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ABSTRACT

Recent interest in high frequency resonant converters has prompted
this exploration of aspects that have not previously been studied
carefully. More specifically, this thesis examines possible methods for
deriving resonant converter topologies and show how to develop dynamic
models for converter behavior, demonstrates the design and
implementation of control schemes based on these models.

Systematic methodologies for deriving resonant converter topologies
are proposed. These allow the synthesis of existing and new converters.
One method proposes a switching cell from which some basic topologies
are derived. A second method uses the structural symmetry of resonant
converters to derive other topologies. Duality is used to complete the
set of resonant converter topologies obtained by the first two methods.
Relationships between dual converters are discussed, drawing attention
to the sort of implementation differences that arise.

Sampled-data models to describe the dynamics large signals and of
small perturbations away from a cyclic steady state are developed.
Associated transfer functions are obtained. Application of the model is
illustrated by correlating the analysis with simulation results obtained
for a series resonant dc-dc converter. The modeling technique used has
also been generalized to include other power electronic circuits.

A discrete microprocessor-based controller designed using the above
dynamic model has been built and tested on a simulation of a series
resonant dc-dc converter, set up on MIT's Parity Simulator. The control
methods implemented are state feedback and periodic output feedback,
each designed to achieve a specified set of closed-loop poles. Two
implementations of the controller have been tested, one using the the
Parity Simulator Generalized Controller and the other using a Compupro
microcomputer.

Thesis Co-supervisors:
Dr. John G. Kassakian
Professor of Electrical Engineering

Dr. George C. Verghese
Associate Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

(1) Background

Resonant converters have been used since the days of vacuum tubes

[1] - [4]. The development of semiconductor power switches, such as

transistors and thyristors, has led to better performance than was

possible with vacuum tubes [5] - [51]. In the past two decades,

resonant converters have normally been associated with thyristor

converters. This is because the resonant load can be used to commutate

the thyristor, thereby eliminating the need for an additional

commutation circuit. The application of resonant converters, using tubes

or thyristors, has until recently been limited to high power areas such

as:

i) ultrasonic cleaning, welding and mixing equipment using either

magnetostrictive or electrostrictive transducers,

(ii) induction heating and melting,

(iii) VHF radio transmitters.

Advances in technology, design and manufacturing of the power

semiconductor switches have reduced switching losses and increased

speed. In particular, the advent of the power MOSFET has made high

frequency switching (100 kHz or higher) increasingly attractive to

circuit designers. In recent years considerable progress has been made

in the design of high frequency resonant converters, using power

MOSFETS. New applications have evolved, such as resonant dc-dc

converters in power supplies for computers, telephone equipment or

battery chargers.
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Many types of resonant converters have been treated in the

literature [1]-[51]. The analysis and development of these converters

have focused on two areas:

(i) Analyzing a specific converter and deriving design nomograms

using some normalized parameters such as: the output power

range, frequency range, distortion factor on output voltage and

current, efficiency, voltage and current ratings of circuit

components, and weight and size of the converter [1] - [37].

(ii) Overcoming the limitations of the thyristor turn-off time at

high frequency. In this area, thyristor inverter circuits have

been modified to perform at frequencies higher than those set

by the thyristor turn-off time. Many authors have successfully

applied the technique of time-sharing to some conventional

thyristor power inverters and developed new time-sharing

inverter technology to overcome the operating limitations of

thyristor turn-off time [38]-[511.

(2) Goals of this thesis

The purpose of this thesis is to explore three areas that have not

been studied carefully in the field of resonant converters. These are

the areas of topology, dynamic modeling and control. Most of the

previous work done in these areas has focused on switching dc-dc

converters rather than resonant converters[55] - [59].

In the area of topology, there is a need to establish some

methodologies to systematically develop resonant converter topologies.

Such a need arises because of the lossness of existing classifications

of resonant converters. This thesis begins an effort towards such a

11



classification.

In the area of dynamic modeling of resonant converters, very little

work has been done. King and Stuart [78] have considered large signal

modeling of a series resonant converter. De Haan has analyzed the

dynamics of an integral pulse module for a series resonant converter

[79]. Dynamic modeling of resonant converters has also been treated in

the work of Vorperian [72]. Our work has been carried out independently

of these, and has addressed dynamic models of general circuits as well,

see [61].

Dynamic models are necessary in the design of feedback controllers

for resonant converters. Digital control schemes based on a

sampled-data model are designed implemented and tested. The effects of

computational delay in digital controller on the closed loop dynamics

are also investigated.

(3) Thesis Outline

Chapter II presents an overview of resonant converters. The

structure and modes of operation of a resonant converter are first

duscussed. An overview of conventional resonant converters that have

been presented in the literature is then given. Some of the limitations

presented by conventional resonant converters are noted. In particular,

the limitation imposed by the thyristor turn-off time at high frequency

operation is discussed, and some of the techniques, such as time-sharing

inverters, used to overcome this limitation are presented.

Chapter III presents three methodologies that may be used to

synthesize resonant converter topologies. The first methodology defines

a switching cell from which the basic resonant converter topologies are

derived. These basic topologies are the asymmetric topology, the
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symmetric full bridge and symmetric half bridge topologies. The second

methodology explores the symmetry structure of a resonant converter to

show how some existing and new topologies may be generated. The third

methodology uses duality to derive other topologies and examines some of

the relationships between dual converters. Some of the factors that

enter this examination are the types of switch and modes of operation in

dual converters.

Chapter IV addresses the issue of dynamic modeling of resonant

converters. Some simulation results, obtained using the MIT Parity

Simulator [69] and providing motivation to study the dynamics of

resonant converters are discussed. Mathematical models that describe

both the large-signal dynamics and the dynamics of small perturbations

about cyclic steady state operation are developed. Some of the

analytical results obtained are compared with the simulation results.

Issues such as numeric and symbolic analysis, their automatability, and

computation of sensitivity to circuit parameters are also discussed.

Chapter V discusses the closed loop control of resonant converters.

In particular, the methods of state feedback and periodic output

feedback are used with the model obtained in Chapter IV to control a

series resonant dc-dc converter. The control is implemented in two

ways. One uses the Parity Simulator generalized controller [80] and the

other uses a Compupro microcomputer. Experimental results are

presented.

Chapter VI gives a summary, conclusions and suggested future work.
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CHAPTER II

OVERVIEW OF RESONANT CONVERTERS

(1) Introduction

In this chapter we shall describe resonant converters and give a

summary of the categories into which research on resonant converters has

fallen. We shall also define topics where more research needs to be

done.

Research on resonant converters has focused on the development of

thyristor inverters to supply high power at high frequency for induction

heating, ultrasonic cleaning and welding, and low frequency radio

transmitters. More recently, there is an increasing use of resonant

converters in low power, high frequency applications, such as dc-dc

power supplies. The thyristor has been used more than other switching

devices in high power applications. There are two main reasons for

this. First, the thyristor can handle high power, when compared with

other switching devices. Secondly, since the thyristor turns off when

its current goes to zero, the principle of natural commutation on which

many resonant converters work turns off the thyristor without the need

for an additional commutation circuit.

The analysis and development of resonant converters have emphasized

two areas:

(i) Deriving design equations using some normalized parameters such

as output power range, frequency of operation, converter

efficiency and rating of components [1I-[371.

(ii) Overcoming the limitation imposed by the thyristor turn-off

time at high frequencies by modifying resonant converters to

perform at frequencies higher than those set by the thyristor
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turn-off time [38] - [50].

Research in the first area has been mainly on single-stage

resonant converters (conventional resonant converters). Research in the

second area has led to the development of multi-stage resonant

converters (time-sharing resonant converters). This chapter will

discuss these two areas in detail, and will conclude with directions for

further research.

(2) Resonant Converters: Structure and Modes of Operation

(A) Structure

Resonant converters (or inverters) are switched power circuits that

generate nearly sinusoidal output voltages and currents from a dc

supply. Typically, switches connect either a constant voltage across a

series resonant load or a constant current through a parallel resonant

load, as Fig. 2-la shows. The switches S1 and S 2 operate alternately at

a switching frequency f., one pair closing the instant the other opens.

In voltage-fed inverters, the switches experience square waves of

constant amplitude voltage, and pass half sine waves of current. The

impedance of the combined series resonant load as a function of the

switching frequency are shown in Fig. 2-lb. This impedance is minimum

when the switching frequency is equal to the resonant frequency fr(=1 /(2

TiMM). At this point the LC filter has zero impedance, and the total

impedance is equal to the load resistance. By varying the switching

frequency about the resonant frequency, the LC filter will not have zero

impedance, and depending on the ratio (f/fr) it looks either like a

small capacitor or a small inductor. This additional impedance will

divide the input voltage between the LC filter and the load resistor.

Therefore by varying the ratio (f/fr) the output load voltage can be

15



controlled. Similar discussion applies for a parallel resonant load

with an input current source. Typical structure for a current-fed

converter is shown in Fig. 2-2. The switches pass square waves of

constant amplitude current and experience half sine waves of voltage.

Again, the ratio (f/fr) is used to control the output current.

Vdc

S I

z

C 'R L

1

S2

I I

(a)

log z 4

log, R

-. 9
1~ f

I log I f r og s
(b)

Fig. 2-1 A series voltage-fed resonant converter and its
impedance-frequency characteristics
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S
1  

R S 2

C

dc

L

SiS2 1

(a)

log y

lo1
R ---------

log-fr log fs

(b)

Fig. 2-2 A parallel current-fed resonant converter and its
admittance-frequency characteristics

A resonant converter usually has three parts : a source, a load

(including the resonant tank circuit) and switches. The source can be

either a voltage or a current source. It connects to the load in either

a symmetric configuration or asymmetric configuration.
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The symmetric configuration can be either a full bridge [8](a

single source connected to the load via four switches) or a half bridge

(two sources connected to the load via two switches). The converters

shown in Figs. 2-1 and 2-2 are both full bridge connections.

Fig. 2-3a shows a half bridge configuration and Fig. 2-3b shows an

asymmetric configuration.

Vdc Si

Vd

S2

Vd9

(a) Half bridge connection

Si,

(b) Asymmetric connection

Fig. 2-3 Symmetric half bridge and asymmetric
a resonant converter

configurations of
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The two voltage sources in the half bridge connection can be obtained by

using: two independent sources [17]; a single source split by two

capacitors, in case of a voltage source; or a divided-inductor in case

of a current source [5]. The capacitors that split the voltage source

and the inductor that splits the current source are sometimes used as

part of the tuned circuit.

Fig. 2-4 shows two half bridge connections using a single source.

The voltage, current and hence the energy storage and rating of the

capacitors in Fig. 2-4a is different from that in Fig. 2-3a.

Three types of loads, usually associated with thyristor inverters

for induction heating, are commonly considered in the literature: a

series-compensated (s.c) load [5], a parallel-compensated (p.c) load

[9], or a combined series-parallel-compensated (s.p.c) load [10]. Fig.

2-5 shows the three types. The "series" and "parallel" refer to the way

the tuning capacitor is connected to the tuning inductor. The word

"compensated" is introduced because capacitors are usually used with

induction heating loads, which are usually inductive, to improve the

power factor. There is confusion in the literature as to the use of the

labels series and parallel. Some authors use these to refer to the way

the switch is connected, while others use them to define the resonant

load type. It is hoped that the discussion of resonant converter

topologies in Chapter III will clarify the terminology.

The switch connections commonly considered are of two types: a

basic switch (a thyristor, a transistor or a power MOSFET)[5],[12]. and

a reverse switch (any of the above switches with an anti-parallel diode

across it)[81,[14],[17].
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Fig. 2-4 Half bridge connections using a single source
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T
(a) S. C. load (b) P. C. load

I I1

(c) S. P. C. load

Fig. 2-5 Types of resonant load presented in the literature
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Fig. 2-6 shows the two types of switch. Better names for these switch

connections are unidirectional current switch (for the basic switch)

and bidirectional current switch (for the reverse switch). This allows

a complete definition of switch types by introducing a bidirectional

voltage switch [16] (the dual of the reverse switch of Fig. 2-6b), as

shown in Fig. 2-6c. A diode is added in series with either a bipolar or

a power MOSFET to support negative voltage. Thyristors are two of types:

one type supports bidirectional voltage and no series diode is needed;

the other type is designed so that it only supports a small negative

voltage and therefore a series diode is needed for bidirectional

voltage.

J.1-
(a)basic switch (b)reverse switch

(c) Bidirectional voltage switch

Fig. 2-6 Types of switch used in resonant converters
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These classifications of source, load and switch form a basis for

categorizing or naming the different resonant converters that have been

discussed in the literature. Fig. 2-7 lays out a summary of the

classifications that we have discussed. These topologies will be

discussed further when we discuss the synthesis of resonant converters

in Chapter III.

V. F.

A. C.

C. F.

I
H. B.

I

F. B.

U. S. B. S.

I
S. C.

P
S. P. C.

I
P. C.

