + -
= {D - =aHa (0)} (O)N [I - (aH + ID + aH ())]

Proof:

Let n=N in (4.1) to get

T T- - T + +
(4.12) eN = ve{aDgN - aHgN+l} + ve{ag - aH }

Multiply by (vgO)- 1 and use (1.9) to get

1 T -1 T -+ N -+ N+l Ta+ +-
(4.13) - e g = e {aa (oN _aHa+(o)N+ + {a a(0)

v -N a HO 0 =H -N D H

Now, we let s=O in (1.8) and note that a H + a; + aH + (O) is strictly

substochastic, because a (0) is strictly substochastic, while

0 + 0
_=aH + =aD + a is stochastic (aH ~ 0). Therefore, I - (a+ + +aHa (0))

is invertible and (4.11) follows. 0

The analogous result is presented without proof.

Prop 4.14

When a (O) is strictly substochastic

T + - (O) ( [ N += - )]---O =D a oally (0)}-(0) [_ - (aH + A EO -= ~ ~~N D = HHT



§5 Algorithms for a_(O), __(O) and g-0

The algorithms and results of section 4 assumed that _a(O), g-(O),

and g0O were known. We here present algorithms for their computation.

A procedure is available permitting the full evaluation of s+(T) and

s=(T) with substantial machine effort. This will be discussed elsewhere.

We first restate proposition 3.1 for the s=O case.

Prop 5.1

(a) a (O) = go + -o(a + (O) ) 2

(b) g (O) = -0 + ao(2 (O))

where

o -1 + 0 -1 -
(c) go = [I - H [IaH] H

Proof: by (3.1) 0[

We note that (O)ij is the probability that, given start at (i,O),

the first transition out of row 0 is to state (j,l). Similarly, (_O)ij

is the probability that, given start at (i,O), the first transition out

of row 0 is to state (j,-l).

When BH(t) is irreducible we have, of course, that g + o0 is

stochastic, and ao, t0 are strictly substochastic. This may be verified

by noting that
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(0 + 0)l = [I - aH0 (=a + 

0-1 0
- [I - a°]aH i (1 _a)

: [I -1[- ]l = 1.

Theorem 5.2

Assume, without loss of generality, that a+(0) is strictly

substochastic, a (0) is stochastic, then:

(5.3) the recursion: a0 = 20 , _ K + 0 _0OK

converges monotonically to a _(0), and

(5.4) the recursion: a arbitrary substochastic

¶K+l =0 +O=K

converges to a (0). The convergence is monotonic if ao = 0.

Proof:

This proof may be found in a slightly different form in [10,11]

We can find series expansions a (s) and a-(s) for all real s>O by

use of (3.1).
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Theorem 5.5

·))der- (S
Let Z s+v = ( Z

then ¢(Z) is finite for real 0 < Z < 1

and

(5.6) (z) - H + ZH () a+ Z2aH 2 (z)

Proof:

By combining (3.1a) and (3.1e) we get:

(5.7) a+(s) = v[(s+v)I - va]- la + v[(s+v)I- vai°] aHa (s))

u 0
Premultiplying by I - (s9-+)=a and substituting Z we have

(5.8) [I - ZaH] (s) = ZaR + Z g (s)]

Hence, dividing by Z,

o (S)) ( + 2a Cs) 2

( *9) =Z =H Z + -[- ]s

2(s)
This is (5.7) when we substitute ¢(Z) for Z

The convergence of *(Z) is assured by the convergence of +(s) for s> 0.

Note that (5.7) is easily solved for ¢(Z) by the usual techniques. An

expansion about Z=0 is available via the recursion:
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Corollary 5.8

Let +(s) + V j+ + + + 0+ 0
Let (s = =j (s-+v-) , then b = H b1 = and

j=o

(59) b + a bib for k>l=k+l = bk =a + 1
i+j=k-l
i,j>0

Proof: Trivial by Theorem 5.5. 0

Corollary 5.10
co j+ - 0

Let a (s)= b ) . Then, b =a b = a ,and
j=0 = =0 =H, =1 HH

(5.11) b =a 0 b + bib .k+l fH-k + =aH ijk- -
i+j=k-l
i,j0>O

Proof:

This is the dual result to (5.8). El

When sufficient terms in the expansion of o+ (s) and a (s) have been

calculated, we use (1.8) to find XO(s) and then, via (1.9) we can get

n n(s) for any n. The convergence of Theorem 5.5 implies that gn(t) may

be written as a matrix sum of gamma distributions. Similarly, p T(t)

may be seen to be a vector sum of gamma distributions via (2.4).
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§6. The Mean First Passage Times

In the earlier sections we described a procedure for finding

the ergodic distribution of a homogeneous row-continuous chain. To

discuss the dynamical behavior of a Markov process the first passage

time densities are needed. These densities describe the reaction

of the chain to perturbations as well as busy periods and saturation

times.

