
- PSFC/JA-97-22

ION DYNAMICS

IN MULTIPLE ELECTROSTATIC WAVES

IN A MAGNETIZED PLASMA

D. Benisti, A. K. Ram, and A. Bers

October 1997

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

This work was supported by NSF Grant No. ATM-94-24282 and by
DOE Grant No. DE-FG02-91ER-54109. Reproduction, translation,
publication, use and disposal, in whole or part, by or for the United
States Government is permitted.

To be submitted to Physics of Plasmas.

1



ION DYNAMICS

IN MULTIPLE ELECTROSTATIC WAVES

IN A MAGNETIZED PLASMA

D. Benisti, A. K. Ram, and A. Bers

TABLE OF CONTENTS

Abstract ....... ..... ................................... .. I
1. Introduction' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
2. Equations of Motion and Hamiltonian Formulation . . . . . . . . . . . . . . . 2
3. Results of One Wave Case .......................... 3
4. Acceleration of Low-Energy Ions With More Than One Wave . . . . . . . . . . 3

4.1. Coherent Acceleration in the Case of Two Off-Resonance Waves . . . . . . . 4
4.2. Coherent Acceleration in the Case of Two On-Resonance Waves . . . . . . . 8
.4.3. Relaxation of the Condition on the Wave Frequencies for Acceleration . . . . 10

4.4. Acceleration of Low Energy Ions in an Arbitrary Discrete Wave Spectrum . . 11
5. High Ion Energization With More Than One Wave . . . . . . . . . . . . . . . 13

5.1. Enhancement of the Ion Acceleration With Two On-Resonance Waves . . . . 14

5.1.1. Numerical Illustration of the Enhancement of Acceleration . . . . . . 14
5.1.2. Analytical Study of the Acceleration Mechanism Dependence on Wave

Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2. Enhancement of the Ion Acceleration in a Discrete Wave Spectrum . . . . . 19

5.2.1. Discrete Spectrum of On-Resonance Waves . . ... . . . . . . . . . 19
5.2.2. Discrete Spectrum of On and Off-Resonance Waves . . . . . . . . . 21

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7. Acknowledgements . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 23
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1. One-to-One Character of the Change of Variables . . . . . . . . . . . . . . 27
2. Estimate of the High Order Terms of the Perturbation Series . . . . . . . . . 29,

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



Ion Dynamics in Multiple Electrostatic Waves in a Magnetized
Plasma

D. B6nisti 1, A.K. Ram and A. Bers,
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge MA

02139.

Abstract: A general theoretical study of the dynamics of ions interacting with multiple elec-
trostatic waves, propagating perpendicularly to a uniform magnetic field, is performed. For
appropriately chosen frequencies and wavenumbers we discover a new nonlinear phenomenon
of coherent acceleration (or deceleration) which energizes (or extracts energy from) ions. Ions
whose initial energies are below the lower bound of the chaotic part of phase space can be
energized by the nonlinear, coherent phenomenon. We also show that the maximum energy
the ions can reach is much higher in the case of several waves than in the case of one wave.
The mechanism by which the ions reach these high energies is also mostly coherent.

1. Introduction

In this paper we study the dynamics of ions interacting with a discrete spectrum of elec-
trostatic waves propagating perpendicularly to a uniform magnetic field. As shown in',
such a study is also applicable when the direction of propagation of the waves departs by
a small angle from perpendicular propagation. In the case when the ions interact with a
single electrostatic wave it has been shown 1- 4 that the ions gain energy, on the average,
only if their motion is chaotic. This occurs for electric field amplitudes above a threshold
value. 1 ~4 In a weakly nonuniform magnetic field the threshold for chaotic dynamics may
even be reduced.' The energization of ions, in the chaotic phase space of a single wave, was
found to be applicable in explaining the generation of energetic ion tails in lower-hybrid
heating experiments in tokamaks., 7 Experiments have also demonstrated the chaotic ener-
gization of plasma ions by single intense electrostatic waves and, furthermore, verified some
of the details of the theoretical results for ion dynamics in a single wave. 8 The threshold
for chaotic ion heating has been observed, and it has been determined that electrostatic ion
Bernstein waves are responsible for rapid changes in the ion distribution function for wave
amplitudes above threshold.' In this paper we present a general theory of the dynamics of
ions in a discrete, multi-wave spectrum propagating across a uniform magnetic field. The
results of this study can serve as a basis for new means of energizing, or extracting energy
from, ions in a plasma. A forthcoming paper ' will be dedicated to the application of these
results to the particular case of transverse energization of ions in the ionosphere observed to
occur in lower hybrid solitary structures,10 but here we will not discuss any of the possible
applications.

The main topic of this paper is to determine the energy an ion can gain from multiple
waves, and the nature of the dynamics of the ion while it is being energized. In the case of
one wave whose frequency is above the ion-cyclotron frequency, the ion acceleration occurs
only in the bounded region of chaotic phase space. This entails a lower bound in the wave
amplitude, as well as in the initial ion energy,'," for the ion to be accelerated; it also implies

'Present address : Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova, Italy
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that the maximum energy an ion can achieve corresponds to the upper limit of the chaotic
domain in phase space.

In the case of more than one wave above the ion-cyclotron frequency, we show that,
depending on the parameters of the wave spectrum, there can be coherent acceleration.1 2

Consequently, an ion may be accelerated regardless of its initial energy, and, in particular,
it may be accelerated even if its initial energy corresponds to a region of phase space which
is below the chaotic domain of phase space. This coherent acceleration of an ion below
the chaotic region is described in detail, using a perturbation analysis carried out to second
order in the waves amplitudes. The dependence of the ion energization on the wave spectrum
characteristics is also discussed in detail.

Once an ion has accessed the chaotic domain of phase space, we show that it may reach
energies which are much higher than in the case of one wave. This happens when there are
at least two on-resonance waves (i.e. waves whose frequencies are an integer multiple of the
cyclotron frequency) whose amplitudes are appreciable compared to the amplitudes of the
other waves of the spectrum. In this case, although the ion motion cannot be considered
as coherent for high energies, it is nevertheless dominated by the orbits found from a first
order perturbation analysis. The maximum energy an ion reaches then strongly depends on
the extent, in action space, of these orbits and the way that these orbits may connect. We
determine the characteristics of these orbits and the dependence of the ion energization on
wave parameters.

The paper is organized as follows, in section 2 we derive the equations of motion and
the Hamiltonian of the dynamics in action-angle variables of the zero-electric field case. In
section 3 we restate the known results in the one-wave case. Section 4 is devoted to the
coherent acceleration of the low-energy ions and its dependence on various parameters of
the wave spectrum. In section 5, we focus on the maximum'energy an ion can gain once it
has reached the chaotic domain. We show in particular that the maximum energy is higher
in the case of multiple waves than in the case of one wave, and discuss how this maximum
energy depends on the parameters of the wave spectrum. The last section summarizes the
results.

2. Equations of motion and Hamiltonian formulation:

The motion of an ion of mass m and charge q in a uniform magnetic field B = Boi, and
being perturbed by a spectrum of electrostatic waves E = 1 1 E sin(kix - wit + <ps), is
given by

d 2 x Q2 N
2 x = E Ej sin(kix - wit +<Wj)()

Mi=1

where Q = qBo/m is the cyclotron angular frequency. We normalize time to Q- and length
to kj1, and define the dimensionless variables X = kix, r = Qt. We then switch to the
normalized action-angle variables of the linear oscillator. The action is I = X 2 /2 + X 2 /2,
where X = dX/dr. The angle 0 is. defined by X = p sin 0, ± = p cos 9, where p = V27 is the
normalized Larmor radius. In action-angle variables (I, 9), the Hamiltonian corresponding
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to (1) is
N

H = I +( cos (cip sin - vir +<pj) (2)

where ni = ki/kl, vi = wi/Q, and ej = (kiqEj)/(mf22 ). The Hamiltonian (2) will be the
starting point of all the analytical calculations made to describe the dynamics defined by (1).

3. Results of one wave case:

It has been shown in 1-4,13 that an ion can gain energy from one wave whose frequency
is above the cyclotron frequency only if the ion dynamics are chaotic. In the single wave-
particle interaction, the dynamics is qualitatively different depending on whether the wave
frequency is an integer multiple of the ion cyclotron frequency (on-resonance case) or not
(off-resonance case).

In the off-resonance case, it has been shown in1'2 that chaotic dynamics occurs if the
wave amplitude exceeds a threshold amplitude:

e > Eth ; V2/3 /4 (3)

For amplitudes above the threshold value, the chaotic phase space is bounded from below
and from above in action; the lower bound of the stochastic region is

pFaV-xvi (4)

while the upper bound of the chaotic domain is estimated to be

p a (4,v) 2 /3 (2/1)'/3  (5)

Since the acceleration of ions by a single wave can only be stochastic, (4) yields-the minimum
energy an ion needs to have in order to be accelerated by the off-resonance wave, while (5)
yields the maximum energy the ion can reach through the stochastic acceleration (see Fig.
1).

In the case of one on-resonance wave 4,13, there is a web-structure in phase-space that
extends up to infinite values of the energy. However, the web becomes increasingly thin at
large energies. Also, the web structure has a lower bound in energy. 1 This implies that, in
the on-resonance case, the initial energy of an ion needs to be high enough for the ion to be
accelerated by the wave. It has been shown that this lower bound tends to lift up to higher
energies as the wave amplitude is increased until crossing over with (4).11 Nevertheless, for
high harmonics of the cyclotron frequency, the estimate given in (4) for the lower bound
in energy is approximately valid also in the on-resonance case. Moreover, even though, in
principle, an ion may gain infinite energy in the on-resonance web, the time needed to go far
beyond the estimate in (5) is too long to be of practical interest. So, for high ion-cyclotron
harmonics, the estimates (4) and (5) can be considered to apply to the on-resonance case
(see Fig. 2).

4. Acceleration of low-energy ions with more than one wave:
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In the case of more than one wave, the lower bound (4) for stochastic acceleration re-
mains valid if v is the minimum of the vi's. However, unlike for the case of one wave, the
energy of an ion can vary a lot even if its initial Larmor radius is less than the limit (4)
(see Fig. 3). Hence, an ion below the stochastic domain can be appreciably accelerated
or decelerated. The motion of an ion in this domain of phase space is regular, as can be
seen on Fig. 3, and can thus be deduced from an integrable Hamiltonian. This integrable
Hamiltonian can be derived from the complete Hamiltonian (2) using perturbation theory.
We perform the perturbation analysis only up to second order, using the formalism of the
Lie transform. This leads to an integrable Hamiltonian H whose orbits are found by solving
H = const. As can be seen in Fig. 4, the orbits of H provide a very accurate description of
the actual motion. Hence, the dynamics defined by H will approximately be described by
the integrable dynamics given by H, whose derivation is detailed in the following subsections.

4.1. Coherent acceleration in the case of two off-resonance waves:

In this subsection we focus on the dynamics defined by (2), in the case of two waves such
that neither vi nor v2 are integers, and for values of p less than min(vi, v2). As already
mentioned before, these dynamics can be accurately described by a perturbation analysis on
the Hamiltonian (2) up to second order in the wave amplitudes. The perturbation analy-
sis is performed using the formalism of the Lie transform and is described in Appendix A.
The perturbation analysis defines a new set of conjugate coordinates, (I,9), in which the
Hamiltonian (2) is transformed to

2 1 = I+ e1SI() + 2 + e6 1 cos[2v 1 (# - r) + 291]Ss(f)

+e2 62 cos[2v2 (0 - r) + 2 02IS4(0)

+- 16253 cos[(Vl + v2)(i - r) + 91 + <02]S( )

+6 162J4 cos[(vi - v2)(j - r) + W1 - W2]S6() (6)

where J1, J2, 33, and 34, are unity if 2v,, 2v2, (v1 + v2 ), and (vi - v2 ) are integers, respectively,
and 0 otherwise, and the functions Si to S6 are described in Appendix A.