V. F. = Voltage Fed C. F. = Current Fed
A. C. = Asymmetric connection F. B. = Full Bridge

H. B. = Half Bridge U. S. = Unidirectional Switch

B. S. = Bidirectional Switch S. C. = Series Compensated

P. C. = Parallel Compensated S. P. C. = Series Parallel

Compensated

Fig. 2-7 A tree diagram showing resonant converter types
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(B) Modes of Operation

The mode of operation of a converter is its switching sequence or

the switching configurations that occur during a switching cycle. These

depend on the load and the ratio of the switch drive frequency (f a) to

the resonant frequency (fr). Depending on this ratio, the no load

operation has one of the following modes [12]:

(i) Natural commutation (discontinuous) mode, when (fs < 1 for

a unidirectional current switch inverter and (fs/f) < (1/2)

for a bidirectional current switch inverter. In this mode the

switches are naturally commutated.

(ii) Critical commutation mode, when (f 5 /fr) = 1 for a

unidirectional current switch inverter and (f/fr) = (1/2) for

a bidirectional current switch inverter. This mode of

operation makes the boundary between the natural commutation

mode and the overlapping mode.

(iii) Overlapping (continuous) mode, where (fS /r) > 1 for a basic

switch inverter and (fS/fr) > (1/2) for a bidirectional current

switch inverter. In this mode the switches are commutated

either by forced commutation or by an external commutation

circuit.

(3) Conventional Resonant Converters

The name conventional converter (or inverter) applies to any of the

structures given in Fig. 2-7. The term "conventional" is used to

differentiate single-stage resonant converters from their corresponding

multistage "time-sharing" converters. In the coming sections we shall

discuss the different conventional resonant converters presented in the
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literature. We shall consider the work done on voltage-fed converters

first, and then discuss current-fed resonant converters. The basic

operation of these converters will not be described, but the main

features of each converter will be presented. Finally we shall discuss

some of the limitations of conventional resonant converters. More

specifically, the limitation imposed by the thyristor turn-off time on

the operating frequency of conventional resonant converters will be

discussed. This leads us to a discussion of time-sharing techniques

that modify conventional converters to operate at a frequency higher

than that set by the turn-off time of a thyristor.

Research on conventional resonant converters emphasizes the

following areas:

(i) Analysis of steady state operation. Investigators analyze a

specific converter and derive the equations for the allowable

operating range of output power and frequency, allowable

thyristor turn-off time and stresses, rating and design of

components (capacitors, inductors, etc) as a function of the

ratio (f5/fr) and the Q-factor or the characteristic impedance

of the resonant tank circuit [1]-[15]. Each author has

analyzed a specific converter and solved the state equations to

obtain the steady state operation of the converter. Each

analysis has its own normalized parameters and uses certain

assumptions and approximations regarding ideality and

nonideality of components, presence of certain parasitics or

assumption of high Q.

(ii) Development of new converter topologies. An existing converter

is modified to obtain better load characteristics, or new
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devices are used in an existing converter [16]-[23. We shall

discuss in a later section how such modifications of existing

converters may be carried out.

(iii) Design of protective circuits, development of starting methods

or digital timing circuits for controlling the switches

[241- [27].

(iv) Analysis of dc-dc resonant converters [28]-[34].

(v) Reduction of weight, size and cost of equipment [35].

(vi) Design of off-line ac-ac resonant converters, where a high

frequency output voltage is obtained directly from the 60 Hz

line without the need for a rectifier stage [361. [37].

The following two sections give a detailed literature review of

work on voltage-fed and current-fed converters.

(A) Voltage-fed resonant converters

The literature on voltage-fed converters can be divided into two

application areas. The first deals with high power (on the order of

hundreds of kilowatts). high frequency (10 kHz - 100 kHz) applications

such as induction heating, ultrasonic cleaning and low frequency radio

transmitters. These are mainly thyristor inverters. The second deals

with low power (a few watts to one kilowatt), high frequency (100 kHz or

higher) applications such as resonant dc-dc converters (power supplies

for computers, telephone equipment or battery chargers). The devices

used here are mostly bipolar power transistors and power MOSFETs. Most

of the research done on resonant converters in the 1960's and early

1970's was in the first area. Work in the second area has increased

recently because of the development of fully controlled switches that

can operate in the megahertz range. The next two subsections review
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some resonant converters that have been presented in the literature and

discuss some of the issues studied in the research on each of them.

(i) High power, high frequency applications

Most of the research done on voltage-fed inverters falls into the

first of the above areas [1]-[15]. The switch used in these inverters

is generally a thyristor , and the mode of operation analyzed is usually

the natural commutation mode. Issues presented in the analysis of each

inverter generally fall into the calculation of the turn-off time and

the voltage and current ratings of the thyristor and/or the ratings of

the tuning elements for certain power and frequency specifications.

Fig. 2-8 shows a voltage-fed, half bridge, unidirectional switch

inverter with a series compensated load. Thompson [5] has analyzed this

inverter and compared it with the asymmetric inverter of Fig. 2-2. In

his analysis, he shows that using two inductors in this inverter gives

better performance than using a single inductor in the topology of Fig.

2-2. The use of two inductors reduces the delay between the firing

instant of the thyristors, and lovers their dv/dt. The ratings of the

devices do not increase. Also, in this inverter, the capacitors provide

both a split source and a resonant action. Thompson has also analyzed

the effect of coupling the two inductors. He shows that the turn-off

time of the thyristor increases as the coupling is increased, and the

size and cost of the core are increased; however, increasing coupling

increases the voltage rating on the thyristor.

Mapham [17] points out that the inverter analyzed by Thompson has

poor regulation and exhibits commutation failure at light loads, and is

very sensitive to reactive loads. Mapham suggested an inverter, shown

in Fig. 2-9, that overcomes these limitations.
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Fig. 2-8 Voltage-fed, half bridge, unidirectional switch,
series load inverter analyzed by Thompson [5]

Fig. 2-9 Voltage-fed, half bridge, bidirectional current
switch inverter analyzed by Mapham [17]
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The capacitors across the source, in the Mapham inverter, are used only

to obtain a split supply, and they are made very large compared to the

resonant capacitor (across the resistor). The inverter uses a

bidirectional current switch. The reverse voltage across the thyristor

is equal to the forward voltage drop of the diode (on the order of one

volt). Therefore, the thyristor need not to support a large reverse

voltage. In fact, a new semiconductor device known as the Asymmetrical

Silicon Controlled Rectifier (ASCR) [23] can be effectively used. The

device is manufactured to be faster than a normal SCR by sacrificing

reverse blocking voltage for speed. Hence the Mapham inverter not only

has good regulation, but also can operate at a higher frequency than

that of a basic switch inverter.

Revankar and Karade [8] have analyzed the voltage-fed, full

bridge, bidirectional switch, series compensated load inverter, shown in

Fig. 2-10. Their analysis shows that the inverter has a larger

operating range of Q than the basic switch inverter. It also shows that

the voltage across the tuning capacitor is higher for this inverter than

for its dual current-fed inverter presented by Revankar and Gadag

[6] (which will be discussed in the current-fed inverters section), a

result that has also been reported by Kasturi [18].

Roda and Revankar [9]-[10] have analyzed the voltage-fed, full

bridge, unidirectional switch inverter for both parallel and

series-parallel tuned loads. Fig. 2-11 shows the two inverters. The

analysis considers the operation of the inverters in the critical and

the natural commutation modes. The equivalent load circuit for the

inverter is designed to be capacitive at the operating frequency and a

series-tuning inductor (Ld) is added in series with the dc supply.
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Fig. 2-10 Voltage-fed, full bridge, bidirectional current switch,
series load inverter analyzed by Revankar and Karade [8]
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Ld

+

(a) P. C. load

Ld

(b) S. P. C. load

Fig. 2-11 Voltage-fed, full-bridge, unidirectional
switch resonant inverters
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There have been some attempts to modify certain inverter topologies

and compare performance of the original inverter with its modification.

Viet-son et al. [15] suggested the modification in Fig. 2-12 of the

series load inverter of Fig. 2-8 discussed earlier by Thompson [5].

+L

R Ls2

Fig 2-12 Modified, voltage-fed, full bridge series load
inverter analyzed by Viet-Son et al [15]

The load R is put outside the bridge, and the inductor LS2 is added to

control the dv/dt on the thyristor. More specifically their results

show that the ratio (Ls2/(Lsl+Ls2)) can be chosen to make the dv/dt of

this inverter lower than that of a bridge inverter with the load

connected inside the bridge. One disadvantage of this inverter is the

increase in the number of reactive components and the size of the

inverter.
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Nakaoka et al. [12]-[14] have analyzed the voltage-fed, half

bridge. series load inverter for unidirectional and bidirectional

current switch. They compare the two inverters in overlapping

commutation mode. The maximum voltage and current of the thyristor in a

the bidirectional current switch inverter are lower than those of the

unidirectional switch inverter even if the load is shorted. Moreover.

the initial rate of change of the thyristor current (di/dt) for the

bidirectional current switch inverter does not vary over a wide range of

load and frequency, and the thyristor commutation time margin is higher

than that of the unidirectional switch.

(ii) Low power, high frequency applications

One recent application of resonant converters at low power and high

frequency is dc-dc converters. In this area high power is typically not

needed, and the switches mostly used are bipolar power transistors and

power MOSFETs. This application has attracted many researchers, driven

by the development in the manufacturing of power devices that can switch

at frequencies in the megahertz range. Operation at such high

frequencies reduces the size and weight of the converter considerably,

since the values of the resonant tank circuit components vary inversely

with the resonant frequency.

Two voltage-fed resonant dc-dc converters have been analyzed in

some detail in the literature: the series [281-[33] and parallel [34].

[62], [77] resonant converters shown in Fig. 2-13 and 2-14 respectively.

In the series resonant converter the inductor current is rectified, and

the output of the rectifier approximates a voltage source. In the

parallel converter the capacitor voltage is rectified and load on the

output of the rectifier approximates a current source. In the analysis
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the authors of the above papers have developed static models for the

converters. The emphasis is on finding the variation of the conversion

ratio (ratio of the output voltage to the input voltage) as a function

of f /fr. Such a function is very complicated to find when compared

with the analysis of switching dc-dc converters [33]. Dynamic modeling

of the two converters has been discussed in [62] and [72].

++ 1+
+

(a) Real component circuit

Fd

+

(b) Idealized component circuit

Fig. 2-13 Voltage-fed series resonant dc-dc converter
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(a) Real component circuit
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(b) Idealized component circuit

Fig. 2-14 Voltage-fed parallel resonant dc-dc converter
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(B) Current-fed resonant converters

Current-fed resonant converters have been analyzed by some authors

for the same applications that we considered when discussing voltage-fed

resonant inverters (mostly induction heating applications). A true

current source is difficult to build, but it can be approximated by a

voltage source in series with a large smoothing inductor.

Revankar and Gadag [6] have analyzed the current-fed, full bridge,

unidirectional current switch inverter for a parallel compensated load,

as shown in Fig. 2-15.

Vdc

Fig. 2-15 Current-fed, full bridge, unidirectional switch,
parallel load inverter analyzed by Revankar and Gadag [6]

As mentioned earlier, the voltage source Vdc and the inductance Ld are

used to realize a current source. The inductor L. represents a

parasitic inductance with the load. This inverter is the dual of the

inverter analyzed earlier by Thompson [5]. and it would have been better

if the analysis done by the authors of [6] had included a comparison of
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the two inverters. For instance, they have shown that the thyristor

turn-off time decreases with an increase in the load Q factor, a result

opposite to what Thompson found. Such a result is valuable when

considering duality relationships between inverters. Revankar and Gadag

[7] have also analyzed the above current-fed inverter for a

series-parallel compensated load, shown in Fig. 2-16. They have shown

that the thyristor turn off time increases as the series capacitance

(Cs) decreases. This effect allows the inverter to operate at a higher

frequency than is possible with the parallel load, but it increases the

maximum voltage across the thyristor.

Vdc

Fig. 2-16 Current-fed, full bridge, unidirectional switch,
series-parallel compensated loadinverter analyzed in [7]

Pelley [26] has discussed starting methods, and developed timing

control for the current-fed, full bridge, unidirectional switch

inverters for the parallel compensated load (Fig. 2-15) and the series

parallel compensated loads (Fig. 2-16). His results show that the

37



series capacitor in the series parallel load is capable of providing

sufficient commutation for the thyristor. Therefore an inverter with a

series parallel compensated load is easier to start than the one with a

parallel load. The timing control that he presented is an open loop

control and not based on any detailed dynamic model.

So far we have considered resonant converters as dc-ac or dc-dc

converters. There have been a few attempts to convert three phase power

at 60 Hz directly to a single phase at higher frequency without the use

of a dc link. For example, Havas et al. [25] have designed and built a

100 kW (700-1000 Hz) inverter that has an efficiency greater than 90% at

unity power factor. The circuit diagram of the inverter is shown in

Fig. 2-17. It is not clear whether or not the elimination of the dc link

results in a reduction in weight and size of the converter, as the

inverter needs an input filter and six switches. More work needs to be

done in this area.

Another topic that has only been explored to a limited extent is

the use of duality to expose relationships between dual converters.