Although the densities a+(s) and g-(s) are available for the

homogeneous process, there is no generalizable method for deriving

first passage times for the bounded process. We will therefore

follow [8 ] in our approach towards a recursive method of obtaining

mean first passage times.

Formally, as in (1.8) we define the first passage time densities

Def 6.1 Let s_ (t) = [s n;i(t)] and sn (t) = [sn (t)] where=n n;ij =n n;ij

sn;ij(t) = P [a first arrival at row n+l at (t, t+dt) and that arrival

is at state (j, n+l) I at state (i,n) at time 0]. And let s- (t)
n;ij

be similarly defined for arrival at row n-l.

Two related entities are the stochastic matrices

cO 0O

(6.2) s - f S+ (t)dt s - f s_(t)dt
=n =on =n n

and the matrix pdf moments

co co

(6.3) 8! = f ts (t)dt , I = f tsn(t)dt.n =n 0 =n
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In this section we are primarily concerned with finding the means

+

-n and -n.

Because the approach so closely parallels [8 ] we present the results,

without proof. Let o+(s) def [S+n(t)] an def £[sn(t)], then-n n -n -n

Theorem 6.4

(a) ag(s) = [_ (v (s0- - =aV

(b~ ~+ =[ v O + -
) a(s) - (+v) aH + H =n- (s)] ( ) n = ...,N.

Mote that this is a recursive means for finding a (s) and therefore
~~~+~~~~~~~~

sn (t). The dual result for an(s) is

Theorem 6.5

(a) aN(s) = [I (v =aH s+v

(b) an(s) = [I C v o) + n+s)]- (v H n=O...,N-1.=n - sv (=a + na0,... ,N-l.

Of course, an(O) = s+ and a n(O) = s so that we may immediately write=n =n =n =n

Corollary 6.6

0 -1a+ a0 + + -1
(a) n0 = EI - (s+H +H sN = [- ( + 0 D)1] H--

(b) s 0 + -+ -1 + -0 +- -1 
(b) _=-s-ce~e·,~n = l,. [= - (=aH + aHn+l ) ]

n=l,.. ,N. n=O0, ... ,N-1.
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Using the previous results, along with the fact that

(6.7) n = -a (0), n = -n (o),

one obtains a recursive algorithm for the mean first passage times.

Corollary 6.8

+ 1 - + -1 + +

in l= - +$H n l

(b) - (- 1 0 --

-=1 : 0 v -! - n=o,... ,N-l.
v- -I-aH + =_n+l}] [ - vaH _n+l=n',

The last two corollaries provide an efficient recursive method for

finding the mean single-step passage times. The storage requirements

are only 0(J2) and the computation is 0(NJ 3).

The sojourn time [3 ] Tvm on the row-set {0,...,m} has density

T +
em+l _H =m(t)l

(6.9) s (t) = T

The corresponding mean sojourn time is, by [ 3],
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m T
1 e.1P({O,...,m}) 1 jZ0 -j -

(6.10) E[Tvm] = _= -

im+l,m v +l e _ 1

The ergodic exit time [3 ] TEm on the row-set {O,...,m} has density

Z e s (t) 1
-n i =n,m+l

(6.11) s Em(t) = n< T

Z eT 1
n<m

with mean

m T
.Ze. 1! 1j=0 -j =jm+l

(6.12) E[TEm] : TEm eT
.Z e. 1
:1=0 -j -

In a queueing context where row 0 is associated with no queue the

sojourn time on {1,...,NJ corresponds to the busy period. As in

(6.10), this mean busy period is

-0-
(6.13) E(TB] = T +

=0 =H 1

The passage time density from row n to row m, nm(t), may be found

by recalling that, for 0 < m < n < N.

+ + +
(6.14) s(t) =s m(t) m+l (t)* ...**s (t). We have, therefore, that,

mn -m m+' =n-1

for m < n, the mean passage time -Ymn from row m to row n is

n-l
(6.15) -mn = Z ( ++ +

j=m m<k<j k 3 j<k<cn-l k

and a similar result holds when n<m. Thus, arbitrary first passage
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times are readily available.

A more efficient approach is available when many arbitrary

first passage times are required, particularly when aaH (or aH) is invertible.

We refer the reader to [8], Section 6.
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