To first order in the wave amplitudes, the original variables (1, 9) are related to the new
variables (1,0) by

+-0 mJ( ) cos(m - vir) +6 2 +00 mJm(icK) cos(mO - v2r) (7)
m=-oo i - m _ K(V2 -m)

= e +00 Jm( ) sin(mO - vir) _2 +' J.(Kn) sin(m# - v2r) (8)
m=-oo V1 -m P m=-oo v 2 - m

where Jm is the Bessel function of order m, and the prime denotes the derivative with respect
to the argument of the function. It is sufficient to calculate the change of variables to first
order as the second order terms give negligible contributions. However, we need evaluate the
second order contributions to R2*f, as there are no first order terms in .H2'

Motivated by the results reported in, 10 and possible applications to plasma heating by
lower-hybrid or Bernstein waves, we now focus on the case when the wave frequencies are
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above the ion-cyclotron frequency, i.e. v1 > 1 and v2 > 1. Then, a Taylor expansion of Si's
to the lowest order in / indicate that, when fi < min(vi, v2 ), S 4() and S5 () are negligible
in (6). These results are confirmed numerically. Hence, for fi < min(v1 , v2), H2o* can be
approximated by

2'* = e(Si() + S2 (/) + 64 eie2S 6 () cos[(vi -V2)( - r) + 'p1 - 'p2. (9)

We then define a canonical change of variables (I, 0) '-+ (J, 4) using the generating function

F = J(9 -,r) (10)

which yields J= I, and 4 = 9 - r. In variables (J, 4), (9) is changed into

t(*f) = e2Si() + e|S2 (/3) + 64e1e2S6 () cos[(vl - V2)$ + (P1 - W21. (11)

The Hamiltonian (11) is integrable and the ion orbits are obtained by solving H(off) ='const.
If 64 = 0, i.e. if (vi - v2) is not an integer, then solving H(*of) = const yields / = const. In
such a case the original action I only fluctuates by an amount of order -l or 62, and behaves
as in the case of one wave: there is no acceleration. This is physically clear because when
(vi - v2) is not an integer, the action of the waves only amounts to some rapid perturbations
which do not really affect the ion motion. Conversely, when (vi - v2) is An integer, the
non-linear beating of the waves gives rise to a slowly varying force acting. on the ion and
coherently accelerating it. The third term on the right-hand side of (11) provides this
force. The amount of energy an ion gets depends on the relative importance of this term
compared to the stabilizing terms eS 1(/3) + _2S 2(/3). The study of the competition between
the accelerating and stabilizing terms, as a function of the wave amplitudes, wavenumbers,
frequencies and initial phases, is the main topic of the remaining of this subsection.

If (vi - v2) is an integer, there is a large variation in # if e61 2S6 (/) is large compared to
eS 12() + e8S 2 (/). As (6ie2 )/(e? + e2) is maximum when el = 62, the largest acceleration
will occur when the two waves have the same amplitude. This is the case we consider from
here on.

It is clear from (11) that the initial phases W, and W2 play no role in the acceleration
mechanism since a translation of the angle D to 'P + (W1 - W2)/(Vl - v2) eliminates any
dependence on initial phases. Hence, without loss of generality, we will consider the case
when W1 = V2 = 0. Then for el = E2 = 6

ft(off) = 62 {S1(3) + S2(p) + S6()} cos [(vi - 2)(]. (12)

The orbits of H, obtained from (12), are independent of the wave amplitudes: dividing each
amplitude by the same coefficient will not change the amount of energy an ion can gain from
the waves. However, decreasing e increases the time needed for acceleration; it is clear from
the equations of motion derived from (12) that this time is proportional to e-2

Let us now study the dependence of the acceleration mechanism on the ratio of the
wavenumbers n = k2/k1 , and on the integer difference (vi - v2). Solving H(Of ) = e2(const:)
leads to

cos(vi - 2)5 = (const.) - S( P) - S2(#) (13)
S 6 ()
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If the initial value of fi lies between two zeros of S6 (f), say p)i and p 2, then it is follows from
(13) that p will always remain between p* and p*. The zeros of S() behave like "barriers"
for transport in phase space. So it is important to study the locations, in (), of these zeros.
To this end we have calculated some approximate expressions of S().

When (vi - v2) = 1, we have found numerically that for I r - 1 I> 0.1 and for values of
f larger than the first zero of S(60)

V1 - V2 = 1; S6(p) ~ .5X sin 27r 3.85/1K- (14)P.5 6.3/(n - 1)

where C(K, v1) is only a function of r. and vi. Note that the positions of the zeros of S6()
do not depend explicitly on vi, they only depend on (vi - v2 ).

For values of r such that I r. -1 1 0.1, S6 () is well approximated by a small y expansion.
A Taylor series expansion to the seventh order in f of S(60) enables us to obtain an analytical
approximation of the first zero. This approximate value of the first zero, which is very close
to the exact zero of S6 (), is plotted on Fig. 5 for various values of K. This figure shows
that the first zero of S6 (f) becomes small for values of r, close to 1.02. This comes from the
fact that the first coefficient of the Taylor expansion of S6 (f) is zero for K =: 1 + 2/v. For
the parameters of Fig. 5, this corresponds to K ~ 1.017. When the first coefficient of the
Taylor expansion of S(60) is zero, then S6() increases much more slowly with p so that it
becomes very small compared to S1 and S2 . In this case the Larmor radius of an ion remains
approximately constant; there is no acceleration.

Given the position of the zeros of S() obtained from (14), or from Fig. 5, one can have
a rough idea of the maximum and minimum values, pm, and fmin of the Larmor radius of
an orbit of Hoff), given an initial condition (fo, <io). Indeed, if po lies between 2 zeros of
S6, p* and f2, then f* and f2 are good approximations of Ani and Pma. Fig. 6 plots Prmin
and Amax as found by numerically solving 2*fif = const, versus K, for an initial condition
corresponding to fo = 53, <Io = 1.57. One can see that fmin and fim,. are discontinuous
functions of K. These discontinuities occur when one of the zeros of S6(f) equals fo. For
example, when K = 0.925 the first zero, po, of S() is just slightly above yo = 53. In
this case, the ion Larmor radius cannot increase much, as it has to remain less than pi.
Nevertheless, nothing prevents a priori the ion Larmor radius to go down to 0, and one can
see in Fig. 6 that the minimum value of the Larmor radius is indeed very close to 0 in this
case. Thus, when K = 0.925, the ion is decelerated. On the contrary, when K = 0.924, the
first zero of S6 () is slightly below fo so that the ion's Larmor radius cannot decrease much,
because it has to remain larger that pg. However, it can increase up to the value of the
second zero of S6 (). In this case the ion gets a finite acceleration, and its Larmor radius
increases up to Pm,. ~ 75.

When K ~ 1.02, both fmin and fm. are very close to po. This occurs because the first
coefficient of the Taylor expansion of Se6() goes through 0 for K ~ 1 + 2/v, which implies,
that for such values of K, S6(6) becomes very small compared to Si(f) and S2().

Finally, one can see in Fig. 6 that for values of K close to one, there is a peak of large
acceleration. This peak is actually not at n = 1 but near a value of x less than 1. For values
of K corresponding to this peak, m becomes very close to v1. Actually, for large enough
values of e, the lower bound of the stochastic region, as estimated from (4), can actually be
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lower than the value of 3ma predicted from perturbation theory. For such values of e, an
ion can access the stochastic domain where it rapidly gains a lot of energy.

If the initial condition corresponds to a very low value of the Larmor radius, there is no
discontinuity in /min and /ma. for a large range of values of r, except for K close to 1 + 2/v 1
(see Fig. 7). This occurs because, for a large range of values of K, the first zero of S6 (p) is
larger than po. in this case the value of &,m= is roughly the value of the first zero of S6 (/).
One can note the similarities between Fig. 7 and Fig. 5 for the first zero of S6 (). It is
important to note that the maximum value of pma is about as high when /o = 5 as when
po = 53. Thus, an ion can get a large acceleration, and may access the stochastic region,
regardless of its initial energy.

When (vi - v2) = 2, the energy gained by an ion varies in about the same way as in the
case when vi - v2 = 1. This comes from the fact that the variations of S6(p) are similar
when v, - v 2 = 2 or when vi - v 2 = 1. Actually, when n - 1 I> 0.1 and for values of /
larger than the first zero of S6(0):

2 5( A( , vi) 12wr(/-5.15/IKx- 1i) (5V1 - V2 = 2; S6 (0) f- ~A (r, i sin 27 .5 C-1(15)
p - 6.3/ 1x -11

where A(K, v1) is only a function of vi and r. The zeros of S6() are not at the same locations
for the two cases vi - v2 = 1 and v, - v2 = 2. Hence, the discontinuities in onj and /m,, will
not occur for the same values of K when vi - u2 = 1 as when vi - v2 = 2. The position of
the first zero of S6(P) can also be very accurately estimated by a Taylor expansion in / when
vi - v2 = 2. Fig. 8 plots Om, versus n when Int(vi) = 140 and v2 = vi - 1 and v2 = v, - 2.
As for the case when vi - v2 = 1, when vi - v 2 = 2 there is a drop in om" when K = 1 + 2/1v1.
This drop actually spans a larger range of values of K when v1. - v2 = 2 than when vi - v2 = 1
and is a consequence of the effect that the first coefficient of the Taylor expansion of S6(P) is
a minimum when K = 1 + 2vi in the case where vi - v2 = 2. The peak of large acceleration
when v - v2 = 2, is shifted to lower values of K compared to the case when vi - v2= 1.
This is a general trend as vi - v2 increases. Finally, as in the case when v, - v2 = 1, when
v, - v2 = 2, the maximum energy an ion reaches is independent of its initial energy, and
an ion may access the stochastic domain regardless of its initial energy. This last feature
is only true when (vi - v2) < 2. When vi - v2 3 only ions with initial energies greater
than a threshold value will reach high energies or be able to access the stochastic region.
This is due to the fact that S6(P) ~p(vi -2) for small values of 0 while Si(o), S2 (0) ~ /2

independent of (vi - v2). Thus, when (vi - v2) 3, for small values of /, S6(P) becomes very
small compared to S1(0) and S2() and there is no acceleration. As /o decreases, I r - 1 1
has to increase in order for the ions to get accelerated. The maximum value of the Larmor
radius is still limited by the zeros of S6(p). The first zero of S6 (A) moves to lower values of /
as I n*- 1 1 is increased, and the maximum value that / can attain decreases as /3 decreases
(see Fig. 9 and 10).

In conclusion, we have shown that an ion, regardless of its initial energy, may be ap-
preciably accelerated (or decelerated) by two off-resonance waves when lInt(vi - v2)1 2
and the ratio of their wavenumbers K is in an appropriate range. In an experiment where
the wave characteristics can be specified, one can have, with two waves, considerable control
on the ion dynamics below the stochastic region. Indeed by changing the ratio of the two
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wavenumbers or the difference between the two wave frequencies, one can choose the amount
of energy an ion gains (or loses) from the waves as well as the range of initial energy of the
ions that are accelerated (or decelerated).