Kassakian [16] applied duality to the voltage-fed inverter analyzed by

Mapham [17] and developed a current-fed inverter. A comparative study of

the Kassakian and Mapham inverters is presented in [19], where it is

shown that the implementation and application constraints on the two

inverters prevent them from being practical duals.
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Fig. 2-17 A high frequency inverter fed from the ac mains without
the use of a dc link as analyzed by Havas et al.[25]

Problems Presented by Resonant Converters

Limitation of the thyristor turn-off time

The thyristor has been used successfully as a switch in high

frequency (up to 20 kHz), high power converters. However, its turn-off

time limits the maximum operating frequency of the converter [39]. The

allowed thyristor turn-off time is limited to some fraction (usually

about one-fifth) of a half cycle. Therefore, a converter employing a

thyristor with 20 microseconds turn-off time cannot run above a

frequency of 5 kHz [39].
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Two methods increase the allowable turn-off time in conventional

thyristor-inverters. One uses asymmetrical thyristors. devices that

have been made fast by sacrificing their reverse blocking capability

[23]. The second method uses a commutating capacitor in series with the

tank circuit (used only in current-fed inverters, see Fig. 2-16)

[7], [10] , [11].

Higher frequencies have also been achieved using a technique called

time-sharing which will be discussed in the next section.

(B) Modification using time-sharing-techniques

A time-sharing resonant inverter circuit (sometimes referred to as

the sequential inverter) consists of parallel connected multiple stages

of conventional inverters with a common load. The fundamental frequency

of each subunit is a submultiple of the inverter output frequency.

Many authors have successfully applied the technique of

time-sharing systems to some conventional thyristor inverters and

developed new time-sharing inverter topologies to overcome the operating

limitations of the thyristor turn-off time [37]-[51].

The following example can be used to illustrate the principle of

time-sharing. Consider the series commutated capacitor time-sharing

inverter shown in Fig. 2-18a. The inverter consists of three stages of

the conventional current source inverter that has been analyzed by

Revankar and Gadag [7] (Fig. 2-18b). Fig 2-19 shows the thyristor

voltage waveforms for the two inverters when they are operated at the

same power level and output frequency. The switching frequency of the

thyristors in the conventional inverter is three times higher than that

of the time-sharing inverter, so the turn-off margin for a time-sharing

inverter is higher than that of a conventional inverter. The allowable
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inverter is higher than that of a conventional inverter. The allowable

thyristor turn-off time (duration of the negative voltage) for the

time-sharing inverter above is about six times that of the conventional

inverter.

- L

-I- F-

(a) Time-sharing inverter (3 stages)

0 H

(b) Conventional inverter

Fig. 2-18 Current-fed, full bridge, series-parallel load.
time-sharing inverter and its corresponding conventional inverter
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(a) Time-sharing inverter (3 stages)

(b) Conventional inverter

For both inverters:
upper trace :thyristor voltage lower trace : thyristor current

Fig. 2-19 Comparison of thyristor turn-off time for time-sharing
and conventional inverters (simulation results)
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(i) Time-sharing inverter subunits

Time-sharing subunits are circuits that are used to build

time-sharing inverters. An attempt to classify these subunits has been

made by Nakaoka et al. They divide the subunits into three types, as

follows [49].

(i) Four-terminal switching coupling assemblies. These are

combinations of subinverters composed of a switched capacitor

and a reactor [44]. [461. [47]. [49].

(ii) Three-terminal switching coupling assemblies. These are

combinations of multiple three terminal switched-capacitor

with/without a reactor or a transformer [40]-[42], [49], [51].

(iii) Two-terminal sub-chopper coupling type. These are combinations

of multiple sub-choppers composed of two terminal switched

capacitors with/without a reactor [49], [50].

Examples of the three types are shown in Fig. 2-20. The authors do not

show what principles yield these subunits. In other words, it is not

shown by the authors that the subunits they derived give all the

possible or reasonable combinations of switches and reactive elements.

(ii) Time-sharing techniques

The development of time-sharing inverters has focused on new

techniques of time-sharing. These techniques have used either a

multi-winding transformer, or a commutating capacitor in series with the

load, or a hybrid of the two. The two methods are illustrated by

examples given below.
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I 2. 5 2 1 2.

(a) Four-terminal time-sharing subunits

1

3 3 3

(b) Three-terminal time-sharing subunits

(c) Two terminals time-sharing subunits

Fig. 2-20 Time-sharing inverter subunits
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(a) Multi-winding transformer technique

This technique can best be illustrated by two examples of

time-sharing inverters that have been presented in the literature.

Thompson [38] has analyzed a four terminal time-sharing version of the

conventional inverter he analyzed in [5]. Fig. 2-21. shows the time

sharing inverter and its waveforms.

4-4

Q

I T T

V'

Fig. 2.21 A three-stage, four terminal. voltage-fed, time-sharing
inverter using Multi-winding transformer technique [5]
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The inverter uses a transformer with three primaries and a common

secondary. The thyristors labelled Qi through Q6 are turned on in the

order that they are numbered. The upper waveform shows the voltage

across each thyristor, and the lower waveform shows the voltage across

the load resistance R. The frequency of the load voltage is three times

the frequency of the scr voltage. The change of polarity in the

secondary voltage, when reflected to the primary, helps to extend the

allowable turn-off time. In this case a turn-off time of two and a half

cycles of the output frequency is achieved. Thompson reported that with

the addition of a fourth stage a turn-off time of three and half cycles

is achieved. Consequently the time-sharing inverter can be operated at

a frequency three or four times higher than the frequency of the

conventional inverter.

Another inverter that uses the multi-winding transformer technique

is shown in Fig. 2-22 [39]. The switch used is a thyristor, but the

symbol used for it is old and is no longer used. It is not changed here

because the figure is a copy of the one used in [39]. With five

stages, the turn-off time is improved by an order of magnitude or more,

over that of a single stage inverter. A longer turn off time could be

obtained by adding more stages. However, the output power decreases, as

shown in the Table of Fig. 2-22.

An example of a current-fed inverter that uses the multi-winding

transformer technique was presented by Shioya [44]. However the

operating frequency range of the inverter was not presented. The

inverter uses the same principles and structure as the voltage-fed

inverter presented by Mapham [39]. A comparison of the two inverters

would be of interest.
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10
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Fig. 2-22 A five stage voltage-fed, time-sharing inverter
using multi-winding transformer technique [39].
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(b) Series-commutated capacitor technique

Another technique used in time-sharing is the series commutated

capacitor method. Fig. 2-18. shown earlier, is an example of the series

commutated capacitor time-sharing inverter. The inverter has been

discussed by many authors [42]. [45]. [50].

Time-sharing inverters that use a combination of the multi-winding

transformer and series commutated capacitor techniques have been

presented in [40].

(5) Summary and Conclusions

To summarize this literature review, most analyses of resonant

converters have focused on solving the periodic steady state of the

inverter to find the frequency and power ranges as functions of load

parameters such as the Q-factor or the characteristic impedance. Also,

improvement in frequency range has been achieved through modifying

conventional inverter topologies using time-sharing techniques.

In the area of conventional resonant converters, the work that

needs to done can be summarized by the following two points:

(i) There is a need to develop systematic methods for deriving

resonant converter topologies. This will help to link the

whole set of existing topologies together and aid the

exploration of new topologies.

(ii) There is a need to study the dynamics of resonant converters.

This will help in deriving mathematical models that will

describe exactly the dynamics of these converters under varying

operating conditions and enable the design of feedback

compensators for improving the dynamic response of resonant

converters.
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In the area of time-sharing inverters, some work remains to be done

on the following topics:

(i) complete the analysis of other time-sharing inverters that have

not been considered so far;

(ii) compare device and component ratings of time-sharing inverters

and their corresponding conventional inverters;

(iii) compare different time-sharing inverter structures with

respect to component ratings, operating frequency and power

ranges;

(iv) determine the limitations on frequency and power of some

conventional or time-sharing inverters using other new power

switching devices, such as reverse-conducting thyristors (RCT),

gate-turn off devices (GTO). static induction thyristors or

transistors (SITH or SIT), gate assisted turn-off thyristor

(GATT); Some applications of these device are in [49], [50].

The purpose of this thesis is to explore areas of conventional

resonant converters that have not been studied before. In particular,

we focus on the synthesis of resonant converters, their dynamic

modeling, and their control.

There has been no attempt in the literature to derive conventional

converter topologies in a systematic way. We need to develop whole

classes of possible resonant converter topologies. This could

eventually lead to the discovery of new converters. We shall discuss

this in detail in Chapter III.

Until recently, the dynamic modeling of resonant converters has not

been considered in the literature. Vorperian has obtained dynamic

models for the series and parallel resonant converters of Figs. 2-13 and
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2-14 [621, [72]. The increased use of resonant converters prompts a need

to develop dynamic models. Such models help in designing closed loop

controllers for resonant converters. The results of some simulation

experiments, using the Parity Simulator [69] to study the dynamics of

the series resonant converter of Fig. 2-13, drew our attention to the

necessity of exploring the dynamics of resonant converters. The dynamic

modeling of resonant converters, together with the results of tests on

the series resonant converter, are presented in Chapter IV. Results of

feedback control of a resonant converter using the model developed in

chapter IV will be discussed in Chapter V.
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CHAPTER III

SYNTHESIS OF RESONANT CONVERTERS

(1) Introduction

In the past decade several new resonant converter topologies have

been developed [7]. [151 - [16], [20] - [23]. It is natural to ask

whether there are still further topologies for resonant converters, and

how they are related to the existing ones. To answer this question,

general laws and concepts that underlie the converter topologies need

to be established, as the classification of resonant converter

topologies is at present very loose. In this chapter we shall discuss

some of the methodologies that can help in a systematic development of

resonant converter topologies. In Section 2 we shall develop a

switching cell from which the basic resonant converter topologies are

derived. In Section 3 the symmetry properties of resonant converter

topologies are used to derive other topologies. In Section 4 we shall

derive additional resonant converter topologies using duality

relationships, and contrast aspects of dual converters.

(2) Derivation of the Basic Topologies

A resonant converter can be divided into three parts: an input

source, a switching network, and a resonant load that includes the

resonant tank circuit (reactive elements) and a single resigtor across

which the output variable (voltage or current) is defined. Fig. 3-1

shows the three parts. We are assuming that the three parts can be

separated from each other. Although this separation is not possible in

some cases, using it here will allow us to suggest a switching cell from

which three basic configurations are derived.
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L

SOURCE SWITCHING NETWORK LOAD

Fig. 3-1 The parts of a resonant converter parts

Now we need to derive the switching network that connects the

source to the load, and develop the possible resonant loads that can act

as the load in Fig. 3-1. Although we shall use a voltage source, the

procedure when a current source is used is similar. If we assume the

switching network contains only ideal switches, then the voltage VL,

across the resonant load, in Fig. 3-1, can have one of three values:

Vdc, zero or -Vdc. The waveforms of VL depend on the state of the

switches and the order in which they are turned on and'off during the

switching cycle. For example, if a converter has two switching

configurations during a switching cycle, then the possible waveforms for

VL are those shown in Fig. 3-2. In each case the voltage is a square

wave which may or may not have a dc component. The waveform of Fig 3-2a

has a positive dc component and in Fig. 3-2b the dc component is

negative. When Vdc is symmetrically applied to the load, VL will have

no dc component, as shown in Fig. 3-2c. Ts is the period with which the
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switching network goes through a complete cycle. In this case there are

two switching configurations during a switching cycle. Symmetric

waveforms that have intervals of zero voltage across the load are

possible as shown in Fig. 3-2d.

V A
V

Vdc

0

0

-Vdc

tT 
r

(a) Asymmetric positive V L

VL4

Vdc

0

~Vdc .

(b) Asymmetric negative VL

I- 1

(c) Symmetric VL (d) Symmetric VL with
intervals of zero

Fig. 3-2 Waveforms of the voltage VL of Fig. 3-1
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Fig. 3-3 shows a switching cell that can be used to obtain the

waveforms of Fig. 3-2 or any combination of them, and Table 3-1 shows

the switch combinations that give the waveforms of VL'

~4.

+V

IL-
L
0
A

Fig. 3-3 A switching cell for deriving
resonant converter topologies

*1

Switch combinations and state

(a) S, and S2 closed
and S3 and S4 open

Either (b) S2 and S3 open
and S, and S4 closed

--------------------------------

Or (c) S2 and S3 closed
and Si and S2 open

(d) S, and S2 open
and S3 and S 4 closed

0

- Vdc

Table 3-1 Switch combinations for the waveforms of VL of Fig. 3-4
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We next need to find the topologies that combine the waveforms of

Fig. 3-2 with the switch combinations of Table 3-1. There are two basic

converter structures that can be developed. In the first one the dc

input voltage is asymmetrically applied to the load, or VL takes the

waveforms in Fig. 3-2 a or b. The resulting topology will be referred to

as the asymmetric topology. In this topology there is always a dc

offset voltage across the load. In the second one the input dc voltage

is symmetrically applied to the load, or V takes the waveforms of Fig.

3-2c or d. In this case there is no net dc voltage across the load.

This topology will be referred to as the symmetric topology.

(A) The asymmetric topology

Now let us synthesize the topology for which VL has the waveforms

of Fig. 3-2a and b. In Fig. 3-2a we have a positive voltage V dc

during one half of the switching cycle and zero voltage during the

other half. In this case the dc component of the voltage across the

load is positive and equal to half of the input dc voltage. From Table

3-1 there is one switch combination that gives a V of +V , and two
L de

switch combinations that give zero voltage across the load. Therefore

two topologies can be synthesized to generate the waveforms in Fig. 3-2a

These are shown in Fig. 3-4. Although the topologies are obtained

through different switch implementations, they should not be considered

as different topologies.

Topology 1 is synthesized by switch combinations a and b of Table

3-1. The switch S1 is not shown in the topology because it is closed

during both modes, and therefore represented by a short circuit and no

switch is needed for S . Also S is not shown because it off all the

time and is represented by an open circuit or completely eliminated from
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S

L

1

L

S3

D

(a) Topology 1

L

L S4 A

S2

(b) Topology 2

Fig. 3-4 The asymmetric voltage-fed topology

the circuit. Therefore we need only two switches S2 and S4.

Similarly Topology 2 is synthesized by the switch combinations a

and c of Table 3-1. In this case S2 is closed during both modes, and it

is represented by a short circuit. Therefore only S1 and S are needed.

In the two topologies the switches S1 and S2 only differ in their
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positions in the loop L, and they will have the same voltage and current

waveforms. Therefore the circuit operation for the two topologies is

identical, and they should not be considered as different topologies.

The position of the switches S1 and S2 is an implementation issue which

has an effect on the drive circuit that controls each of them, as will

be clear when we discuss the implementation of the switch.

The asymmetric topology can also be synthesized from the waveforms

of Fig. 3-4b, where VL is either negative or zero. From Table 3-1 there

is one switch combination that gives a negative VL , and two switch

combinations that give zero V . Two topologies can be realized using
L

these switch combinations. The two resulting topologies are the same as

those of Fig. 3-4, except for the obvious interchange of the switches in

series and parallel with the load. Again one can go through the same

arguments as in the previous paragraph and show that the two topologies

are not different, and therefore the above the topologies formed by

using different switch combinations, for both asymmetrical positive or

negative waveforms, all represent the same topology. The different

switch positions only affect the switch control circuit.

(B) The symmetric topologies

Symmetric topologies are derived from waveforms that have the dc

input voltage symmetrically applied to the resonant load. Assuming two

switching configurations per cycle, V has the waveform of Fig. 3-2c.
L

This waveform can be achieved using switch combinations a and d of Table

3-1. The resulting topology is shown in Fig. 3-5. It uses four

switches in a bridge connection, and will be referred to as the

full bridge topology.
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The full bridge topology can also be synthesized from the waveforms

of Fig. 3-2d, where there are switching intervals where the load voltage

is zero. This can be obtained turning on either the upper two switches

(S and S ) or the lower switches (S and S ) in Fig. 3-5 . Variation
1 2 3 4

of the interval of zero voltage across the load is another way of

controlling the power delivered to the load.

___________________I _________________________________ -I
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Fig. 3-5 Full bridge voltage-fed topology



A symmetric square wave voltage across the resonant load can also

be obtained by using two voltages connected to a common load via two

switching cells, as shown in Fig. 3-6.

I L

0
A

I. U

vol

Fig. 3-6 Voltage-fed topologies using two sources
and two switching cells

There are two numbers associated with each switch. The first

number refers to the switching cell, and the second number refers to the

switch number in the cell. From Table 3-1, the switch combination a (S1

and S2 closed) is used when the voltage across the load is +V dc and

switch combination d (S3 and S4 closed) is used when the voltage across

the load is -V dc. The resulting topology is shown in Fig. 3-7.
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0
A
D

S 2-

23

-Vi

Fig. 3-7 Symmetric topology using two voltage sources

The switches S and S ,12 in Fig. 3-8, are connected in series in
11 1

the same loop. Therefore they can be combined in one switch. Likewise

switches S23, and S24 are connected in series in the same loop, and they

can be combined in one switch. Depending on which switch is eliminated

in each loop there are four switch implementations for this topology,

but four configurations differ only in the control circuit that drive

the switches. They should thus be considered as one topology, the one

shown in Fig. 3-8a. The resulting symmetric topology differs from the

full bridge topology in that it uses two voltage sources and two

switches instead of one voltage source and four switches. This topology

will be referred to as the half bridge topology. This topology is

sometimes implemented with one voltage source and two equal capacitors,

as shown in Fig. 3-8b.
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Is,
2.

voltage two sources

iA

S

T
(b) Using one voltage source

Fig. 3-8 Half bridge voltage-fed topology

61

4-

LOAD -

g
(a) Usir g

I



A half bridge topology with a load voltage corresponding to

Fig. 3-2d, where there is are intervals of zero voltage across the load,

is shown in Fig. 3-9.

3

L
S S

_- A +

Fig. 3-9 Symmetric half bridge topology
with load voltage shown in Fig. 3-2d

The half bridge topology shown in Fig. 3-9 can be considered as two

asymmetric converters connected to a common load. One asymmetric

converter has the waveforms of Fig. 3-2a, and the other has the

waveforms of Fig. 3-2b. If one of these waveforms is shifted by some

angle 0 with respect to the other, their sum will give the symmetric

waveform of Fig. 3-2d. The three waveforms are also shown in

Fig. 3-10. The phase shift angle 0 can be varied from 0 to 1800. If

0
the phase shift between the two waveforms is 180 , their sum would be

equal to the symmetric waveform of Fig. 3-2c.

The switches connected in parallel with the load, in Fig. 3-9, are

used only if zero voltage is needed across the load. This occurs when

the phase shift between the added asymmetric waveforms is different from
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180 . When the phase shift is 180 the voltage across the load will

never be zero and the switches in parallel with the load will be open

all the times. In this case the resulting topology is essentially the

same as the half-bridge topologies shown in Fig. 3-8.

Vk

0

3

V - --

Fig. 3-10 Formation of a symmetric waveform from asymmetric waveforms

0 0
The variation of the phase shift from 0 to 180 is another way of

controlling the power delivered to the resonant load from zero to full

power. In this case the converter can operate at constant switching

frequency, and hence a fixed ratio of the switching to the resonant

frequency.
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We conclude this section by a few comparisons among the three basic

topologies that we have derived. For the same dc input voltage, the

switch voltage ratings of the half bridge are twice those of a full

bridge, but they deliver the same power. Compared with the asymmetric

topology, for the same value of the applied input voltage and load, the

bridge topology delivers twice the power of the asymmetrical topology.

The switch voltage and current ratings are the same for both topologies.

The topological relationships between the asymmetric topology, the

full bridge topology and the half bridge topology are now obvious. One

needs only to derive one topology, and the other topologies can be

derived automatically using the trade off between the number of switches

and the number of voltage sources, together with the symmetry

relationships.

(C) Types of resonant loads

In this section we shall develop the kind of loads that can be used

in the load block in Fig. 3-1. We will assume that the load consists of

a single resistor, a single inductor and a single capacitor. There are

then two basic types of load: the three components can be connected to

form either a series resonant circuit or a parallel resonant circuit.

The definition of a series or parallel load depends on the driving

source. To illustrate this, let us consider the resonant circuits in

Fig. 3-11. If each voltage source is replaced by a short circuit, and

each current source is replaced by an open circuit, the resulting

circuit will have the passive elements either connected in series (Fig.

3-11a) or in parallel (Fig. 3-11b).

64



t V

t

(a) Series loads

(b) Parallel loads

Fig. 3-11 Basic types of a resonant load
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We shall use the load type as a criterion for classifying the types

of resonant converter topologies : the series converter topologies (when

the load is a series resonant circuit) and the parallel converter

topologies (when the load is a parallel resonant circuit). There are

cases, as we shall see later, where the load is a combination of the two

basic types.

For a voltage-fed converter there are three parallel loads and one

series load, and for a current source there are three series loads and

one parallel load. Fig. 3-12 shows examples of series and parallel half

bridge voltage-fed topologies.

Fig. 3-12a A series half bridge topology

66



Fig. 3-12b A Parallel half bridge topology

A derivation of the basic resonant circuits using linear network

theory is described in Appendix 3A. The loads that result from this

analysis are also the series and parallel loads that are derived in this

section.

Resonant converters with higher order filtering can also be

developed. One systematic way to construct these filters using the

basic series and parallel loads is to cascade the basic loads, by

replacing the resistor in one load by another load. Examples of these

cascaded loads are shown in Fig. 3-13.
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Fig. 3-13 Cascaded higher-order loads
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(D) Power flow and implementation of the switch

The direction of current in the switch is determined by the ratio

of the switching frequency to the resonant frequency. If the impedance

of the resonant circuit at the switching frequency is capacitive, the

load current leads the load voltage. If the impedance of the resonant

circuit at the switching frequency is inductive, the load current lags

the load voltage. It is only when the switching frequency is equal to

the resonant frequency that the resonant circuit impedance is resistive

and the power factor is unity. Fig 3-14 shows the switch voltage and

current, for a voltage-fed converter applied to a series load, as the

switching frequency is varied. Whenever the switch is operated at a

frequency different from the resonant frequency, the switch has to carry

a bidirectional current. A unidirectional current switch can only be

used when the switching frequency is equal to the resonant frequency.

In other words, we can determine the switch type by considering the

instantaneous power flow. Power can be delivered from the dc voltage

to the load or vice-versa. In this case the input dc voltage can source

or sink current, and a bidirectional switch is needed. If power flows

from the dc voltage to the load all the time, then a unidirectional

current switch is needed.

Fig. 3-15 shows the switch implementation for the asymmetric

topology for both unidirectional and bidirectional power flow. For

unidirectional power flow the switches have to be fully controlled (e.g.

a transistor or a MOSFET). If diodes are used the dc source will be

shorted. and hence no power will be delivered to the resonant load. An

npn transistor will be used to represent a fully controlled switch

throughout this chapter. In the case of bidirectional power flow, the
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switch can be realized by a controlled switch with an antiparallel

diode. The diode automatically conducts whenever the load voltage

exceeds the input dc voltage.

V, V

2V ----- - - --

]

(a) f < f (b) f f
s r s r

(c) f > f
S r

Fig. 3-14 Voltage and current waveforms of a switch in
a series voltage-fed resonant converter
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(a) unidirectional power flow

+

L
L
0
A

-

L

A

(b) bidirectional power flow

Fig. 3-15 Switch imlementations of the asymmetric topology
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(3) Parameters of Voltage-fed Resonant Converters

(A) Series topologies

In this is section and the following one we shall identify the

parameters of the series and parallel voltage-fed topologies. As stated

earlier, a resonant converter is characterized by its resonant frequency

f , its quality-factor Q and its characteristic impedance Z. In this
r 0

section we shall define these parameters for the series converter

topologies.

A series voltage-fed topology has a series resonant circuit

connected to a voltage source in each of its switching configurations,

as shown in Fig. 3-16.

V

Fig. 3-16 A series voltage-fed resonant circuit

The circuit waveforms are those of an oscillatory underdamped second

order system. Such a system is characterized by the second order

differential equation below:
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2
d x d x 2

+ 2a - + w x = K V (3.1)
d t d t

where

x = a state variable such as inductor current or capacitor voltage

a = damping factor

w = resonant angular frequency = 2 f
r r

K = A constant for the state variable x
x

The Q-factor of such a circuit is defined as:

w
Q = (3.2)

2 a

The frequency natural of oscillation wd is not exactly at the

resonant frequency, differing from it by an amount that depends on the

value of the damping factor a and it is given by:

w = w 2 -a (3.3)
d r

If the state variables in the series resonant circuit are chosen to

be the inductor current i L) and the capacitor voltage (vC ). then the

differential equation for the inductor current is

d2 R d i i
L + --- L + L = 0 (3.4)

d t L d t L C

and the differential equation for the capacitor voltage is

2
d v R d v v V

2 + -- C + C = - (3.5)
d t L d t L C L C

73



Comparing equations (3.4) and (3.5) with equation (3.1) we get

R
2a = - (3.6a)

L

1
V = (3.6b)
r _

1
K = 0 K = (3.6c)

and
w L Z

Q = = = - -- (3.6d)
2 a R LT R

where Z = /C = characteristic impedance of a resonant circuit
0

(B) Parallel topologies

When deriving the voltage-fed parallel converters, there are three

possible resonant loads that should be considered, as shown in

Fig. 3-17. When the voltage source is replaced by a short-circuit, the

resulting circuits are identical, with the three elements of the

resonant circuit connected in parallel. To differentiate between the

three loads, we refer to them as types A. B and C.

In all three cases, the differential equation for i is
L

2
d i 1 d i 1

C + L + LC i f (VRLC) (3.7)
d t R C d t L C L i

and the differential equation for vC is

2
d v ~ 1 d v v

-

+ C + = g (VRLC) (3.8)
d t R C d t L C
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Type A

-t - 4- 73

Type B Type C

Fig. 3-17 Voltage-fed parallel resonant loads

The right hand sides of equations (3.7) and (3.8) are different

from one type to another. The subscript i on the functions f (..) and

g. (..) indexes type of the load. Also, the impedance Z. (s) seen by the
1 1

source is also different in each case. The respective impedances as

functions of frequency are shown in Fig. 3-18.
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Fig. 3-18 Graphs of the impedance of the loads of Fig. 3-17
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Now comparing equations (3.7) and (3.8) with (3.1) we get

1
2a = - (3.9a)

R C

1
wr = (3.9b)

1
K = (3.9c)

R L C

1
Kv =(3.9d)

L C

and
wr R C R

Q = = (3.9e)
2 a Zo

(4) Symmetry Derived Topologies

In this section we shall explore some topological symmetry

properties to derive other resonant converter topologies. The half

bridge topology (see Fig. 3-9) is symmetrically inverted about the load.