4.2. Coherent acceleration in the case of two on-resonance waves:

We now study the dynamics defined by (2), in the case of two waves with both vi = ni
and v2 = n2 being integers. We will restrict ourselves to the case where p is less than
min(ni, n2 ). Thus, we again focus on a region of phase space where the motion is well de-
scribed by an integrable Hamiltonian. As in the previous section, this Hamiltonian is derived
from H by using perturbation theory up to second order -in the waves amplitudes. Using
the perturbation analysis described in Appendix A, we obtain the following transformed
Hamiltonian:

= eiJ,( ) cos[n1 (# - r) +<W1]+ 62  2 cos[n 2(# - r) + P2] -

(+ 32() + e cos[2ni(# - r) + 2p1iS3(#)
+e2 cos[2n 2 (i - r) + 2 02]S4(0)

+6 162 cos[(nj + n2)(O - r) + P1 + (P2]S5(P)

+ei2 cos[(ni - n2)(j - r) + W1 - <P2]S6(0) (16)

where

1 mJm(K#)Jr'(K,3)
5 2(M) - (.. (17)2r. p n n2- M

4( = 1 MJm(r-)Jn 2 -...m(r) (18)
2Kp 2 n2 - m

1 mJm)Jni +n2 -m(K) +1 MJm ) n1 +n2 -m(M (19)

20 ni - m 2np n2 - m

S6(P) = 1 2 -ni+( 1 -) -n2 +m (20)
2# ni - m 2 Kp m 2  n 2 - m

S and 53 are obtained from 92 and 94, respectively, by replacing n2 by ni, and by setting
n = 1. The sums in 3i can be carried out analytically, using the results for the off-resonance
case. For example

92(P) = [Sf2 2 n2 Jn2 (K)Jn2 (KP)]

(2-1)2 2r (v2 n) j2181+~N

= 8K Jn2+1 (+) (1)n
+ 8 K ( 9 V=n2 -9V v=n2]

+(-1)n2+1 _n- rA ai-(KI) + ( -1)n2+1 19-- no (21)
8x r.[ v ),, L-n1V ),-~
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Likewise, we find

4() J.2-1(p) ___+1()

+ 41~ / pJ 2 n 2+ 1 (p)dp

4J2+1( ) k ju-1( ))
4x) v n

(22)

and, when K = 1, and ni > n2 we find

4i-0 aj+1W +
4 av ) vn

Jnj+i( ) U8J-1(0)
4 v ) _

A 2- 10 ( a J 4 , W4 'v 1
4 ('2+1(0) )___-1())4 av

+2 J+n2(2p cos 0) sin(20) cos[(n, - n2 )0]dO

= ;S6(p) = Jn2-1(p) (8J-1(0)
4 ( v ) 1.:

JA2+1(0) 8ju+1(0)
4 49V ) V

- (_1)n2 n1) ( 1-p )

+ (-1)n2 Jn,+1( ) aJ--( W
=4 v )

As in the off-resonance case, it can be shown that the only sums that give a non-negligible
contribution to H2" are S1, S2 , and S6 . Moreover, for ; min(ni, n 2 ), Si3) ~ Si () for
i = 1,2, 6. Indeed, because of the rapid decrease of Jn (x) when x becomes less than n, the
only significant terms in the Si's and the Si's are those which have Bessel functions of order
m such that m < p. Hence, these are the same terms for Si and Si, and for such values of
m, ni - m ~ vi - m and n2 - m ~ v2 - m provided that nr = Int(vi) and n 2 = Int(v2),
where Int(v) stands for the integer part of v. Moreover, numerically calculating 5;( ) and
Si () shows that when < min(ni, n2 ), S() ~ Si( ). Therefore, for values of such that
6 5 min(ni, n 2 )

el*o) ~eJ1 n1( ) cos[n1(, - r) + W1 + 2 Jn2(K') cos[n 2 (j - r) + <2] + f1 2off) (25)

It is clear from (25) that the only difference between the on and off-resonance cases comes
form the presence of a first order term in ft "o) which does not exist in H* . If I ni - f2 1<
min(ni, n2 ) (which is the only case we consider here), when -+ 0, this first order term
decreases more rapidly than k2of ). This implies that there exists a value A (61, 62) such that
for :5 A(-i, .2), f ) ~ f(off) . In other words, in the region of phase space corresponding
to :5 0, the orbits for two on-resonance waves are very close to the orbits for two off-
resonance waves. In particular, if for a given initial condition the maximum value that the
Larmor radius of an ion in two off-resonance waves can reach is less than 1, then the Larmor
radius of an ion in two on-resonance waves will never exceed ;j either. Therefore, Figs. 7 to
10 are also valid for two on-resonance waves, except for values of K where A, is predicted
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to be larger than ,3. For such values of n the first order terms in H2'( have to be taken into
account. The effect of these first order terms is to enhance the acceleration by providing an
easier access to the stochastic region. Indeed, if only these terms are retained in H2' , the
Larmor radius of an ion will always reach the value 3 = min(ni, n 2 ) where it is known from
(4) that the motion is stochastic. This effect is illustrated in Fig. 11 where Apmaz is plotted
as a function of r. for ni = 140 and n 2 = 139. For values of n less than 0.978 or larger
than 1.001, max evolves smoothly with n and assumes the same values as those in Fig. 7
for two off- resonance waves. Two discontinuities occur at r. ~ 0.978 and r, ~ 1.001 due to
the effects of the first order terms in H2"n which bring the ion up into the stochastic region.
The maximum value of the Larmor radius an ion can reach after accessing the stochastic
region will be discussed in section 5.

It is clear that, for smaller wave amplitudes, the first order terms will be more impor-
tant in H"(,n and, hence, will have a significant effect on a larger part of phase space. This
implies that A,(e 1 , 6 2 ) is an increasing function of the wave amplitudes. Consequently, as
the wave amplitudes are lowered, a larger fraction of ions can access the stochastic region
where they quickly gain a large amount of energy. This is the same kind of effect as the one
described in " for one on-resonance wave. However, for high harmonics, j is quite insensi-
tive to the value of the wave amplitudes and is close to min(ni, n 2 ), as can be seen in Fig. 11.

4.3. Relaxation of the condition on the wave frequencies for acceleration:

Sections 4.1 and 4.2 showed that an ion can be accelerated by two waves in a magnetic
field provided that the difference in the wave frequencies is an integer multiple of the cy-
clotron frequency. We show here that the condition on the wave frequencies can actually be
relaxed and that there can be some acceleration even if

v1 -v2 = n + Jv (26)

where n is an integer, and I v 1<< 1 is a small number scaling as 6 1 6 2 . This scaling can
be shown by requiring that the change of variables that transforms H into Ho* or into
H') be one-to-one, or by requiring that the terms obtained up to second order give a good
approximation of the perturbation series (A4). The corresponding calculations are detailed
in Appendix B, and are useful for generalizing the results to the case of more than two
waves. Nevertheless, in the case of two waves, the way bu scales with the waves amplitudes
is obvious. Indeed, instead of performing the change of variables as described in Appendix
A, in order to obtain (6), it is always possible to define a canonical change of variables in
such a way that the term involving cos[(vi - v2)r] is taken into account in H2 *, whatever
the value of (vi - v2). In the case when 1 = W2, the Hamiltonian thus obtained is

H = 1+ e2S 1() + e2S 2(0) + 6e1 2Se(f) cos [n(i - r) - JVr (27)

S6( ) being defined by (A16) where (vi - v2) has to be replaced by n. The Hamiltonian
(27) is integrable. This can be easily seen by performing a canonical change of variables
(1, 6) -+ (K, O) using the generating function

G = k( -r - S&r-n) .(28)
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which yields ff = I, and 7 = - r - Jv/Nr. In the variables (K, V)), (27) becomes

H = -K + e2S1 () + (+ 162 cos(n)S 6 () (29)
n

which is time independent. Hence, the orbits of (29) are obtained by solving H = const.
When solving this equation, it is clear that if there is some acceleration when 6V = 0, this
acceleration persists when 3v : 0 only if eie 2 S6 (P) is at least of the order of (Jv/n)I. This
shows that Jv must scale as e1 6 2 for acceleration to take place. When this condition is
fulfilled, it is then clear that the amount of energy gained by an ion is of the same order
of magnitude as in the case when Jv = 0. Hence, the results derived in the sections 4.1
and 4.2 remain relevant. In particular, the acceleration will be all the more important as
the amplitude of S6 ( ) is large, and the curve plotting the maximum and minimum values
of as a function of k2/k1 also has some discontinuities, due to the existence of zeros in
S6( ), as in Fig. 6. Therefore, the results obtained in Sections 4.1 and 4.2 describe in a
very complete way the acceleration of low energy ions by two electrostatic waves propagating
perpendicularly to a uniform magnetic field.

4.4 Acceleration of low energy ions in an arbitrary discrete wave spectrum:

In this section we study the dynamics defined by (2) in the case when an arbitrary number
of on and off-resonance waves are included. The study is still restricted to the part of phase
space which is below the stochastic region, namely we only consider values of p such that
p < min(vi). We show here that the acceleration phenomenon described in the case of two
waves also exists in the case of more than two waves, and that actually, the results obtained
in the case of two waves readily apply to the case of many waves. This occurs because
perturbation theory up to the second order in the waves amplitudes describes the dynamics
accurately also in the case of more than two waves, as can be seen in Fig. 12 and 13 for
the case of six waves. As a second order perturbation analysis only takes into account the
nonlinear interaction of pairs of waves, the Hamiltonian obtained after perturbation theory
in the case of N waves is a sum of Hamiltonians of the form (11) or (25). Thus, to second
order, and using the same approximations as before, the Hamiltonian (2) is transformed to

AI ~ '- SJ- (sp) cos(vi~b>+ WO)H ~ V

N

+$373S P) + E eiej S 3(' ) cos [(Vi - v)<I+Vpi - <p], (30)

where K denotes the set of positive integers, and K* the set of stricity positive integers,
A* = K \ {0}. If vi is not an integer, S 0is given by (A13) with . replaced by Ki and
v2 replaced by vi; if vi is an integer, S is given by (17) with the same replacements. As
already noted in the case of two waves, the fact that vi is an integer or not does not really
affect the value of S. As for -fj it is defined by

+00 MS =)--,m ) +00m+m ) (31)

M--00 r(V3 - M) m=-o (Vi - m)
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when vi and vj are not integers. If they are integers the term involving m = vi has to be
excluded in the first sum of (31), and the term m = vj has to be excluded in the second sum
of (31). Again, as noted when studying the case of two waves, the fact that vi and vj are
integers or not does not really affect the values of S(Z'P( ) as long as , < min(vi, vj).

Now, the dependence of the acceleration mechanism on the wave spectrum parameters
can be easily deduced from the case of two waves. In particular, the first order terms
only play a role in a part of phase space close to the chaotic domain and can be neglected
in a first approximation. Therefore, there is acceleration when the sum, S., of the terms

"6~ ( ) cos [(vi - v)<I> + wp - wj] is at least of the same order as the sum, S,, of the
stabilizing terms eS2(p3). This yields the conditions on the different parameters of the
problem in order to obtain acceleration.

In the case where the wave amplitudes are all about the same, the condition on the
frequencies is simply that the number of pairs of frequencies separated by an integer multiple
of the cyclotron frequency must be at least of the order of the total number of waves. If the
number of stabilizing terms is much .larger than the number of accelerating terms then there
is no acceleration.

We can also show, as in 4.1, that the energization is a maximum when two waves whose
frequencies are separated by an integer multiple of the cyclotron frequency have the same
amplitudes. Moreover, if all the waves have the same normalized amplitude .e, then the
orbits do not depend on e,-except when the first order terms are not negligible. In this case
we find that an ion accesses the chaotic domain of phase space more easily as e is decreased.
The time needed for an ion to be accelerated scales, as in the case of two waves, as 6-2

The main difference with the case of two waves comes from the fact that changing the
values of the initial phases 40j does not only result in a shift of the orbit. The orbit explicitly
depends on the choice of the Vi's as long as there is more than one term in the sum, S,, of the
accelerating terms. When the number of terms in S. is of the order of unity, then the amount
of energy gained by an ion should be the same whatever the phases. This fact is illustrated
for example in Fig. 14. Nevertheless, if the number N. of terms in Sa is large, then this sum
scales differently with Na depending on the choice of the phases mo's. For example, if the
0 i 's are all the same then the sum will scale as N., while if the p's are chosen randomly
the sum will scale as v/~N.. Hence, for a large number of waves, one expects to obtain more
acceleration when the initial phases are coherent than when they are random. Numerical
results show that there is very little acceleration when the initial phases of the waves are
randomly distributed.