In other words the load in Fig. 3-9 acts as a line of symmetry. All the

components of the converter below the load are reflected about the load

with their polarity being reversed. We shall refer to this reversed

reflection as an inverted mirror. The motivation behind the use of an

inverted mirror is that it starts with a circuit that cannot work as a

resonant converter by itself, and changes it to a converting circuit. If

the load is a single resistor, then the common branch between the two

halves should always include that resistor and perhaps other components

of the resonant load, but not the voltage source. Also, for power to be

converted from dc to ac, a capacitor should not be placed in series with
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the voltage source, because a capacitor cannot have a dc current through

it. Similarly, an inductor should not be placed in parallel with a

current source.

Consider the series resonant circuit of Fig. 3-19. If we place the

resistor, the inductor and the capacitor in the common branch, then by

drawing an inverted mirror of this circuit we get the half bridge series

inverter of Fig. 3-20a. If we place the resistor and the capacitor in

the common branch, we obtain a half bridge inverter with two inductors,

as shown in Fig. 3-20b. Thompson [51 referred to the topology in Fig.

3-20b as the twin choke converter[381. We shall refer to it here as the

divided-inductor topology.

We shall mention at this point that half bridge resonant converters

obtained using symmetry also have asymmetric and full bridge topologies.

For example, the divided-inductor asymmetric and full bridge topologies

are shown in Fig. 3-21.

+

Fig. 3-19 Series resonant circuit
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(a) Half-bridge topology

.4-

(b) Divided-inductor half bridge topology

Fig. 3-20 Voltage-fed series resonant topologies
derived using symmetry
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(a) Asymmetric topology

(b) Full bridge topology

Fig. 3-21 Divided-inductor asymmetric and full bridge topologies
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If the inductor and the resistor in Fig. 3-19 are placed in the

common branch and symmetry is applied, the resulting topology is shown

in Fig. 3-22. Such a topology cannot work as a resonant converter.

This is because, the capacitor is in series with the voltage source and

blocks any dc current, and hence no power is delivered from the dc

source to the resonant circuit.

Fig. 3-22 Half bridge topology obtained by applying symmetry
about an inductor and a resistor in a series load

The above topologies are derived from a series resonant circuit

that results when the switch is turned on (closed). A series resonant

circuit can also result when the switch is turned off (open). That is

the case when the switch is placed in parallel with one of the resonant

load elements. For example, if we place the switch in parallel with the

capacitor and apply symmetry, we obtain the two topologies shown in

Fig. 3-23. The constraint on this converter is that the switch should

only be turned on when the capacitor voltage is zero.
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Fig. 3-23 Symmetry derived half bridge series topologies obtained
when the switch is placed in parallel with the capacitor

Fig. 3-24 gives the resonant converter topology when both the

capacitor and the inductor are split. when the inductor is split we

shall call it, as before, the divided-inductor topology, and when the

capacitor is split we shall call it the divided capacitor topology.

If the switch is placed in parallel with the inductor, the

resulting topologies will have two inductors connected across a voltage

source which will force the inductor current to build indefinitely.

Therefore the resulting topology will not work as a resonant converter.

This is analogous to the case when the switch is put in series with the

capacitor. The two cases are duals, i.e the switch in series with a

capacitor is the dual of a switch in parallel with an inductor.
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Fig. 3-24 Divided-inductor, divided-capacitor series topology

We can also use topological symmetry to derive parallel voltage-fed

resonant converters in the same way we did for the series resonant

converters. The three basic circuits to be used are shown in Fig. 3-25.

If the load in each circuit is put on the symmetry line, the

resulting topologies are the half bridge configurations derived earlier,

and shown in Fig. 3-26.

If the resistor is put on the symmetry line, the derived converters

are shown in Fig. 3-27. Topology 2 cannot work as a resonant converter

because the capacitors will block the dc current, and hence no dc power

will be delivered. Topology 1 is a divided-inductor parallel resonant

converter, and it can be extended by coupling [51, or uncoupling the

inductors [17]. If the switch is placed across the capacitor, then the

topology that results from applying symmetry is shown in Fig. 3-28.
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(a)
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(b)
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(c)

Fig. 3-25 Parallel resonant circuits used for deriving
voltage-fed parallel topologies using symmetry
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Topology 1

4-

Topology 2 Topology 3

Fig. 3-26 Half bridge voltage-fed parallel topologies
with bidirectional power flow
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Topology 1
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Topology 2 Topology 3

Fig. 3-27 Symmetry derived parallel topologies
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Fig. 3-28 Divided capacitor parallel voltage-fed topology

(5) Duality Considerations

Duality is a very useful link between power converters. It can

yield new converter topologies as well as significantly improve

understanding of the relationships between converters and their

equivalent models [56]. Note that the type of switch and the modes of

operation can differ between dual converters. It should also be noted

that a converter that is dual to a given one may have some practical

differences from the original [19].
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In this section we shall give a brief review of dual networks. In

the next section we shall use duality in combination with the set of

voltage-fed topologies derived in the previous sections to generate

current-fed resonant converter topologies. We shall also discuss some

duality considerations governing dual resonant converters.

Principles of duality have also been discussed in [74] and [561.

Table 3-2 gives a summary of the duality relationships among electrical

components and connections.

Element or connection Dual elements or connection

Voltage Source Current Source

Inductor Capacitor

Resistance Conductance

Impedance Admittance

Open Switch Closed Switch

Series Parallel

Tree Cotree

Node Mesh

Loop Cutset

ON OFF

Short circuit Open circuit

Table 3-2 Circuit elements, connections and their duals

Let us give an example of how to generate the dual of a network and

discuss the operation of dual networks. Consider the bidirectional half

bridge voltage-fed series resonant topology shown in Fig. 3-29. To

obtain the dual of this topology we put a node inside each mesh and a
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node outside the circuit. Now draw arcs between these nodes, one arc

through each element of the original circuit. The elements on these

arcs are the duals of the ones they cut. These connections are shown in

Fig. 3-30a and the resulting dual topology is shown in Fig. 3-30b. The

dual topology is a bidirectional half bridge current-fed parallel

topology. The bidirectional current switch transforms into a

bidirectional voltage switch. The implementation of a bidirectional

voltage switch comprises a controlled switch (a power transistor) with a

series diode connected to support the negative voltage. The switch

implementation in dual networks is an important issue and we will

consider it further in the next section. The switching configuration

obtained by closing a switch in a converter corresponds to the

switching configuration obtained when the switch is open in the dual

converter.

Fig. 3-29 Voltage-fed series topology with
a bidirectional current switch
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(a) Use of duality in Fig. 3-29

(b) Dual topology of Fig. 3-29

Fig. 3-30 Current-fed parallel resonant topology
with bidirectional voltage switch
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(6) Current-fed Resonant Converters

In the literature on resonant converters, a few current-fed

topologies and their corresponding dual voltage-fed topologies have been

presented. Examples of these converters are [5] and [81, [18] and [6],

[16] and [17]. Except for [16]. [171, the duality link has not been

used. For example, in [18] two topologies that are duals of each other

are analyzed separately for comparing the capacitor voltage. Instead,

the comparison could have been obtained by analyzing one topology, and

determining from its inductor current the capacitor voltage of the dual

topology.

Having synthesized voltage-fed converters, one can by duality

obtain the set of current-fed converters. For example, the derivation

of parallel current-fed resonant converters will be the same as that of

series voltage-fed converters, with all the terminology used in

voltage-fed converters replaced by the dual terminology from Table 3-2.

Similarly, the derivation of the series current-fed resonant topologies

will be the same as that of the parallel voltage-fed resonant

topologies. Rather than retracing the steps used in the derivation of

the voltage-fed converters, we shall give in this section a discussion

of the duality relationships between current-fed and voltage-fed

converters.

The switching cell for deriving current-fed topologies is the same

as that used for deriving voltage-fed topologies, with the source being

a current source and the switches being normally closed rather than

open. There loads for the current-fed topologies, are shown earlier in

Fig. 3-11 . The switch implementation and the modes of operation can

best be illustrated by the four converters shown in Fig. 3-31.
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Topology A

Topology C

Topology B

Topology D

Fig. 3-31 Two voltage-fed parallel topologies and their duals
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Topologies A and C are half bridge voltage-fed parallel converters

with bidirectional current switches. Topologies B and D are their

respective dual current-fed series converters. Topology A has been

analyzed by Kasturi [18]. Topology C has been analyzed by Mapham [17].

and Topology B has been analyzed by Kassakian [16] and [19]. Topology D

is obtained by applying duality to Topology C, and its corresponding

full bridge topology has been analyzed by Revankar and Gadag [7]. The

following comparison gives insight into the similarities and differences

that dual topologies can exhibit.

(i) The switches in Topologies A and C have to carry bidirectional

currents, while the switches in B and D have to support

bidirectional voltages.

(ii) Thyristors can be used in Topologies A and C with no additional

commutation circuit needed. Commutation of the thyristors can

either be natural or forced, depending on whether the switching

frequency is below or above the resonant frequency. In

Topology B. thyristors can be used, but they can only be turned

off by forced commutation for a certain range of the switching

frequency. Also, since the thyristor is a bidirectional

voltage switch, only two switches are needed in Topology B. as

compared to four switches in Topology A.

(iii) Topology C, which is a divided-inductor version of Topology A.

can only operate at switching frequencies less than the

resonant frequency, but it has better switch stresses (di/dt.

dv/dt) than Topology A. Thyristors can be used in Topology C.

and they are commutated naturally. In the dual current-fed

Topology D, the switch is changed from a thyristor to a
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transistor, and the operating switching frequency is higher

than the resonant frequency. If thyristors are to be used.

then an additional commutation circuit will be needed. Since a

thyristor usually can handle a larger amount of power, then

power handling capability of Topology B is larger than that of

Topology D.

(iv) Topology C uses two inductors and one capacitor, while Topology

D has two capacitors and one inductor. Capacitors can in

general be lighter and closer to ideal than inductors, so one

might argue that Topology D is better in this respect.

(v) If a transformer is used to isolate the load, then in

Topologies A and C a transformer with large magnetizing

inductance and a small leakage is needed. On the other hand, a

transformer with high leakage inductance is needed to isolate

the load in Topologies B and D.

Depending on the load and input characteristics, one has a choice

between four converters that are topologically the same but different in

characteristics.

(7) Summary and Conclusions

In this chapter we have explored three methodologies that may be

used to synthesize resonant converter topologies. In the first method a

switching cell is developed and the basic resonant converter topologies

are derived from it. These are the asymmetric, the symmetric full

bridge and the symmetric half bridge topologies. The different switch

implementations and types of load (series, parallel and combination of

these) are discussed. This a gives clearer picture of
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inter-relationships among the resonant converter topologies presented in

Chapter II.

The second method'uses the symmetrical structure of resonant

converters to derive other topologies. The symmetry derived topologies

are: the divided-inductor topology, obtained by splitting the resonant

load inductor; the divided-capacitor topology, obtained by splitting the

resonant load capacitor; and topologies obtained by combinations of the

preceding two.

The third method uses duality, which completes the set of resonant

converter topologies by deriving the dual topologies of those derived by

the first two methods. Also, it is shown that the comparison of dual

converters can be of great help in choosing a converter that suits the

load and input source characteristics.
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APPENDIX 3A

SYNTHESIS OF RESONANT CONVERTERS USING LINEAR NETWORK THEORY

(1) Introduction

In power electronics, two methods have been used to synthesize

power converter topologies. One method employs linear network theory to

generate the set of switching dc-dc converter topologies [55], and the

other uses duality to define the relationships among dc-dc converters

[56]. In this appendix we shall explore the use of the first method.

Section 2 gives a review of the use of linear network theory for

deriving the state equations for LTI systems. In Section 3 we shall

discuss the use of the material of Section 2 in the synthesis of power

converters. In particular we shall go over some of the work of Erickson

[55] which uses linear network theory to synthesize switching dc-dc

converters. In Section 4 we shall show how the Erickson approach can

be used to synthesize resonant converters.

(2) State Equations Formulation of Linear Networks

The generality of the state variable method of system

representation makes it applicable to a wide class of power converters.

An additional advantage of the approach is that it is systematic and

easy to adopt for computer simulation. The state representation of a

system can be expressed in vector form as n first order differential

equations as follows :

d x
--= x* = A x + B u (3A.1)

d t

where x is a vector of n state variables, u is a vector of m inputs and

A and B are coefficient matrices of suitable dimensions. Although the
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choice of the state variables is not unique, it is common in linear

network theory to choose inductor currents and capacitor voltages.