Finally, the way the gain of energy varies with the wavenumbers can also be very easily
deduced from the study performed for two waves. Indeed, for each pair of waves yielding an
acceleration term, one knows how much energy an ion would gain if only these two waves
existed. Then, the order of magnitude of the energy an ion gains from the whole spectrum
is of the order of the sum of the energies gained from each pair of waves divided by half
of the total number of waves. Therefore, mA and Am. are expected to behave with the
wavenumbers in a similar way as in the case of two waves. In order to test this point
numerically without having to specify a dispersion relation, we consider the case when the
wavenumbers are all about the same value. Then, it is valid to make a first order Taylor
expansion of the dispersion relation k(w) and to relate the wave numbers through a linear
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relation ki = k, + a(wi - wi), where a is the inverse of the group velocity evaluated at k = kj.
Numerically, we fix the values of the wave frequencies and compute the amount of energy
gained by an ion when a is varied. Figures 15 and 16 plot mn and Ima versus K = k2/ki
in the case of multiple waves. These figures are similar to Fig. 7 plotted in the case of two
waves. One can notice however that in the case of multiple waves the maximum value of
pm. is somewhat lower that in the case of two waves. Yet, in the case of Fig. 15, four
pairs of waves give rise to acceleration while there are five waves. Therefore, the ratio of the
number of terms giving rise to acceleration divided by the total number of waves is higher
than in the case of two waves. The fact that the maximum acceleration is not as high as for
two waves simply comes from the fact that the zones of high acceleration do not correspond
to the same value of the ratio of the wave numbers for each pair of waves.

When deriving (30) we did not take into account the case when the difference (v -
Urn) between two normalized wave frequencies is so close to an integer that the non-linear
interaction of these waves cannot be neglected in (30), although (vi - Un) is not an integer.
If we denote vI - Urn = n + Jvj, then we know from the results of the Appendix B that the
non-linear interaction of the waves 1 and m has to be included in (30) for a small enough
value of 6v', scaling as elem. Including the corresponding term in (30) yields

H ~ E - J'i(i3) cos(vii + Wp) + 6jCMS61 ( cos(n4 - Jvjr + pi - pm)

+ Z SPZ() + eiejS-t1( ) cos [(vi - vj)<D + Wi - Ps] (32)
i=1 (v;-v, )EN*

The Hamiltonian (32) is not integrable, as soon as there is more than one term in the sum
S,. Therefore, the orbits of (32) cannot be exactly calculated. Nevertheless, during a time
which is of the order of 1/6vl, an orbit of (32) is very close to the orbit obtained by setting
Jvj = 0 and solving H = const. Because the maximum value of 6v, scales as elem, the time
1/3vt is at least of the order of the time which gives the coherent acceleration when either
Jv1 = 0, or the term due to the waves 1 and m is negligible. This is actually intuitively
obvious, because if 1/v 1 were much smaller than the time of coherent acceleration, then the
term cos(ni' - 6vz'r + P - Pm) would behave as a fast perturbation and would henceforth
be removable using perturbation theory, which is not the case. Therefore, an orbit of H is
close to the one obtained by setting Jvj = 0 during a time of the order of 1/3vi, and 1/6V
is also of the order of the time during which an ion is energized by the waves when 6v1 = 0.
This implies that the analysis made on a Hamiltonian like (30) gives the order of magnitude
of the energy gained by an ion also in the case of a Hamiltonian of the form (32).

In conclusion, we have shown that the results found in the case of two waves in the
subsections 4.1 and 4.2 can be readily generalized to the case of an arbitrary discrete wave
spectrum. This shows the universality of the results for the case of.two waves, and implies
that the main features of the dynamics of an ion in a discrete spectrum of waves propagating
perpendicularly to a uniform magnetic field have been described in this section in a complete
way, as long as the orbit of the ion remains below the stochastic region.

5. High ion energization with more that one wave:
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In this section we consider the case where, in the presence of more than one wave, an ion
has accessed the stochastic region of phase space. This happens when either the ion initial
condition is in the chaotic domain of phase space, or when the ion has been coherently accel-
erated into the chaotic domain. We show here that when there are at least two on-resonance
waves in the wave-spectrum, then an ion reaches energies which are much higher than with
one wave, for the same values of the wave amplitudes and the same time interval. This can
be seen for example in Fig. 17, plotting the Poincar6 section of the dynamics of an ion acted
upon by two on-resonance waves. These waves have the same amplitudes, and frequencies of
the same order, as the waves in Figs. 1 and 2. Moreover, the initialcondition is the same and
the ion dynamics is followed for the same duration of time as in Figs. 1 and 2. Nevertheless,
one can see from Fig. 17 that when acted upon by two on-resonance waves, the ion can
reach an energy which is about three times higher than the maximum energy reached in the
case of one wave. It is also important to note that in the case of two on-resonance waves the
phase space is not quasi-uniformly visited as in the case of Fig. 1. As we will show below,
this happens because the ion orbit remains close to the orbits determined from a first order
perturbation analysis on the Hamiltonian (2). This implies that over a wide range of values
of the wave amplitudes, the energy gained by an ion is directly related to the increase in
action of the orbits found from a first order perturbation analysis. Hence, these first order
orbits rule transport although the ion motion is not regular. Therefore, we study in this
section the first order orbits, in order to deduce the energy an ion gains from the waves as
a function of the wave-spectrum parameters. The basic results are obtained in the case of
two on-resonance waves and are then generalized to an arbitrary discrete wave-spectrum.

5.1 Enhancement of the ion acceleration with two on-resonance waves:

5.1.1 Numerical illustration of the enhancement of acceleration:

In this subsection we investigate the dynamics of an ion in two on-resonance waves in the
particular case when p > max(vi). In such a case, whenever a perturbation analysis is
relevant to describe the ion dynamics, the first order term dominates. Hence, the relevant
perturbed Hamiltonian, f, is the Hamiltonian (16) where only the first order term is taken
into account. When the wave amplitudes are small, H describes very accurately the dynam-
ics of the Hamiltonian (2), as is illustrated in Fig. 18 and 19. Fig. 18 shows a Poincar6
section of the Hamiltonian (2) when ei = 62 = 0.324, while Fig. 19 shows the orbit of H
corresponding to the same parameters as in Fig. 18. One can clearly see that for these
values of the wave amplitudes, the orbits obtained from H or from H are close to each other.
One can also see in Fig. 18 that an ion can reach an energy which is about 30 times higher
than its initial energy. Hence, the ion is highly energized. One off-resonance wave having an
amplitude and a frequency of the same order would not energize the ion at all, because the
corresponding vallue of e is below the stochastic threshold as estimated by (3) (see Fig. 20).

When the two on-resonance wave amplitudes are increased by one order of magnitude,
the ion orbit is the one shown in Fig. 17. It is thus very different from the one shown in Fig.
19 and obtained using perturbation theory. Nevertheless, the maximum energy reached by
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the ion is of the same order of magnitude in the case of Fig. 17 as in the case of Fig. 19.
Therefore, even if the perturbation analysis is unable to provide an accurate description of
all the details of the dynamics, it nevertheless provides the good order of magnitude of the
amount of energy gained by the ion. Actually, solving H = const does not provide only one
orbit but a whole set of orbits, as can be seen in Fig. 21. When the wave amplitudes are
high enough in (2), some stochastic layers form about the first order orbits, allowing their
interconnection. In the case of Fig. 17, 4 orbits are connected, which makes the ion orbit
go a bit higher in action than in the case of Fig. 18. Nevertheless, it is clear that in the
case of Fig. 17 also, the amount of energy gained by an ion is determined by the extent,
in action, of the first order orbits. Therefore, increasing the wave amplitudes by one order
of magnitude does not drastically change the ion energization. This situation is completely
different from the one corresponding to one off-resonance wave as can be seen by comparing
Fig. 1 to Fig. 20.

If the wave amplitudes are further increased, it is clear that a point is going to be reached
where the width of the region of phase space which is completely stochastic is larger than
the extent of the first order orbits along the action axis. In this case, acceleration is mainly
stochastic and the role of the first order orbits is no longer dominant in transport. This
situation is illustrated in Fig. 22, where the wave amplitudes have been increased by one
order of magnitude compared to the case of Fig. 17. For such wave amplitudes, one can
no longer distinguish any regular orbits, and the phase space looks completely stochastic.
Actually,- the first order orbits still play a role in the ion energization. These orbits bound
the upper part of the chaotic domain. Therefore, after being energized in a purely stochastic
way, an ion follows one of these orbits and is hence further energized in a way similar to the
case of Figs. 17 and 18. This is illustrated in Fig. 22 by the fact that, as in the case of Figs.
17 and 18, the ion orbit reaches a higher value of the action in the case when 8 is close to
0 or 21r than in the case when 8 is close to ir. The maximum value of the action reached
when 8 = 7r, Im.(7r) ~ 3000, corresponds to a purely stochastic acceleration. The difference
between the highest action reached when 8 = 0, I.(0) ~ 4500, and I,. (ir) is close to the
extent in action space of the first order orbits.

When acted upon by one off-resonance wave, an ion can only be energized in a stochastic
way. In the case of one off-resonace wave having an amplitude and a frequency of the same
order as the waves of Fig. 22, an ion reaches a maximum action, I(0f1) :: 5000 (Fig. 23),
which is approximately the same as Ikd(0). The stochastic acceleration leads an ion to
energies of the same order of magnitude with one or two waves. Therefore, no new result
is to be found on stochastic acceleration with two on-resonance waves compared to what
is already known for one wave. Hence, we now focus on those wave amplitudes for which
transport is dominated by the first order orbits.

5.1.2 Analytical study of the acceleration mechanism dependence on wave characteristics:

As shown in the previous subsection, the key point to understanding the enhancement of
acceleration by two on-resonance waves is to calculate the extent, in action, of the first order
orbits. In this subsection, we evaluate the excursions in action and the dependence of the
energy gained on the wave spectrum parameters.
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Keeping only the first order term in (16), and going into the variables (I, 4 = 9 - r), the
perturbed Hamiltonian H is

Jn2 (Kx;)H = e1Ja, (p) cos(ni4 + Vl) + 2 4 cos(n 2 i + W2) (33)
K

When ; >> max(ni, n2 ), one can use in (33) the large argument expansion of the Bessel
functions, so that (33) becomes

f ~ e= cos( - niir/2 - 7r/4) cos(nii + Spi)

+ 2 2
+ cos(ip - n27r/2 - ir/4) cos(n 2 i + 02) (34)

Using the approximation (34) for H, we now solve H = 0. As will be shown, such an
analytic calculation completely accounts for the numerical results shown in the previous
subsection. Physically, taking the constant equal to zero corresponds to a case where the
initial condition is, below the stochastic region, because when po < min(ni, n2 ) the values of
J,1 (po) and Jn2 (po) are much less than the values assumed by Jn (p) and J 2 (p) over a large
part of the region of phase space above the chaotic domain.

For the sake of simplicity we first consider the solution of H = 0 for K = 1. When
n2= n + 2p + 1, and when cos[(ni + 2p + 1)i + V2] 5 0, H = 0 in (34) is equivalent to

tan(R) = (-1)(P+)' cos[ni + wil] (35)
e2 cos[(n + 2p + 1)t + <02(

wheie R = - niir/2 - 7r/4. Since changing i into 4 + 7r does not change the right-
hand side of (35), we study this equation only over an interval of amplitude ir in i. In
between 2 zeros of cos(nii + Wi) there is at least one zero of cos[(ni + 2p + 1)$ + p2].
This implies that when i varies over the interval Im = [ ±1~-W + m, r1~-W + (m+1)x), i.e.
between 2 zeros of cos(nit + <pi), then the right hand side of (35) runs over the whole
interval (-oo, +oo). Consequently, R changes by :ir. In other words, a change by 7r/n
in the angle induces a change by ±-7r in the normalized Larmor radius. If, in the interval
Im+1 = [7/2-Wl + (m+1)rw, E12-w + (mi2"), the number of zeros of cos[(n, + 2p + 1)4 + V2]

different from (,/2-,p + (mni) is odd, then R changes in the same way in Im as in Im+1:
if R changes by +7r in I, it also changes by ir in Im+, and if it changes by -r in Im it also
changes by -7r in Im+1. Conversely, if in Im+1 the number of zeros of cos[(n 1 +2p+ 1)'+V2]
is even, then R changes in opposite ways in Im and in Im+1. Clearly, the most interesting
case for acceleration is when the range of Larmor radius spanned by an orbit solution of (35)
is maximum, i.e. when there exists an interval of amplitude ir in which there is always an
odd number of zeros of cos[(n 1+2p+1)i+ V2] between 2 zeros of cos[nl+ W1 ]. In this case,
the ion Larmor radius changes by an amount of the order of n17r. This happens for example
when the wave frequencies are separated by an ion-cyclotron frequency, i.e. n2 = n1 + 1. The
zeros of cosjn1 +< 1 ] are 4m = (7r/2- pi)/n 1 +m7r/n while the zeros of cos[(n 1 +1)i)+<W2 1
are ' = (7r/2 - <02 )/(n 1 +1) + m7r/(n1 + 1). Clearly the number of V''s between two &m's
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does not depend on the initial phases V1 and V2 except when they are such that one V' is
equal to one im. Nevertheless, with probability one, this does not happen. We thus restrict
ourselves to the case when 91 = '02 = 0. Then, it is clear that in [0, 7r] there is always one i'
between two 4,'s, and R is thus a monotonic function of (D over [0, 7r]. Therefore, when acted
upon by two on-resonance waves whose frequencies are separated by one cyclotron frequency,
an ion experiences a variation in its Larmor radius of the order of n17r. For example, in the
case of Fig. 18, the minimum value of the Larmor radius is pmin ~ 5 and the maximum
value of the Larmor radius is pmn ~ 40, while n17r = 97r ~ 28. The discrepancy between the
analytical prediction and the numerical result only comes from the lack of accuracy of the
large argument expansion of the Bessel functions.

If the initial phases 'pi and V2 are such that one $'m is equal to one Cm, the only
consequence is that the ion Larmor radius varies by (ni - 1)ir instead of n17r. Hence, as
in the case of section 4, the choice of the initial phases is not important in the acceleration
mechanism.

When n2 = ni + 2p then from (34), in the case n = 1, H = 0 gives

(6 1 + (-l)PE2 ) cos(R)[cos(nii + Vi) + cos[(n, + 2p)$ + V2)] = 0 (36)

Solving (36) yields R = 7r/2+m7r or cos(n1+<P)+cos[(nj+2p)'±+V2)] = 0. Therefore, the
result consists of a set of rectangular cells, similar to the ones obtained in the one-wave case.
Nevertheless, the large argument expansion of the Bessel functions is not precise enough to
recover the result that would be obtained by using the formula (33) for H. Fig. 24 plots a set
of orbits obtained by numerically solving H = const for the case when ni = 9 and ni = 11.
Comparing with Fig. 21, it can be seen that these orbits extend to lower actions than when
ni = 9 and n2 = 10, but nevertheless to higher actions than in the one wave case. Moreover,
these orbits are close enough to be easily connected through the stochastic layers. Hence,
when the wave amplitudes are small an ion is less energized than when n2 - ni = 1, while
as soon as the amplitudes are high enough for the orbits to be connected by stochasticity,
the ion energization should be of the same order as when n2 - ni = 1. This is confirmed
numerically, and illustrated in Figs. 25 and 26. Therefore, when n2 - ni = 2 stochasticity
plays a more important role than when n2 - nj = 1, nevertheless the transport is still
dominated by the first order orbits. Moreover, in this case also, the energy gained by an ion
corresponds to a variation in the normalized Larmor radius of the order of ni&r.

We now turn to the case when the wavenumbers are not the same, i.e. r = k2/k1 0 1.
We focus on the case when n2 - ni = 1, and ei = e2 as this corresponds to the case of
maximum acceleration. As noted earlier, we can set 'P1 = W2 = 0 without loss of generality.
Then, using (33), H = 0 gives:

Jn, ( ) cos[In 1I] + J, +1 (4) cos[(ni + 1)$] = 0 (37)

In order to study the variations of with D, .we differentiate (37), which yields

d {J' (0) cos[nidI] + J'l+1 (K.) cos[(ni + 1)'i]}

-di niJnj() sin[n1 4]+ (ni +1) Jn1 +i(K-) sin[(ni + 1)1] = 0 (38)
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From (37) and (38) it is easy to see that the orbit ,(d) has a horizontal tangent, i.e. d,3/dj =
0, if and only if (D is an integer multiple of 7r, or J,, ( ) = J,,+1(x ) = 0. Note, however,
that with probabilty one, this last condition is not fulfilled.

When n $ 1, the orbit (i) may have vertical tangents. Using (37) and (38), and making
a large argument expansion of the Bessel function, we find that this happens when

n cos(n - n17r/2 - 7r/4) cos( -n17r/2 - 7r/4) +sin(ip- n17r/2 - 7r/4) sin( - n17r/2 -7r/4) = 0

(39)
In order to find the values of . allowing (39), we denote n = 1+6 and R = - n17r/2 - 7r/4.
Then (39) is equivalent to

cos(6fi) + 6 cos(R) cos(R + 6fi) = 0 (40)

Because 16 cos(R) cos(R + ) 1 16 1, if 16 j< 1 then, on the interval[0, arccos(I 6 1)/ 16 1),
cos(6fi) +6 cos(R) cos(R + 6,) > 0. Therefore, on an interval of amplitude arccos(1 6 1)/ 1 6 1
in f, the orbit solution of H = 0 does not have any vertical tangent. Moreover, if 6 < < 1,
then, as for the case when K = 1, a variation by Ir/n in induces a variation by ±ir in ,.
Hence, if the orbit does not have vertical tangent, its extent along the j-axis is of the order
of njir. In other words, if the orbit does not have any vertical tangent when fi E [0, n17r],
then it does not have any vertical tangent at all. As we showed that the orbit does not have
any vertical tangent when fi E [0, arccos(1 6 1)/ 1 6 1], the condition on 6 for the orbit to have
a vertical tangent is arccos(I 6 1)/ 1 6 1: n17r. The minimum value of I x - 1'1 allowing a
vertical tangent is thus of the order of 1/(2n,). Therefore, if I K - 1 |< 1/(2n,), the orbit
solution of H = 0 does not have any vertical tangent, and the situation is similar to the case
when r. = 1: the extent of the orbit along the -axis is of the order of n17r.

If I r - 1 1> 1/(2n,), some orbits have vertical tangents which implies that they never
go through i = 0 nor 4 = 7r. In a case where J (fi) and Jn,1+1 ('i) have no common zeros,
these orbits have no horizontal tangents. Consequently, they can reach infinite values of
fi! Nevertheless, this does not happen to the actual orbits of the Hamiltonian (2). The
reason is that these orbits remain close to orbits of H = C, where C actually is a non-zero
constant. When numerically solving H = C, we find that the corresponding orbits indeed
have horizontal tangents for values of i different from 0 or 7r, as can be seen in Fig. 27. If
C corresponds to an initial condition which is below the stochastic domain, then, as already
mentioned, C is very small compared to the values of the Bessel functions over a large part
of phase space above the chaotic region. Therefore, we expect the results obtained from
H = 0 to have some relevance. In particular, we expect the orbit solutions of H = C to
have horizontal tangents either when is an integer multiple of ir or when , is such that
J.,(,) ~ Jn1,+ (x,) ~ 0. Indeed, one can see in Fig. 27 that the orbit solutions of H = C
have horizontal tangents for values of I close to 1260 and values or 4~ different from 0 or
7r, while in this case Jn,(fi) = 0 for I = 1262 ± 1 and Jn1 +j( 13) = 0 for ! = 1263 ± 1.
Hence, when I . - 1 1> 1/(2n,), the extent of the orbits of H in action does not correspond
to Afi ~ ninr but are related to the lowest value of , such that both Jn1(fi) and Jn1+1 (ix)
are close to zero. In the remainder of the paper, this value will be referred to as the first
common zero of J 1 (fi) and Jn1+1 (rfi) . However, in all the simulations we performed, this
value was of the order of n1 7r and one can see that the orbits of Fig. 27 do not go much
higher in action than the orbits of Fig. 21.
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When numerically plotting a Poincar6 section of the dynamics defined by (2), for the
same parameters as in Fig. 27, one can see that the maximum action reached by an orbit
of (2) also corresponds to I ~ 1260 (see Fig. 28). Therefore, in the case of Fig. 28, the
maximum energy reached by an ion is fixed by the first common zero of J,, ( ) and Jn,+1(n ).

Making a large argument expansion of the Bessel function in the Hamiltonian (37) shows
that the orbits of H are almost periodic in 5. This implies that the whole set of orbits
solutions of H = const actually extends up to = +oo. In Fig. 27 we only plotted the set
of orbits corresponding to values of going from 0 to the first common zero of Jn, (,3) and
Jn,+ 1 (i). However, there is a second set of orbits of H corresponding to values of f going
from the first common zero of J,1 ( ) and Jnj+1(';) to their second common zero. And, in
general, there is a set of orbits corresponding to values of # going to the nh common zero
of J ( ) and Jn +1 (,) to their (n + 1)th common zero. Hence, the maximum value of
reached by a given set of orbits is very close to the minimum value of of the following
set. This implies that the orbits of each set may easily connect through the stochastic layers
which exist in the case of the dynamics of (2). If such a connection takes place, then the
maximum energy reached by an ion can be much larger than in the case of Fig. 28 or Fig.
17. This is the case for example when ni = 9, n2 = 10 and n = 1/V2. Figure 29 plots
the solution of H = const where the constant corresponds to an initial condition where
1(0) = 32 and (I(0) = 0.941r. One clearly sees in Fig. 29 the different sets of orbits solutions
of H = const, and one can also see that these sets of orbits can easily connect until a value
of I close to 6300. When plotting the Poincar6 section of the dynamics of (2), for the same
parameter as the ones of Fig. 29, one can see that the maximum energy reached by an
ion corresponds to an action close to 6300 (see Fig.30). Hence in the case of Fig. 30, the
maximum energy reached by an ion is not related to the position of the first common zero
of Jn1 ( ) and Jj+1 (Kp), but to the ability of the different orbits solutions of H = const to
connect. Actually, the value of the first common zero of Jn, (A) and Jn,+i(K;) is about the
same in the case of Fig. 28 as in Fig. 30.

By choosing the value of , such that the orbits of k connect over a wide range of values of
the action, an ion can gain large energies from waves with moderate amplitudes. Such a case
is shown in Fig. 31 where an ion can reach an energy about three times higher than in Fig.
22, while the wave amplitudes are 10 times lower. However, the situations presented in Figs.
27-31 are rather atypical. Typically, an ion reaches maximum energies which correspond to
Ap ~ 717r, as in the case when . = 1.

5.2 Enhancement of the ion acceleration in a discrete wave spectrum:

5.2.1 Discrete spectrum of on-resonance waves:

In this subsection, we show that the enhancement of the ion acceleration, described in
the previous section for two on-resonance waves, exists in a more general spectrum of on-
resonance waves. Moreover, the typical maximum energy reached by an ion is shown to be
the same as for two waves, and thus corresponds to Ap ~ n17r.

We,:thus, study the dynamics defined by (2) where all the vi's are integers. As in section
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5.1, we perform a first order perturbation analysis which yields the perturbed Hamiltonian

N

H = ' -J,,(K, ) cos(nj1 + pj) (41)
i=1

We will not try here to perform a general analytical study of the solutions of H = 0, as we
did for two waves. Instead, we will show that the concepts and results obtained in the case
of two waves also apply to the case of more than two waves.