Methods for state equations formulation of linear network models

exist and are well explained in many text books [521-[56]. The method

that we shall use to derive resonant converter topologies is explained

in [52]. and we shall briefly discuss it in this section. The method

is developed for a certain class of linear networks known as 'proper

networks' (networks that are composed of only lumped two-terminal

elements and contain no capacitor-only loops or inductor-only cutsets).

The network should contain only simple branches, i.e. branches

containing only one element. The network can be divided into two parts:

a proper tree ( a subgraph that contains all the voltage sources, all

the capacitors and possibly some resistors, but no inductors and no

current sources), and a cotree which contains all the independent

current sources, all inductors and possibly some resistors. The

linearly independent Kirchoff's laws for the voltages and currents in

the network can be written as:

i + F i + F i + F i = 0 (3A.2a)
v yr r vl 1 vi i

i + F i + F i + F i = 0 (3A.2b)
c cr r cl 1 ci i

i + F i + F i + F i = 0 (3A.2c)
g gr r gl 1 gi i

T T T
v - F v - F v - F v = 0 (3A.2d)
r vr v cr c gr g

T T T
v - F v - F v - F v = 0 (3A.2e)
1 vl v cl c gl g

T T T
v. - F ,v - F v - F v = 0 (3A.2f)

S vi v ci c gi g
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where:

v , i = voltage and current vectors of independent voltage sources
v v

v , i = voltage and current vectors of network capacitors
C C

v , i = voltage and current vectors of tree branch resistors
g g

v , i = voltage and current vectors of cotree chord resistors
r r

v 1, iI = voltage and current vectors of network inductors
C
v.. i. = voltage and current vectors of independent current sources

1 1

F , F , F ,, F , F , F c, F , F and F . are matrices which
yr vi vi cr ci ci gr gi g

describe the connection between the network components. The superscript

T denotes the transpose of a vector or a matrix. The entries of each F

matrix can be either +1, 0 or -1 depending on the interconnections of

the elements of the network.

The branch voltage current relationships (VCR) are given by:

v = R i (3A.3a)
r r r

v, = L (di 1/dt) (3A.3b)

i = C (dv /dt) (3A.3c)
c c

i = G v (3A.3d)
g gg

where

R and G are diagonal positive definite matrices containing cotree
r g

chord resistances and tree branch conductances respectively.

L is a symmetrical positive definite matrix whose diagonal elements are

the self inductances and the off-diagonal elements are the mutual

inductances of the network.

C is a diagonal positive definite matrix containing the network

capacitances.
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Combining equations (3A.2) and (3A.3) gives the state equations of the

network

L 0 i H H i
1 11 ic 1

0 C v' H H v
c ci cc c

H H v
lv li j

+ (3A.4a)

H H i.
cv ciJ L::

where

T -1
H = -F G F (3A.4b)
11 gl gl

-1 T
G = G + F R F (3A.4c)

g gr r gr
-1 T

H = -F R F (3A.4d)
cc cr cr

T -1
R = R + F G F (3A.4e)

r gr g gr
T T -1 -1 T

H = F -F G F R F (3A.4f)
ic ci gi gr r cr

-1 T -1
H =-F +F R F G F (3A.4g)ci ci cr gr g gi

T T -1 -1 T
H = F - F G F R F (3A.4k)
lv vi gi gr r yr

-1 T
H = -F R F (3A.4i)
cv cr yr

T -1
H = -F G F (3A.4j)
ii gi gi

-1 T -1
H. = - F*,+F R F G F , (3A.4k)

ci ci cr gr g gi

(3) Synthesis of Power Converters using Linear Network Theory

Power converters are switched linear networks, where each switching

configuration is an LTI system represented by equation (3.3). Given

that the entries of each F matrix of a proper network can be either +1.
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0 or -1, and there are i elements in a tree and j elements in a cotree

(i.j = 1, 2, 3 ..... ), then there are 3*i*j number of possible F. 's
13

and 3 number of proper networks that can be constructed using different

combinations of F. . For example if a tree of a proper network has 3
1J

elements (say a capacitor, a resistor and a voltage source), and its

cotree has 2 elements (say an inductor and a current source) then there

are 18 possible different F entries, and 243 possible proper networks.

The number of proper networks becomes large as the number of elements in

a proper network increases.

To use these proper networks for realizing a certain power

converter (e.g dc-dc, rectifiersresonant converters....etc) we need to

develop a systematic reduction procedure by which we can extract, from

all the existing proper networks, those that can characterize the

converter. First we eliminate redundant networks (networks that are

topologicaly the same) and non-realizable networks (networks that cannot

be constructed because they violate certain electrical laws such as KVL

and KCL). Second. the features of the power converter are used to

further reduce these networks. For example, in dc-dc converters the

load resistance is always bypassed by a filter capacitance, which makes

F equal to zero. This is because the load is not directly connected
vr

to an independent voltage source. Having determined all the possible

switching configurations of a converter, switches are then introduced,

depending on the number of switching configurations of the converter, to

combine different networks to obtain the possible set of converter

topologies.
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Erickson [55] has used the above method to generate the possible

set of dc-dc converter topologies. Although his application is for

dc-dc converters, the procedure can also be applied in the synthesis of

other types of power converters. The complexity of the synthesis

procedure depends on the number of reactive elements and the number of

switching configurations that the converter has during a switching

cycle.

(4) Synthesis of Resonant Converters

Resonant converter topologies can be synthesized using the above

approach. The possible parameters that can be used when synthesizing

resonant converters are:

(i) The resonant frequency (f ) which is important, when related to
r

the switch drive frequency, in determining the input-to-output

conversion ratio and the number of switching configurations

during a cycle.

(ii) The Q-factor of a resonant converter which is an important

parameter in designing the converter and in determining the

conversion ratio.

(iii) The characteristic impedance of the resonant circuit.

In this section we shall synthesize resonant converters that have

only one source, one capacitor, one inductor and one resistor. For a

proper network, the resistor can be either in the tree or in the cotree.

When we use a voltage source, if the resistor is part of the tree, the

resulting network, as we shall see, is a series resonant circuit, and

hence resonant converters obtained from combining configurations of this

proper network will be referred to as the series resonant converters.
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When the resistor is taken as part of the cotree, the resulting proper

network is a parallel resonant circuit, and hence resonant converters

obtained by combining the configurations of this proper network will be

referred to as parallel resonant converters. The dual is true when a

current source is used.

(A) Series resonant converters

In this section we shall treat the resistor as a part of

Since we are considering only voltage sources, then all the

entries that are related to a current source (e.g F *, F .,
ci vi

equal to zero. Similarly, R being a tree resistor will

following simplifications

F =F =F =0
cr vr gr

H =H =0
cc cv

2
H =-F G

11 gl g

H =F
1c cl

H =-F
cl cl

H =F
lv v1

the tree.

F matrix

F .) are
gi

make the

(3A.5a)

(3A.5b)

(3A. 5c)

(3A.5d)

(3A.5e)

(3A.5f)

-1
Let us define G

converter) and vv =V

in (3A.4) give

di
L I

dt

dv
C

dt

2
-F 2

gl

-F
cl

= R (R

. Using

I F
cl

0

is the load resistance in a resonant

these definitions and substituting (3A.5)

i
1

v
c

+

F
v1

0

V (3A.6)
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Since we have 3 elements in the tree and one element in the cotree,

then there are 27 possible proper networks that we can construct by

interconnection of these elements. Our task now is to extract from

these networks those that can be used in a series resonant converter.

As we have defined in chapter II, a resonant converter converts dc power

to ac sinusoidal power. Therefore one feature of the proper networks

needed is that each of them to have sinusoidal voltages and currents.

The differential equation in each of the state variables should be a

second order of the form

2
d x d x 2

2 + 2a - + w x = K V (3A.7a)
d t dt r X

Where

a = damping factor

w = resonant angular frequency = 2 f
r r

K = A constant for the state variable x.x I

The Q-factor of such a circuit is defined as:

w
Q r (3A.7b)

2 a

The differential equation for the inductor current, obtained from

(3A.6), is

2 2 2
d i F R d i F i

2 + &I 1 + cl 1 0 (3A.8a)
d t L d t L C

and the differential equation for the capacitor voltage is

2 2 2
d v F R d v F v -F F

- + - - c + cl = c vL L (3A.8b)
d t L d t L C L C
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Comparing equations (3A.8) with equation (3A.7) we get

2
F R

2a = -1 (3A.9a)
L

F
w = cl (3A.9b)

r

-F F
K. = 0 , K = l (3A.9c)

L C

and

w F L Z F
Q= = (3A.9d)

2 a F R /LC R F
gi gi

where Z = V = characteristic impedance of a resonant circuit

From these equations the possible values of the F matrix entries are

2
F = 1 ) F = +1 (3A.10a)
ci ci

2
F = 1 - F = +1 (3A.10b)
gl gl -

F = 0. 1 or -1 (3A.10c)
vi

For a positive Q we need Fcl to be positive, and for a finite Q we

exclude F from being zero. Also we will choose F to be +1, since
gi gi

F being -1 will give a redundant network. Finally it makes sense that
gi

Fvl to be 0, 1 or -1 because the resonant circuit can have either a

positive voltage, a negative voltage or a zero voltage applied to it.

The F entries that satisfy the conditions of a series resonant circuit

are given in Fig. 3A-1, and the resultant proper networks are given in

Fig. 3A-2. One can argue that the proper networks obtained by Fvl being

+1 and -1 are redundant, but physically the two networks play different
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roles in terms of energy or power flow. That is to say, if we assume a

resonant converter with two configurations, a square wave voltage should

be applied across the resonant circuit. If the voltage source in each

of the three networks is set to zero, the elements are connected in

series, hence the name series converter.

F = 1
cl

F =1
gl

F =V1 F =0 F =-1
vi vi vi

Fig. 3A-1 Entries of the F matrix for a series resonant circuit

L. C

L+ VjL L + UZ

v RR

(a) (b)

C

R

(c)

Fig. 3A-2 Possible proper networks for a series resonant converter
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(i) Combining proper networks and switches

In this section we want to look at the possible ways of combining

the proper networks that make series resonant circuits, as shown in Fig.

3A-2, with switches to generate the possible set of series voltage-fed

resonant converters. We shall assume that the resonant converter that

we want to synthesize has two modes, i.e there are two switching

configurations during a cycle. Therefore we need to combine every two

proper networks in Fig. 3A-2 with switches to form a resonant converter.

Except for the load resistance, the elements of the combined networks

can be chosen to be common to the two networks or separate. If we

choose all the elements to be common, we obtain the resonant converter

series topologies.

If the voltage sources are kept separate, then the resulting

topology is obtained by combining networks (a) and (c) which is the

series half bridge topology.

If the separate inductors are used, the resulting converters are

the asymmetric and full bridge divided-inductor topologies, and if

separate voltage sources and inductors are used, then the resulting

topology is the half bridge divided-inductor topology.

With the switch placed in parallel with the capacitor, the possible

topologies are the divided-capacitor topology with or without a

divided-inductor.

(B) Parallel resonant converters

Parallel resonant converters are realized by networks combined of

the same elements discussed in the previous section, except that the

resistor will be part of the cotree rather than the tree of the proper

network. In this case the F matrix entries associated with the tree
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conductance are zero, and the entries of the H matrix in (3A.4) are:

H =0
H11 =0

H =-F /R
cc cr

H = -F = -H
ci cl 1c

H =-F F /R
cv cr vr

H = F
lv vi

The differential equation in i1 is

2 2 2
d 2 -F d i F F

+ Gcr 1 ! elc
d t CR d t L C

and the differential equation in v is

2
F dv

+ --R t
C R d t

2
F

+ _cl v
L C c

2
F -F F

r v1i cr vr
L C

-F
= v

L C

Now comparing equations (3A.12) and (3A.7) we get

2
F

2a =---C
R C

r
r iL-C

1
K =

v L C

and

v

=
2 a

F

F
er

R C

I----

R F

Z F
o cr
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(3A.lle)

d v

d t

(3A. 12a)

(3A. 12b)

(3A. 13a)

(3A. 13b)

(3A. 13c)

(3A.13d)



In this case we have two tree elements and two cotree elements.

Therefore there are 81 proper networks that we can construct. We want

to find those networks that represent a resonant circuit. The features

of a resonant circuit as seen from equation (3A.13) gives the following

F entries

2
F = 1 F = +1 (3A.14a)
cr cr

2
F = 1 - F = +1 (3A.14b)
ci ci

FV1 = 0. 1 or -1 (3A.14c)

F = 0. 1 or -1 (3A.14d)
vr

Choosing F and F to be 1 or -1 does not alter equation (3.12a).
cr ci

Therefore one choice gives a proper network that we can use, the other

choice is redundant. For a positive Q we want F cl to be 1, and for a

finite Q we exclude F from being zero. Also we can argue that F and
cr vi

F can be 1 and -1 for the same reasoning we gave in series resonant
yr

converters. Another way to look at it is that F and F are active

entries, while F and F are passive entries. The final choice of F
ci cr

entries is given in Fig. 3A-3.