In particular, let us consider the case when the wavenumbers are identical. Then, by
making a large argument expansion of the Bessel function, we find that solving f = 0 leads
to

tan(R) = Z=0( 1)62i+1 cos(n 2i+1 + P2i+1) 42)
1i (-1)ie2i cos(n 22$ + P2i)

where n = ni + i - 1, q = p = (N - 1)/2 if N is odd, and q = p + 1 = N/2 if N is
even. Let ($). be the numerator of the right-hand side of (42). Then, finding the zeros of
K(4) amounts to finding the zeros of a polynomial of degree 2n + 4p +2 in ei. Therefore,
Ar(fQ) has at most 2n + 4p + 2 zeros in (0, 2r). As N(+ r) = (-1)"+1r (i), (i) has at
most n + 2p + 1 zeros in [0, 7r). For values of -('which are not an integer multiple of 7r/ni,
K(I) = 0 is equivalent to tan(ni,) =_g(4'), where g(D) is a function that can be readily
found by expanding the cosines in Ar(4D). Therefore, K(4) has at least ni zeros in [0, 7r).
Similarly, one can show that the number of zeros of the denominator of the right-hand side
of (42) is larger than ni + 1 and smaller than ni + 2q. Therefore, when the total number
of waves is not large compared to nj, the situation is similar to the two waves case, and an
ion is expected to reach a maximum energy corresponding to a variation of the normalized
Larmor radius of the order of nor. Moreover, as in the case of two waves, the amount of
energy gained by an ion depends on the parity of the number of poles of the right hand side
of (42) between 2 of its zeros. The energization is maximum when there is an odd number
of poles between 2 zeros.

In Fig. 32 we plot the solution of H = const in the case of four waves having all the
same initial phases but slightly different amplitudes and wavenumbers. One can see that the
orbits plotted in Fig. 32 for the case of four waves reach energies of about the same value
as the orbits plotted in Fig. 21 for the case of two waves, except for values of 'i close to 7r.

Therefore, depending on the initial condition, stochasticity may be necessary for the ion to
be highly energized. Nevertheless, for amplitudes of the same order as the ones chosen in
the case of two waves in section 5.1, an ion reaches energies of the same order as in the case
of Fig. 17 for two waves, as can be seen in Fig. 33. Moreover, by comparing the figures 32
and 33, it is clear that also in the case of more than two waves, the ion motion is dominated
by the orbits found using a first order perturbation analysis.

When the wavenumbers are different, then, as in the case of two waves, an ion can reach
very high energies through the connection, due to stochasticity, of different sets of first order
orbits. Such an effect is illustrated in Fig. 34.

In conclusion, we find that all the results derived in the case of two waves also apply
for more than two waves. - This implies that, in the case of more than two waves, the
typical maximum energy reached by an ion also corresponds to Ap : njir. However, by an
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appropriate choice of the wavenumbers an ion can be energized to energies much higher than
the typical one corresponding to Ap ~ n1i7r. In this case, the ion energization occurs mainly
through the connection of first-order orbits.

Contrasting our results with previous works, we note that in Ref. 15 the acceleration of
ions through patterns in phase space has been investigated in the case of one on-resonance
wave, and in the case where the electric field is an infinite sum of on-resonance waves:
E = iE o E,=L sin(kx - wt - i/wt). In Ref. 16 and 17, the same kind of electric field is
assumed, but the effect of a finite number of waves is investigated. In the case of one wave,
as already mentioned, stochasticity is essential to energize ions. Therefore, the acceleration
mechanism is different from the ones given here. In the case of many waves, for the particu-
lar electric field assumed in 13 -1 5 , stochasticity also seems to be essential, so that the results
obtained are quite different from the one presented here. In particular, in 1 3-1 5 no mention is
made about a typical energy reached by the ions. Moreover, as all the waves have the same
wavenumber in1 3-1 5 , the effect presented in Fig. 31 could not be found in previous studies.

5.2.2 Discrete spectrum of on and off-resonance waves:

In this subsection we numerically check that the enhanced acceleration described in the
case of on-resonance waves also exists in a wave spectrum composed of a mixture of on and
off-resonance waves. We first show that the enhanced acceleration exists in the case of two
waves where one wave is on-resonance and the other wave is slightly off-resonance. This effect
is similar to the one described is section 4.3. We then show that the enhanced acceleration
also exists in the case of three waves where two of them are on-resonance and the third one
is off-resonance. Moreover, we estimate the maximum amplitude of the off-resonance wave
allowing the enhanced acceleration.

In the previous subsections, we showed that the enhanced acceleration was linked to the
nature of the orbits of the Hamiltonian H deduced from (2) by performing a perturbation
analysis to first order in the waves amplitudes. As shown, an ion is highly energized when
following the orbits of H only if there are at least two on-resonance waves in the wave
spectrum. However, for the same reasons as the ones developed in section 4.3, when one
off-resonance wave frequency is very close to an integer multiple of the cyclotron frequency,
its contribution to H can no longer be neglected. In particular, let us consider the case of
two waves such that one of them is on-resonance, and the other one is slightly off-resonance.
Let the first wave frequency be such that wi/ = nj, where nj is an integer, and the second
wave frequency be such that w2/ = n2 + JV, where n 2 is an integer and Jv << 1. Then,

it is always possible to define a canonical change of variables such that at first order in the
wave amplitudes, the Hamiltonian (2) is transformed into

H = e1J,,(p) cos(ni + <p) + - IJn 2 (r') cos(n 2A - JVr + 2) (43)
K

The Hamiltonian (43) can be considered as constant for a time of the order of 27r/Jv. Hence,
during the time 21r/Jv, the orbits of H are the same as the ones obtained when Ju = 0.
Therefore, if 27r/6v is larger, or of the order of, the time needed for an ion to be energized
when Jv = 0, then it is clear that the enhanced acceleration described previously still exists
even when v 5 0. Such a situation is illustrated in Fig. 35. Therefore, the enhanced
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acceleration can take place even if there are less than two on-resonance waves in the wave
spectrum.

Now, let us consider the case of three waves such that two of them are on-resonance,
and the third one is so radically off-resonance that it plays no role in the Hamiltonian H
derived using a first order perturbation analysis. In this case, the enhanced acceleration
can still be observed, as can be seen in Fig. 36. Actually, there is an upper bound in the
off-resonance wave amplitude for the enhanced acceleration to remain, as is shown in Fig.
37. The off-resonance wave amplitude has to be small enough so that H still has some
relevance to describe the dynamics of (2). For the case corresponding to Figs. 36 and 37,
we numerically find that the upper bound for the off-resonance wave amplitude is close of
Esff = 1.8, while the amplitude of each off-resonance wave is 6n,' = 0.2592. Actually, when
performing the perturbation analysis up to second order, we know from section 4.1 that the
off-resonance wave induces a stabilizing term at second order. This term was denoted by
eff S1 ( ) in section 4.1. It has to be compared with the accelerating term coming from the
first order. The root mean square of the first order term (33), with respect to the angle >,
is (k) = 6" V[J, 1 (p) + J 2( )]/2. For values of corresponding to the maximum energy

reached by an ion in the case of Fig. 37, (H)/(eIffS2(5)) ~ 1. Therefore, the upper bound
in the amplitude of the off-resonance wave allowing the enhanced acceleration is such that
the accelerating terms due to the on-resonance waves are balanced by the stabilizing term
due to the off-resonance wave.

In conclusion, we have shown that the enhanced acceleration described in section 5.2 is
not restricted to the case where the wave spectrum is only composed of on-resonance waves.
This shows the physical relevance of the phenomenon of enhanced acceleration for multiple
waves.

6. Conclusion:

In this paper we have shown that multiple electrostatic waves propagating across a uni-
form magnetic field are more efficient in energizing ions than a single wave. In particular,
there is no threshold in energy for ions to be accelerated by the waves. Furthermore, the
acceleration of low-energy ions is coherent, and there is no threshold for the electric field
amplitudes of the waves for the acceleration to take place. The stochasticity threshold that
is usually studied in wave-particle interactions is not relevant for this case. The time needed
to accelerate low-energy ions is shown to scale inversely as the square of the wave amplitudes.
The maximum energy that the ions can achieve and the ion population that is energized can
be determined by appropriately choosing the wave frequencies and wavenumbers. Appro-
priate choices for the frequencies and wavenumbers can also induce a deceleration of ions,
extracting their energies. If an accelerated ion reaches the chaotic domain, the maximum en-
ergy it reaches can be much higher in the case of multiple waves than in the case of one wave.
When the energization is enhanced, the ion orbit follows a path obtained from a first order,
in wave amplitudes, perturbation analysis. Therefore, the ion acceleration is not determined
by stochasticity. As shown in section 5, a variation in the wavenumbers could induce a dra-
matic increase in the ion acceleration. However, there is a typical maximum energy reached
by an ion, corresponding to an increase in the ion Larmor radius close to (irw1)/(kQ), where

22



k is a typical wavenumber, w, is the lowest frequency, and Q is the cyclotron frequency.
The results we have presented can be readily applied to many physical situation involv-

ing coherent wave-particle interactions in a magnetic field. In particular, they prove to be
relevant in explaining recent results10 regarding the acceleration of 0+ and H+ ions in the
ionosphere; this will be shown in a forthcoming paper.9 Our results can also be applied
to new means of ion heating (and/or energy extraction from energetic a-particles) in mag-
netically confined fusion plasmas.' 6 Finally, we remark that for the case when two waves
are both below the ion-cyclotron frequency," the perturbation analysis presented here car-
ries through in the same manner as in Section 4, but with the sum S6 replaced by the sum S5 .
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APPENDIX A

In order to perform a perturbation analysis using the formalism of the Lie transform 7 , one
introduces a generating Lie Hamiltonian x, and defines the transformation operator T, acting
on any function g of the dynamical variables I and 0. T is such that T{g}(I, 9) = g(, #),
where (I, 0) is the position in phase space at "time" e, of the trajectory defined by the
Hamiltonian x, with initial conditions (I, 9). In particular, when g is the identity, this leads
to the definition of the change of variables (I, 9) = T(I, 9). This change of variables is clearly
canonical. The time introduced to define the transformation operator is a "fake" time for
the auxiliary dynamics defined by X, and is not related to the real time r in (2). For the
sake of simplicity, we consider the case when all the waves have the same reduced amplitude
e. The generalization to the case of different waves amplitudes is straightforward. Following
Deprit's method' 8, we expand x in a power series in e:

+00

X = E -iXi+i (Al)
i=O

The Hamiltonian (2) is already expanded in power series in c: H = Ho + eHi, where

Ho = I (A2)

H, = J(p)cos(n - v 17 + ) + - cos(n - v2 r + 2) (A3)

where Jn is the Bessel function of order n and r = k2/k, is the ratio of the two wavenumbers.
In the new variables (I,j) the dynamics is given by a new Hamiltonian H that can also be
expanded in power series in e

+00
H = Ze' . (A4)

i=0

It is clear that 10 = Ho because when e = 0, (1, 9) = (I, 9).
Finally, we also expand the inverse transformation operator T- 1 as a power series in e

+00
= eT-1  (A5)

i=0

where T6~1 is the identity since for e = 0 (1,9) = (I, 9). For i > 1, it can be shown that Ti1
is defined by the recursion relation

T-1 =- Li_;- (A6)
-=0

where Li = {Xi, .}, and {., .} stands for the Poisson bracket.
One of the results of Deprit's method is the relation between the Hi's, the Hi's, the Xi's and
the Ti1's:

+ {xi, H} = i(Hi - Hi) - (Li-jfi + jT~_1H) (A7)
87 Z-j (=7
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This is a functional relation. In (A7) H and H are functions of the same canonical variables.
This is the main advantage of the Lie transform, to not involve mixed variables. Using the
definition (A2) of Ho, (A7) becomes

aXt aXii-
+ =i(i-Hj- (L-jI +jT-~1 Hj) (A8)

In (A8), Hi is chosen so that no secularity appears in Xi. Once Hi is thus specified, (A8) is
solved for Xi.

At first order in perturbation theory (i=1), (A8) becomes

19X i 8 0 0 - + j+ =l1 - 1 Ja(p) cos(n9 - vir±+i)
'9r 9 =o

100
- Jn(p) cos(n9 - v2r + 02) (A9)

No term leads to secularities in X, when neither v, nor v2 are integers. Thus, we choose
1 = 0. Then, the contribution of the first order to the generating Lie Hamiltonian is

+00 [m( ) cos(mG - vir + w1) Jm(K;) cos(mG - v2 r + 2)

m=-o M - Vi (m - v 2)

To second order, (A8) gives

+ = 2(2 - H 2) - L 1(H1 + H1) (All)

Following the same kind of calculations as in19 we can show that, in order to avoid secularities
in X2, we have to choose

12 = S1 ( ) + S2( ) + 61 cos[2v1 (i - r) + 2 o1]S 3 ( )

+62 cos[2v 2 (8 - r) + 2<p2 ]S 4 ()

+63 cos[(v 1 + v2)(d - r) + W1 + W2 ]S( )
+54 cos[(V1 - v2 )(0 - r) + W1 - p2 ]S 6 (#) (A12)

where 61, 62, J3, and 34, are unity respectively if 2v,, 2v 2 , (vL+ v2), and (vi - v2 ) are integers,
and zero otherwise, and

S2(0) = 1 E (A13)
2xp M=-00 V2- M

1 +00 MjM(r-)J' -(r-0)
S 4 (p) = 1 22-(A14)

S5 (#) = n dmhJ +, 2 -(,3 +- +0 m (I)i+v 2 -(n) (A15)
2 M=-0 2 - M=v 2 -m

= m m 2--+m + ~J2 +mdp (A16)
2 M=- 0 0 Vi - m 2 Pm=-oo V2 M
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where the prime denotes the derivative with respect to the argument of the Bessel function.
Si and S3 are deduced from S2 and S4 by changing v2 into v, and by setting r = 1. The
sums in S2 and S4 (and thus the sums S, and S3 ) can be carried out analytically, following
the same kind of method as the one developed in 19:

S2() = si ) +1(rf)J-1-1(KM - Juri(K#)J--2+1(K;)] (A17)8r sin(7rv2)

S4(?) 8 cot(Ir- 2 ) j 2  -+ k3 2  PJ 2v 2(p)dp (A18)

In the case when n = 1, the sums in S5 and S6 can also be carried out analytically

1; S5 ) = 7r cot(7rv) [421)4 1) -
4

+ f J2 J,1,,(2f cos 0) sin(29) cos(vi - v2 )0 dO (A19)

K = 1, (vli - v2) E g; S6(p) = 7 -2-1M11+1 - J--2+0)J- 1 - 1 (A] (A20)
4 sin(7rv 2)

Hence, up to second order in the waves amplitudes, the Hamiltonian (2) is changed into

ft = 1+ 62 S( ) + 62S 2(3) + e261 cos[2v 1(j - r) + 2V1]S3(#)

+e262 cos[2v 2(j - 7) + 20 2 ]S 4 ( )
+e263 cos[(vI + v2) - )+ P+W2]S( )
+e264 cos[(vi - v2 )(G - r) + p - V2]S6() (A21)

When the calculation developed in this appendix is generalized to the case when the waves
amplitudes are not all the same, one obtains the Hamiltonian (6).

APPENDIX B

In this appendix we show that the term resulting from the non-linear interaction of two
waves may have to be taken into account-when deriving the Hamiltonian obtained after per-
turbation theory, even though the difference between the normalized wave frequencies is not
an exact integer. Moreover, we show that the maximum departure from an integer allowed
to make this non-linear interaction non-perturbative, scales as the product of the two waves
amplitudes. For the sake of simplicity we make all the calculations in the case when there
are only two waves having the same amplitudes in (2), and then generalize the results thus
obtained. Let us denote the difference between the two normalized wave frequencies

vi - v2 = n + Jv (Bi)

where n is an integer and 6v is a small non-zero quantity. In order to find the maximum
value of 6v that makes the result of the non-linear interaction between the two waves be
non-negligible, one has to investigate the domain of validity of the calculation performed
in the sections 4.1 and 4.2. Actually, whatever the value of vi and v2 , one can always
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define a canonical change of variables which, up to second order in the waves amplitudes,
transforms the Hamiltonian (2) into the Hamiltonians (6) or (16). Nevertheless, when JV
goes to zero, while remaining different from zero, the dynamics defined by H * or fhoff)
become irrelevant to describe the dynamics ruled by H.

One of the reasons why this is so is that when 6v is too small, the change of variables
performed to get from H to H2(-) or 4(0! * is no longer one-to-one. Consequently, an orbit
of H * or f of ), calculated in the transformed variables (0, ), does not give any useful
information on an orbit of H, i.e. in the original variables (9, p), as making the inverse
transform (6, ) -+ (9, p) would lead to some unphysical results like an orbit crossing itself
in phase space.

Another reason why ft*" or fo* become irrelevant when 6v -+ 0 is that they were
derived by neglecting the terms of the perturbation series which are of order higher than 2.
However, the amplitudes of those terms increase when 6v decreases while the amplitudes of
ft"O and * remain constant. Hence, when 6v is too small, the second order term is
no longer a good approximation of the perturbation series. Moreover the amplitudes of the
neglected terms increase all the more as their order is high. Hence, when Jv is too small,
the perturbation series may not converge.

We are now going to develop all the previous points, and show that they all lead to a Ju
scaling as 616 2 .

1. One-to-one character of the change of variables:

In this subsection, we calculate the minimum value of Jv such that the change of variables
defined to go from the Hamiltonian (2) to the Hamiltonians (6) or (16) would be one-to-one.
This yields an upper bound of the maximal value of 6v making the result of the non-linear
interaction of the two waves non-negligible. Such a method, based on the one-to-one charac-
ter of a canonical change of variables, has already been used in 2 1 to estimate the threshold
for the destruction of a KAM torus. A similar method has also proven in21 to give the good
scaling, with the wave amplitudes, of the range of interaction in phase velocities of a particle
with an electrostatic wave spectrum, in an unmagnetized plasma.

Let us denote x the Hamiltonian of the Lie transform. If we only go up to second order,
then x = eX, + 62 X2, and the new variables are related to the old ones through

'6X 2 aX2 + 2 (aX, a 2X1 .8X1 12XI (25=0 - -I (B2)

= 1 28 + 2 l +81 89 8- (B3)

x, is defined by

Xi = Jm (0) cos(m9 - vir) 4 E Jmi (0) cos(m9 - v2r) (B4)
mEAi 1- m MEg 2  V2 - M

where A, = K if v, is not an integer, A( = X\{v1} if vi is an integer, and a similar definition
holds for 2. Hence, when Jv -+ 0, i.e. when v, - v2 gets closer and closer to an integer, X,
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remains bounded, while, as we are going to show it, X2 diverges. Therefore, when 6v << 1,
the terms involving X, in (B2) and (B3) can be ignored. In this case, demanding that 1I/8i

and 89/89 have a constant sign amounts to the same condition

~2 
<X

29 1 (B5)

X2 is calculated through the differential equation

- + - = 2H2 - {X1, Hi} - {X, Hi} (B6)

where {.,.} denotes the Poisson bracket. We consider here only the case where neither vi
nor v2 are integer. In this case H = 0. Even if v1 or v2 were an integer, the term {XI, H1 }

would remain bounded when 6v -+ 0 and thus would be negligible in (B5) when 6v << 1.
We only consider here the case when 2v,, 2v2 and vi + v2 are far away from integers, i.e.

that they differ from an integer by an amount larger than 6v. We really focus on the case

when vi - v2 is close to an integer because we showed in sections 4.2. and 4.3. that it is the

only case where there can be acceleration. If vi - v2 is an integer, the terms that give rise

to secularities in X2 are 2H 2 , as calculated in the appendix A. Therefore, if vi - v2 = n+6v,
it is clear that when Su << 1, the terms that make X2 diverge are the ones which appear in

212 when Sv = 0. Namely, when Sv << 1

212 - {Xi, H1} _ 1 +00

cos[n9 - (n + 6v)r] 2 0 J1 - M V1 - 6V - M

1 +00 (1 1
E MJm(r,3)Jm+n(0) - +

2np%, M=-00 \z'2 -m v2 +bv-n)1 +

Sm=- v 1 -- m

1 +0 mJm( ,)Jm+n(5)
JP m=00  2 - m

~ 2S6 (o) (B7)

From (B6) and (B7) one easily finds

X2~ 2S6(o) sin[n9 - (n + 6v)r] (B8)

so that Eq. (B5) now writes

ne2 dS 6(0) cos[n9 - (n + v)r] <1 (B9)
p dO - 6-

This condition is fulfilled whatever 9 and r if

1VI > ,2 dS6o) (B10)
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Hence, the right hand side of (B10) gives an estimate of the maximum value of Jv that
makes the non-linear interaction of the two waves be non-negligible, based on the one-to-one
character of the change of variables.

Let us now consider a more general situation where there are more than two waves in
(2) and where the waves do not all have the same amplitudes. In this case we consider a
given pair of frequencies (v, vm) and still denote v, - v, = n + Jv. If we evaluate X2 when
Jv -+ 0 then we only have to consider the terms involving the non-linear interaction of the
waves I and m. Hence we are back to a problem similar to the two-waves case. Therefore,
(B5) remains valid. The terms involving the non-linear interaction of the waves I and m
are proportional to the product of the amplitudes of these two waves. Hence, in the gen-
eral case, E2 has to be replaced by Elem in (B10), which implies in turn that Jv scales as elem.

2. Estimate of the high order terms of the perturbation series:

Let us now come back to the case of two waves having the same amplitudes and let us
evaluate the amplitudes of the high order terms of the perturbation series when the condi-
tion

liV + 12V2 +13 # 0 (B11)

(li, 12, 13) E Z 3 , is satisfied, where Z is the set of the relative integers. The condition (B11)
corresponds to the most general case. We show here that when Jv goes to zero, while being
different from zero:

H2p+l = 0 (B12)

52p+2 ~ h+ (B13)

X2p+2 ~2p+2(0, (B14)
JZP+1

4(2p+1(6, ,3)
X2p+1 ~ (B15)

where hp and are functions that we will not try to calculate. The Hi's and xi's are obtained
via the differential equation

+ - i, = E{xij, TH} - Tf-_ 1H1  (B16)
j=1

In particular, iHi is just the opposite of the sum of the terms of the right hand side of (B16)
giving rise to secularities in Xi. All the terms of the right-hand side of (B16) are the result
of the i-linear interaction of the terms present in the Hamiltonian (2). Hence they contain
products of i factors of the form cos(mO - vir + W1) or cos(mG - vz2r + V2). This implies
that they will depend on j and r through terms of the form cos['. 1 ej(m,9 - v3yr + po)],
where ej = ±1, mT E Z, Vj = Vi1,2 , and wi = oi,2 . These terms yield secularities in Xi if

eZ (my - i') = 0 (B17)
j=1
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It is clear that when i is odd, and when (B11) is satisfied, (B17) can never be fulfilled.
Consequently, H2p+1 = 0, which proves (B12).

When i is even, because of (B11), (B17) is fulfilled if and only if Ei>1 6jv 3 = i _ y =
0, which occurs when Ej=l = 0 and when all the vj's are the same. Hence, the H2,'s only
depend on p.

Let us now prove (B13), (B14) and .(B15) by induction. The calculation of 21, f 2 , and

X2 already proved that these equations are true for p = 0. Let us suppose that they are
true up to a given order p. Then, for any even j such that 1 < j < 2i +3, {X2p+4-j, } ~
{2p+4-j(9, ,), hj( )}/vP+1 , while if j is odd {X2p+2-j, H3 } = 0. Moreover, T2N H1 writes
as a sum of Poisson brackets of the form:

{Xmi IXm 2 , ---, {Xmi, H 1}, ...}, where 1 mj = 2p + 3, and each mj is larger than 1. Using
(B14) and (B15) it is easy to show that such a Poisson bracket scales as 1/3v*, with 0 < a <
p + 1, and a = p + 1 when only one of the mj's is odd. Hence, when Jv -+ 0, T2l 3 H scales
as 1/6vP+1. Therefore, the right hand side of (B16), when i = 2p + 4, scales as 1/9vP+1.
Similarly, when i = 2p + 3 in (B16), the right hand side of this equation also scales as
1/6ivP+. As (2p+4)H2p+ 4 is only the opposite of the sum of the terms of the right hand side
of (B16) that could give rise to secularities in X2p+4, and as we already showed that H 2p+ 4
only depends on , we readily deduce (B13).