F =1, F =1
c 1 cr

F =1 F 0 F
v1 v1 V1

F =1 F =0 F =-1  F =1 F =0 F =-1 F = 1 F =0 F =-l
vrl vrl vrl vri vrl vrj vrl vrl vrj

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fig. 3A-3 F entries that satisfy parallel resonant networks
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The state equations for the nine realizations of Fig. 3A-3 are given

below:

(1)

di
L - = v + V

dt

dv v+ V
C - = -i -

dt R

(4)

di
L - = v

dt

dv v + V
C - = -i -

dt R

(7)

di
L - = v - V

dt

dv v + V
C - = -i -

dt R

(2)

di
L - = v + V

dt

dv v
C - = -i - -

dt R

(5)

di
L - = v

dt

dv v
C - = -i - -

dt R

(8)

di
L - = v -V

dt

dv v
C - = -i - -

dt R

(3)

di
L -= v + V

dt

dv V - v
C - = -i +

dt R

(6)

di
L - = v

dt

dv V - v
C - = -i +

dt R

(9)

di
L - = v - V

dt

dv V - v
C - = -i +

dt R

The nine networks that realize the above equations are given in

Fig. 3A-4. Some of the networks are nonrealizable, because the KVL and

KCL equations can not be satisfied simultaneously. In the absence of

the voltage source all the elements are connected in parallel. This why

we name resonant converters derived from the above 9 networks as

parallel resonant converters.
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(1)

(4)

LL

_T>

(5)

Non-realizable

(3)

(6)

+ 
I

Nonrealizable

(8) (9)

Fig. 3A-4 Circuit realizations of Fig. 3A-3
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(i) Combining networks and switches

Now we want to combine the networks of Fig. 3A-4 with switches to

obtain parallel resonant converter topologies. We will follow the same

procedure used for obtaining the series resonant converter topologies.

We shall assume two configurations per switching cycle. If all the

elements of the proper network are common to both configurations, we

obtain the asymmetric and full bridge parallel topologies. If separate

voltage sources are used the resulting topologies are the half bridge

topologies. If we separate inductors are used, with one voltage source,

one capacitor and one resistor the resulting topologies are the divided-

inductor asymmetric and full bridge topologies. If separate inductors

and voltage sources are used, the resulting topology is the

divided-inductor half bridge topology.

All of the above topologies have been derived in chapter III. The

switch implementation procedure is the same as we discussed before. For

unidirectional power flow the switch is realized by controlled switch,

and for bidirectional power flow the switch is realized by a control

switch with anti-parallel diode. The topologies are obtained using a

voltage source, but a current source could be used as well, by choosing

a current source in equation (3A.4a). In this case the resonant

converters obtained will be the duals of converters derived from the

voltage source case.
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CHAPTER IV

DYNAMIC MODELING OF RESONANT CONVERTERS

(1) Introduction

This chapter discusses the dynamic modeling of resonant converters.

Section 2 gives a description of the modeling problem in power

electronics and presents some of the modeling approaches available in the

literature. Section 3 discusses the problem of dynamic modeling of

resonant converters and describes some results that motivated us to

model them. Section 4 presents a small-signal sampled-data model that

we have developed for resonant converters. The model is illustrated

using a voltage-fed series resonant converter. In Section 5 we shall

discuss the results obtained from the dynamic model of the series

resonant converter and compare them with the results obtained from the

Parity Simulator [69].

(2) Overview of Modeling in Power Electronics

This section addresses the problem of modeling power electronic

circuits, and gives a brief review of the different modeling approaches

that have been developed in the literature.

Due to the nonlinear switching behavior of power converters, it is

difficult to determine the characteristics and assess the stability of

systems that use such converters. A model would help in the design and

control of these converters. Two kinds of models are used: static and

dynamic. A static model gives the analysis of the steady state, and

helps designers develop equations for the converter's operating

characteristics and component ratings. A dynamic model (at least a

small-signal) is essential in determining the stability of a converter,

and in designing feedback compensators. This chapter investigates the
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problem of dynamic modeling of power converters.

Methods of developing dynamic models for power converters range

from discrete z-domain or continuous s-domain descriptions in terms of

classical control block diagrams, to electrical equivalent circuit

descriptions of linearized converter models (see [57] and references

therein). The following sections outline some previous work on both

continuous-time and discrete-time modeling of power electronic

circuits.

Modeling of power converters in the literature has largely being

devoted to certain categories of circuits: switched dc-dc converters and

controlled-rectifiers. Special emphasis has been given to switched

dc-dc converters. This is because there are some natural

approximations of switched dc-dc converters that make them easy to

model. One key approximation is the replacement of instantaneous

signals by their averaged values.

In the area of dc-dc converters, approximate continuous-time

dynamic models are developed using averaging techniques. The most

famous of these techniques is the state space averaging approach

developed by Middlebrook and C'uk [58], and Brocket and Wood [76]. It

is a straightforward, general automatable technique [631. Other models

of dc-dc converters have been less general or less easy to obtain.

In the area of controlled rectifiers, a continuous-time model has

been developed using Laplace transforms [57]. Although the model is

exact in determining the dynamics of controlled-rectifiers, the algebra

used to develop it is quite involved [75].
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Many authors have also developed linearized discrete-time models

for dc-dc converters (see [59] and references therein). Discrete-time

models for controlled-rectifiers have been developed in [60].

(3) The Motivation to Model Resonant Converters

Our interest in dynamic modeling of resonant converters was

partially sparked by [33]. which deals with the static characteristics

of a voltage-fed series resonant converter. Further motivation was

provided by some initial work that we did to study the dynamics of

resonant converters, using the MIT's Parity Simulator [69]. In this

section, we shall only describe these results, and in a later section we

shall analyze them. We looked at the dynamics of the series resonant

converter shown in Fig. 4-1.

tI

Vivi Lo

0
A

) 2)

-- -N-

Fig. 4-1 A voltage-fed series resonant converter
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The actual converter circuit parameters are:

L = 197 uH C = 100 nF

V. = 14 V f = 40 kHz
in s

The elements in the Parity Simulator are designed using electronic

analog and digital components such as operational amplifiers.

comparators, .. etc. The voltage and current handling capabilities of

these components are +10 V and +10 mA respectively. Also, the Simulator

operating frequency range is 0.01 - 100 Hz. Therefore the voltage.

current and frequency of the actual circuit should be scaled down to be

within the limits of the Simulator. The scale factors we have chosen

are:

Voltage scale factor = VSC = 0.1

Current Scale factor = ISC = 0.001

Frequency Scale factor = FSC = 2.5x10~ 4

Fig. 4-2 shows the response of the load current, i , to a step change of

20% in the switch drive frequency f ,, when the load on the rectifier

side is a 10 ohm resistor. Because of the damping by the load

resistance, the response is well behaved.

When the resistance is replaced by a voltage source, the response

has a second order appearance, as Fig. 4-3 shows. One interesting

result observed from the response is that the frequency of ringing of

the envelope is much lower than the switching frequency. Another

observation to notice from Fig. 4-3b is the kick in the opposite

direction to the steady state, which raises the question of the

existence of a right half plane zero in the continuous-time small-signal

transfer function.
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Load resistance = 10 ohm

Fig. 4-2 Response of the rectified inductor current (i ) to a step
change in the switching frequency for a resistive load

5% step in f 20% step inf,

(a) V0 = 0.2V (b) V0 = 5.0 V

Fig. 4-3 Response of io to a step change in the
switching frequency for a voltage source load
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Em..-

Fig. 4-4 shows the behavior of the rectified inductor current i
0

when the load is a voltage source, and the frequency undergoes large

sinusoidal variations (as opposed to the smaller step changes of Figs.

4-2 and 4-3). Note the highly nonlinear response.

Upper trace: switching frequency
Lower trace: rectified inductor current, i

Fig. 4-4 Large-signal response of the series resonant
converter (voltage source load)

(4) Contributions of This Chapter

The above results draw attention to the necessity of modeling the

dynamics of resonant converters. Prior work in resonant converters gives

little guidance to describe the above dynamics. In this thesis, a

contribution is made towards understanding the dynamics of resonant

converters. Sampled-data models to describe the dynamics of both large-

signal and small perturbations away from a cyclic steady state, due to a

change in either the supply input (voltage or current) or the switching
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frequency, are developed. The models also allow the direct calculation

of the sensitivity of the steady state of a converter to circuit

parameter variations. The modeling approach is illustrated using the

above series resonant converter, but the procedure can be used to model

other types of resonant converters as well. Although the steps we

follow in developing the dynamic model have been used in the literature

for modeling other specific circuits, they are developed here in a

systematic way that generalizes to include other power electronic

circuits, such as resonant converters, where the sampling instant is the

primary control [61]

Dynamic modeling of resonant converters, and the results obtained

for a series resonant converter, constitute the rest of this chapter.

In Section 5 we shall give a description of the steady state operation

of the series resonant converter, and develop the small-signal

sampled-data model for it. In Section 6 we present the results obtained

from the small-signal model and compare them with the results obtained

from the Parity Simulator. Section 7 discusses the sensitivity

calculations and automatability of the converter analysis.

(5) The Voltage-Fed Series Resonant Converter

(A) Description of the basic operation

Many authors have analyzed the steady state operation of the

voltage-fed series resonant converter of Fig. 4-1. in both the

continuous and discontinuous conduction modes[28]- [33]. In this

section the basic features of the operation of this converter are given.

For a detailed description and analysis of this converter, the reader is

referred to Stuart [32] and Vorperian [33].
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The transistor/diode pairs Ni/Di and N2/D2 function as switches

that cause the voltage Vin from the split dc source to be applied with

alternating polarities across the series combination of the inductor L,

the capacitor C and the diode bridge. The dc voltage source V0 in the

bridge constitutes the load, and aids or opposes Vin, depending on the

polarity of the inductor current iL(t). The waveforms of the inductor

current iL(t) and the capacitor voltage vC(t) over a cycle of operation

are shown in Fig. 4-5.

L C-

N,

142

I I
I I

I I
I I

/

A kLL(t-)

P~1 ptz

N
2.

(a) f5 < f r (b) f5 > f r

Fig. 4-5 State variables waveforms for the series resonant
converter of Fig. 4-1
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The conducting order of the switches depends on the ratio of the

switching frequency f. to the resonant frequency fr (= 1//LC). When

this ratio is greater than 1, the conducting order is (DJ, NJ, D 2 , N2).

as shown in Fig. 4-6a. As soon as N2 is turned off (and N1 turned on).

marking the end of a cycle (e.g. the k-th cycle), Di begins to conduct.

marking the beginning of the (k+1)-th cycle. D, eventually turns off at

the transition time Tl, when its current iL(t) reaches the threshold

value of 0. and N1 begins to conduct. At time T2 , N1 is turned off (and

N 2 turned on), marking the end of half the cycle and causing D2 to begin

conducting. The ensuing half cycle repeats the pattern of the half

cycle before it.

For f. less than fr, the conducting order is (N1 . D1 . N 2 , D 2 ). as

shown in Fig. 4-6b. D 2 is turned off by turning on N1 . marking the end

of the k-th cycle and the beginning of the (k+1)-th cycle. At the

transition time T1 . N1 turns off when its current iL reaches the

threshold value of 0. and D, turns on. At time T2* D1 is turned off by

turning on N 2 and the next half cycle repeats. In this mode of

operation thyristors can be used, and they are commutated naturally.

The conduction time Ti is determined by the initial values of the

inductor current and the capacitor voltage. The time T 2 is half the

switching period and is controlled externally.

The switching frequency (or, equivalently, the switching period) is

the primary control variable for such circuits [32].[33]. The magnitude

of the steady-state response of the series LC pair, and hence the

rectified load current io in the steady state, is clearly related to how

much the switching frequency differs from the resonant frequency.
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(B) Dynamic modeling

(i) The state-space description

As shown in Fig. 4-5, the series converter goes through four switch

configurations every cycle. Each configuration in the (k+1)-th cycle

has a linear time-invariant (LTI) state-space description of the form:

d x(t)

d t A x(t) + 3k u(t) (4.1)

i = 1, 2, 3. 4 and tk + Tki < < tk k,i+1

where:

x(t) = state variable vector. The capacitor voltage and the inductor

current are the natural state variables.

u(t) = the vector of independent sources. When the load is resistive,

this vector contains only the input voltage V i, and when the

load is a voltage source this vector has two components, which

are the input voltage V and the output voltage V0 .

A k. and Bk. are coefficient matrices.

tk = the end of the k-th cycle and the beginning of the (k+1)-th cycle

Tk. = time from the beginning of the cycle till the end of the i-th

switch configuration. Therefore Tk,0 = 0. Tk,l = T1 and

Tk,2 = T2 = half the switching period.

Let us consider the operation of the series converter with the load

being a voltage source, in the continuous conduction mode, and for f,

greater than f r. The four switching configurations are shown in

Fig. 4- 6. The state vector x(t) is:
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x(t) L
x1 (t)

x2 (t)

vC (t)

UL(

(4.2)

The vector u(t) is:

u(t)

.A

V. (t)

V0 (t)

(4.3)

The matrix is the same for each of the four configurations and

is given by:

0 1/C

-1/L 0

and the matrix

k,1

,23

Bk.i is given by:

= - k,3 =

0

-1/L

0

1/L

0 0

1/L -1/L

= -
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(1) D ON
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(2) N1 ON
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4-i

(3) D2 ON (4) N2 ON

Fig. 4-6 The switching configurations for a series resonant

converter during a complete switching cycle

Configurations 3 (D2 conduction time) and 4 (N 2 conduction time)

have the same matrices as configurations 1 (D conduction time) and 2

(N1 conduction time) respectively, except for a reversal of sign in the

B matrices. This gives the circuit a half-cycle symmetry. That is to

123



say, in the second half of each cycle, the transformed vector -x(t)

satisfies the same set of equations that x(t) did in the first

half-cycle. This symmetry property can be used to analyze the converter

with equations written over only half the switching cycle instead of a

full cycle.