As already mentioned, the right hand side of (B16) depends on j and r through terms
of the form cos[Z .1 ej(mjj - vjr + wj)]. When i is even, when half of the vj's are such
that vj = vi, and when there is the same number of Es's such that ej = +1 and vj = v,

as the number of ej's such that-Ej = -1 and vz = v2 , then E_= u = ejilj i/2 - v 2) =

Ej-iej (n + Jv). When, moreover, the mj's are such that i/2m = ein, then

cos[E>= 1 e (m30 - vyr + pO)] = cos [Ej2l esn(j - r + pj) - j v e 6r]. When solving for
Xt, such a cosine yields in Xi the term
- sin [E =1 n(9 - r + po) - I 6vr / E;=i ej6v. Therefore, if i = 2p+4, as the right hand

side of (B16) scales as 1/6vp+1, X2p+4 scales as 1/69p+2, which proves (B14).
If i is odd, then when solving (B16) for Xi, each cos[E)'1-j(mjO - vjr + Wj)] yields

sin[. 1Ej1(mO - vIj7 + Wj)J/E =1ej(mj - vj) which has no singularity when Jv -+ 0.
Therefore, X2p+3 scales with Ju exactly as the right hand side of (B16), i.e. as 1/6vp+1,
which proves (B15).

Therefore, the perturbation series for H writes

H, ~VI (-) h2i( (B18)

It is clear from (B18) that when Jv -+ 0, f can no longer be approximated by e2 A 2 . It is
also clear from (B18) that the maximum value of Jv requiring the inclusion of high order
terms in the evaluation of H scales as 62 . In fact, demanding that 62 f 2 would be larger than
a finite number of the following terms of the perturbation series would give the following
condition on 3v

we > n 2F() ' (B19)

where F(p) is the sum of the corresponding h2j's. This condition is similar to (B10).
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Actually, if the radius of convergence R(#) of (B18) is finite, then this series diverges
when Jv is too small. In this case, a perturbation analysis cannot give any indication on
the dynamics defined by (2). In particular, the Hamiltonians (6) or (16) do not give a good
approximation of the dynamics of the Hamiltonian (2). The series (B18) is convergent if

6V > e2 /R( ) (B20)

which is of the form (B10) or (B19).
Let us note here that if the condition (B11) is not fulfilled, then it can be proven in

a similar way as for the evaluation of H2, that H2p+ 1 ~ h2p+l (9, 3J)/6vP. Therefore, if the
condition (B11) is not fulfilled, the perturbation series writes

H = ou Eh2j(O, #) + eE h2j+1(6, #)(B )
j=1 j=0

and can thus be-seen as a sum of 2 series. If these series have 2 different radii of convergence,
R 1 and R 2 , then the perturbation series converges only if v > e2 /R where R = min(R1, R 2 ).
Hence, the scaling e2 is still valid.

Let us now consider the more general case vhen there are more than two waves in (2)
and when the waves do not all have the same amplitude. If we consider a given pair of
frequencies (vi, vm) and denote v, - vm = n + Jv, then, when deriving the high order terms
of the perturbation series in the limit when Ju -+ 0, one only has to take into account the
non-linear interaction of the waves 1 and m. Hence, as in the section 1 of this appendix, one
finds that in the general case 6 2 has to be replaced by EIem in (B21). Hence, once again, we
find that the maximum value of Jv scales as em.
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FIGURE CAPTIONS

Fig. 1: Poincar6 section of the dynamics defined by the Hamiltonian (2) for the case of one
off-resonance wave, v = 9.25, 6 = 3.42, and 2 initial conditions: 1(0) = 4.125, 0(0) = 0.947r,
and 1(0) = 32 and 9(0) = 0.947r. The total time of integration corresponds to 8000 cyclotron
periods.

Fig. 2: Poincar6 section of the dynamics defined by the Hamiltonian (2) for the case of
one on-resonance wave, v = 9, e = 3.24, and for the same initial conditions and the same
time of integration as for Fig. 1.

Fig. 3: Poincar6 section of the dynamics defined by the Hamiltonian (2) in the case of
two on-resonance waves, v, = 140, v2 = 139, 6l = E2 = 98. The initial condition is
p(O) = 69, 9(0) = 7r/2.

Fig. 4: Orbit obtained from second order perturbation theory for the same parameters
as in Fig. 3.

Fig. 5: Position of the first zero of the 7t' order Taylor series expansion of S6 ( ) as a
function of n when Int(vi) = 140 and v2 = vi - 1.

Fig. 6: Maximum and minimum values of the normalized Larmor radius of the orbits
of fj(off), for the initial condition po = 53, 4o = 1.57, versus K for two waves such that
Int(vj) = 140 and v2 = vi - 1.

Fig. 7: Maximum and minimum values of the normalized Larmor radius of the orbits of
foff, for the initial condition Ao = 5, io = 1, versus K for two waves such that Int(vi) = 140
and v2 = i - 1.

Fig. 8: Maximum values of the normalized Larmor radius of the orbits of H,Off) for the
initial condition 6o = 10, jo = 0.4, versus r, for two waves such that Int(vi) = 140 and
v2 = vi - 2 (solid line) and Int(vi) = 140 and v2 = Zi - 1 (dashed line).

Fig. 9: Maximum values of the normalized Larmor radius of the orbits of A, for the
initial condition 0 = 80, t = 0.4, versus K, for two waves such that Int(vi) = 140 and

V2 = V1 - 10.

Fig. 10: Maximum values of the normalized Larmor radius of the orbits of H2*'f, for
the initial condition Ao = 20, io = 0.4, versus K, for two waves such that Int(vi) = 140 and
V2= V- 10.

Fig. 11: Maximum values of the normalized Larmor radius of the orbits of f * , for the
initial condition po = 50 ,o = 7r/2, versus K, for two waves quch that ni = 140 and n2 = 139
and el = E2 = 15.
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Fig. 12: Poincar6 section of the dynamics defined by (2) for six waves with frequencies
such that v, = 30, v 2 = 29, v3 = 31.75, v4 = 31.25, v5 = 30.5, v6 = 29.25; the normalized
wavenumbers are ni = 1, K2 = 0.98, r 3 = 1, 14 = 1, r,5 = 1, r 6 = 0.98. All the waves have
the same amplitude e = 4.5, and all have a zero initial phase: pj = 0. The initial condition
is po = 5, (Do = 7r/2.

Fig. 13: Orbit obtained from second order perturbation theory for the same parameters
as in Fig. 12.

Fig. 14: Orbit obtained from second order perturbation theory for the same parameters
as in Fig. 12 and 13, but with initial random phases.

Fig. 15: Maximum and minimum values of the normalized Larmor radius of the orbits
of ft for the initial condition o = 10, <io = 0.2, versus k2/k 1 for five waves such that
v, = 141 and v2 = 140, v3 = 139, v4 = 143.5, v5 = 140.5, having all the same amplitudes

and the same initial phases.

Fig. 16: Maximum and minimum values of the normalized Larmor radius of the orbits

of ft for the initial condition Oo = 10, o = 0.2, versus k2/k 1 for six waves such that

vr = 141 and v2 = 140, v3 = 140.5, v4 = 138.5, v5 = 143.2, v6 = 140.2, having all the same
amplitudes while the initial phases are chosen randomly.

Fig. 17: Poincar6 section of the dynamics defined by the Hamiltonian (2) for the case

of two on-resonance waves, v1 = 9, V2 = 10, El = 62 = 3.24, x = 1. The initial condition

is 1(0) = 32 and 0(0) = 0.947r. The total time of integration corresponds to 8000 cyclotron
periods.

Fig. 18: Same as Fig. 17 except for the wave amplitudes: 61 = 62 = 0.324.

Fig. 19: Orbit solution of H = const for the same parameters as in Fig. 18.

Fig. 20: Same as Fig. 1 but for an amplitude corresponding to e = 0.346 and only one
initial condition: 1(0) = 32 and 0(0) = 0.941r..

Fig. 21: Solution of fl = const for different initial phase' conditions, when the constant

is the same as in Fig. 19.

Fig. 22: Same as Fig. 17 and 18 but for el = 62 = 32.4.

Fig. 23: Same as Fig. 20 but for e = 34.6.

Fig. 24: Orbit solutions for H = const for two waves having the same amplitude and

wavenumbers, and with nj = 9, n2 = 11. The constant corresponds to an initial condition
such that 1(0) = 32 and $(0) = 0.2.
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Fig. 25: Poincar6 section of the dynamics defined by (2) in the case of two waves such
that n, = 9, n2 = 11, 61 = E2 = 0.324, and having the same wavenumbers. The initial
condition corresponds to 1(0) = 32 and 0 = .47r. The time of integration corresponds to
8000 cyclotron periods.

Fig. 26: Same as Fig. 25 but for e, = E2 = 3.24.

Fig. 27: Solution of f = C for two on-resonance waves such that n, = 9, n 2 = 10,
61 = E2 = 3.24, k, = 1 and k2 = 0.9. The constant C corresponds to an initial condition
such that 1(0) = 32 and 4(0) = 0.947r.

Fig. 28: Poincar6 section of the dynamics defined by (2) for two on-resonance waves having
the same characteristics as in Fig. 27, and for the same initial condition as in Fig. 27.

Fig. 29: Solution of H = const for two on-resonance waves such that n, = 9, n 2 = 10,
61 = E2 = 3.24, k, = 1 and k2 = 1/v'Z. The constant corresponds to an initial condition
such that 1(0) = 32 and t1(0) = 0.947r.

Fig. 30: Poincar4 section of the dynamics defined by (2) for two on-resonance waves having
the same characteristics as in Fig. 29, and for the same initial condition as in Fig. 29.

Fig. 31: Poincar6 section of the dynamics defined by (2) for two on-resonance waves such
that n, = 9, n2 = 10, e1 =2 = 3.24, ki = 1 and k2 = 0.85. The initial condition is 1(0) = 32
and l(0) = 0.

Fig. 32: Solution of H = const for four on-resonance waves such that ni = 9, n 2 = 10,
n3 = 11, n4 = 12, e, = 3.24, 02 = 3.078, 63 = 3.321, 64 = 3.159, ki = 1 and k2 = 0.95,
k3 = 1.02, k4 = 0.98. The constant corresponds to an initial condition such that 1(0) = 32
and 4(0) = 0.947r.

Fig. 33: Poincar6 section of the dynamics defined by (2) for the same parameters as in
Fig. 32.

Fig. 34: Poincar4 section of the dynamics defined by (2) for four waves such that n, = 9,
n2 = 10, n3 = 11, n4 = 12, el = 62 = E3 = E4 = 3.24, kj = 1, k2 = 0.85, k3 = 0.7, k4 = 0.6.
The initial condition is 1(0) = 31.5, 0(0) = 0.

Fig. 35: 1(r) as a function of O(r) for values of T which are multiples of 21r in the case
of two waves such ei = E2 = 0.81, kj = k2, vi = 9, v2 = 10.03 (this is not a Poincarx
section). The initial condition is 1(0) = 32, 9(0) = .77r.

Fig. 36: Poincar6 section of the dynamics defined by (2) in the case of three waves such that
V1 = 9, v2 = 10, v3 = 8-.25, El = 62 = 0.2592, e3 = 1.62, ki = k2 = k3. The initial condition
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is 1(0) = 32, 0(0) = .77r.

Fig. 37: Same as Fig. 36 except for E3 = 1.782.
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