For simplicity we shall, unless necessary, omit the subscript k.

The solution of equation (4.1) will be:

X(tk+Ti+1) - Oi(Ti, Ti+1) X(tk+Ti) + Di(Ti,Ti+l)u(t) (4.5)

where:
0,(t,) . e(Aitt)

Ti+i

Di(Ti, Ti+j 1) = e(Akt)dt(Bj)
Ti

and

ti = Ti+i - Ti

(ii)Nonlinear large-signal sampled-data model

The state vector x(t) is continuous across each change in the

switch configuration. The final state in one configuration is the

initial state in the next. Therefore a discrete-time large signal model

that describes the state x(tk+1) at the end of the (k+1)-th cycle in

terms of the state x(tk), the source waveforms and the transition times

can be obtained by combining the four state transition equations

expressed by (4.5), and given by the form below:

x(tV+1 ) - f(x(tk), Pk, Tk) (4.6)
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where:

Tk = L (4.7)

3

--T4

and

V.
:in

V
0

L
P = (4.8)

C

T2

T4

T is a vector of all the state transition times T.'s. These times are
kt I

of two types: directly controlled and indirectly controlled transition

times. The directly controlled transition times are T2 and T4. These

times are controlled by an external action, namely turning on the

appropriate transistor in the circuit of Fig. 4-1. The indirectly

controlled transition times are T and T 3. Those are times that depend

on the state trajectories of the system, specifically when the inductor

current goes to zero and turns off the diode that is on. These latter

transition times are determined by the threshold conditions:

iL (tk+Tl) = 0 (4.9a)

iL (tk+T 3 ) = 0 (4.9b)

Pk is a vector of controlling parameters. These include the circuit

parameters and the directly controlled transition times T 2 and T4. The

directly controlled parameters are common to T and P. T2 is the second
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element of T and the fifth element of P. This relation can be

expressed by the the following threshold condition:

T[21 - p[5] = 0 (4.10a)

Similarly. T4 is the forth element of T and the sixth element of P. and

this relation gives the threshold condition:

T [41 - p [61 = 0 (4.10b)

These two conditions, together with the conditions in equations (4.9)

can be written as a 4x1 vector c, given below:

c (x (tk) Pk- Tk) = 0 (4.11)

Equations (4.6) and (4.11) give the large-signal sampled-data

model of the converter. It in fact follows from (4.5) that these

equations actually have the form:

x(tk+1) = FTk Pk) x(tk) + G(Tk Pk) (4.12a)

C(Tk. k) x(tk) + D(Tk. k) = 0 (4.12b)

Also, equations for the large-signal model of other variables, such

as the peak or the average of the output current (rectified inductor

current) can be written as an output equation of the form:

y(k) = H(x(tk* Tk' k) (4.13)

where the vector y(k) contains contains variable calculated during the

k-th cycle.
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(a) Half-cycle versus full-cycle model

In this section we shall explore the symmetry properties of the

state variables waveforms, shown earlier in Fig. 4-5, for the series

resonant converter. These waveforms exhibit a half cycle symmetry which

we shall use to obtain the large-signal model of equations (4.12). Fig.

4-7 shows the steady state waveform of the inductor current, and a

transformed waveform of it which will allow us to obtain a model over a

half cycle. The odd half cycles of Fig. 4-7b are the same as their

corresponding half cycles in Fig. 4-7a, while the even half cycles are

the negative of their corresponding waveforms. A similar discussion

applies for the waveform of the capacitor voltage. Now, we need to

develop a transformation matrix that will give a large signal model

developed over a half cycle.

The equation for the state variables over the first half of each

cycle (odd half cycle) is the same as equation (4.12). except that

F(TP) and G(T, P), which will be abbreviated as F and G respectively.

are calculated over a half cycle, as given below:

cos(w rT 2 z sin(wrT2 )

Fj (4.14a)
-[sin(w T 2)/z 0 cos(wr T 2

and

V1 [(cos(w (T os(wr 2)] + V 2 [1 - cos(wr T 2 -T 1 IM

G = , (4.14b)

V 1[sin(w rT 2 )sin(w r (T2-T 1)] /Z0 + V 2[sin(w r (T2-T 1)
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(a) Full cycle

TA. Tz T2

(b) Half cycle

Fig. 4-7 Change of waveforms from sampling every cycle to
sampling every half cycle
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where:

V = Vin + V V 2= Vn - V, w = 1//LC and z = /L/C (4-14c)

The threshold condition, corresponding to equation (4.9a) is

iL(tk + Tl) = c(W x(T2), P, T1)

= [-(l/z )sin(wr T 1) cos(wr T 1)x(tk)

+ [V1 sin(wrT1)]/z (4-15)

Equations (4.12) for the second half-cycle (even half cycle) can be

written using the one obtained for the odd half-cycle together with the

symmetry of the wave forms, as follows:

W x +1) = W F x(tk T2 ) + W G (4.16a)

W[2,2] iL (t + T3 ) = W c(W x(T2). P. T ) (4.16b)

where W = -I and is the transformation that was referred to earlier.

W[2.21 = -1. and it is the diagonal element in the second row and second

column of W.

With this transformation, a sampled-data large-signal model can be

formed by sampling x(tk-l) and Wx(tk-1 + T2 ) of Fig. 4-7. In other

words, we sample x at the beginning of each odd half-cycle, and Wx at

the beginning of each even half-cycle. In this case the sampled-data

large-signal model is given by the following equation:

ai+1 = V F ai + W G (4.17)

where:

a2k = X(tk) and sk = W x(tk-l + T2) F and G given as in

equation (4.14).
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The above discussion was based on the analysis over a half-cycle.

Since the controlling parameters vary once per cycle, we can extend the

half-cycle model to a full-cycle model by applying equation (4.16a)

twice in succession. Using the fact that = I. and with F and G as

defined by equation (4.14). we get

x(tk+1 F2 x(tk) + [F - I]G (4.18)

An alternative approach is to carry the calculations of F and G of

equation (4.12) for a full cycle.

(iii) The cyclic steady state

The steady state solution of the circuit is found by solving either

equation (4.6) or (4.12) along with (4.11) for some given constant P.

The model given by (4.12) is nonlinear because the period T1 (the diode

conduction time) is dependent on the state variables at the beginning of

each half cycle, and, also, depends on the control variable T2 which is

buried in F and G. as is evident from the threshold condition (4.9).

Let the steady state values of the variables of equation (4.6) - (4.8)

be defined as follows:

T 2= T = Sampling period.

*
T = T11

P = P,

x(tk) =X(tk+1 =

tk = kTS ,

tk+1 + T2 = (k+1)T (4.19)
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The steady state values corresponding to equations (4.12) and

(4.15) satisfy

* * * *
I = F(T*, P*) I + G(T1 , P ) (4.20)

and

iL(kTS + T) = c(X. T1, P*) (4.21)

For fixed values of the parameters of P and a switching period TS,

we need to determine the indirectly controlled T and the state vector

I. Two approaches are used to determine the steady state values. The

first is an iterative approach which uses the Newton-Raphson method to

numerically solve equations (4.20) and (4.21). Equation (4.20) is solved

for some assumed value of T. The calculated I and the assumed T are

then substituted in (4.21). If (4.21) is not satisfied, then T1 is

updated using the Newton-Raphson correction, and the iteration continues

till convegence is achieved.

The second approach is noniterative, and uses the phase plane

method. It exploits the fact that for each switch configuration, the

equation relating the inductor current and the capacitor voltage is the

equation of a circle in the phase plane of i versus vC. Simple

equations can then be written to solve for the steady state values of T

and I. The two methods are discussed in detail in Appendix 4A.

(iv) The perturbed state and the small-signal sampled-data model

In deriving the small signal model for the resonant converter,

assume the state variables undergo small perturbations about the cyclic

steady state solution of (4.20). For example. Fig. 4-8 shows the

waveforms of the steady and perturbed inductor current. Denote the

perturbations as follows:
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k= X(tk + Ak) - X,

qk = -

t= T- TS,

x k-i

Fig. 4-8 Perturbed and steady state waveforms
of the inductor current

Equations (416) for the large signal, obtained over a half cycle,

also hold for the perturbed states, so that

x[(k+1)TS + Ak+1] = F(T* + tI, p* + q) x(kTs + Ak)

+ G(T* + tj, P + q) (4.23)
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and

iL(kTS + Ak + Tj + tj) = c(x(kTS+Ak), Tj + tj, P + q) - 0 (4.24)

Now expanding (4.23) and (4.24) in a Taylor series about the steady

state values, retaining only the first-order terms, and abbreviating

F(.., .. , ) and G(.., .. , ) by F and G respectively, we get

x[(k+1)Ts+Ak+l] - [F + (aF/8P)q + (aF/aTl)tl] X(kTS+Ak)

+ G(Tj, P) + (8G/aP)q + (8G/8T 1 )tl (4.25)

and

iL(kTS+Ak+Tl+tl) - c(X, Tl*, P*) + (ac/aX) xk

+ (ac/8P)q + (ac/OT,)ti = 0 (4.26)

All of the above partial derivatives are calculated at the cyclic

steady state defined by equation (4.19). Now subtracting the steady

state of equations (4.20) and (4.21) from equations (4.25) and (4.26) we

get:

x((k+1)Ts+Ak+l) - X = F [x(kTS+Ak) - I] + [(aF/aP)q + (aF/aTl)tl](X+xk)

+ (8G/OP)q + (8G/8T 1 )ti (4.27)

and

(8 c/OI)xk + (ac/OP)q + (8c/aT1 )tj = 0 (4.28)

Since T, depends on I and P, the perturbation tj should be eliminated

from (4.27). This can be done by obtaining tj in terms of q and xk using

(4.28), and substituting into (4.28). We then get the following

equation:

xk+1 = F xk + [(aF/aP)X]q + (aG/aP)q

- (8c/T 1)-
1 {(G/8Tj)[(ac/8 I) xk + (ac/8P)q

+ (8F/8T,)X[(ac/8 X) xk + (ac/aP)q]) (4.29)
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or

Xk+1 = [F - (ac/aT1)1 [aG/aT1 + (8F/OTl)XI(8c/OI)xk

+ [(aF/aP)X + (G/8P)

- (8c/8Tj ) 1 (OG/8Tj + (aF/aTj)X)(ac/8P)]q (4.30)

Now we can write equation (4.30) in the form:

xk+l = A xk + Bqk (4.31)

where:

A - [F - (Oc/Tlr [G/aT1 + (OF/0T1)X](ac/OX)

and

B - [(8F/OP)X + (OG/OP)

- (Oc/8T1 ) 1(8G/8T1 + (OF/8T1)x)(ac/aP)] (4.32)

Equation (4.31), which gives the relation between two successive

perturbations, constitutes a sampled-data model for the series resonant

converter's dynamics response to small perturbations in the switching

period, the input voltage, the output voltage or the circuit parameters.

If T2 (time at which transistors are turned on and off) is the only

control variable, in P, that is varied from one half cycle to the

other, then the nominal switching instant (steady state switching

instant) and the actual switching instant are different by some amount

A, as shown in Fig. 4-9. Although the sampling instant varies from the

nominal switching instant, these variations are not troublesome if

Ak = 1 tj,s (4.33)

is small compared with the nominal switching period TS,

where:

tj,s is the perturbation in the duration of the j-th switching cycle.
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Fig. 4-9 Nominal and perturbed states of a resonant converter
over a half cycle

The matrix A of (4.32) consists of two parts, when the load is a

voltage source. One is the F matrix calculated in (4.14), and the other

is a term that includes the dependence of the indirectly controlled

transition times (T 1 ) on the state trajectory. In the case where the

load is resistive, the F and the G matrices of (4.14) are no longer

dependent on T . This is because the configurations for the transistor

conduction time and the diode conduction time are the same. In other

words, the matrices Ak, and Bki of equation (4.1) are the same for the

diode and the transistor conduction times. Therefore the A of the

small-signal model is equal to the F matrix of (4.14). Hence, the

frequency of the response of the converter state variables to a step

change in the switching frequency, or to any other control parameter, for
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a resistive load, is the damped resonant frequency of the circuit.

With the A and the B matrices calculated over a half-cycle (i.e

using the half-cycle large-signal model of (4.31)), the small signal

model can be formed by sampling the perturbation xk at the beginning of

each odd half-cycle and +Wx1~ at the beginning of each even half-cycle.

The small-signal model over a half cycle is then given by:

1i+1 = W A a + W B q (4.34)

with a. and x. related, as before, by equation (4.17).
1 1

The model over a full-cycle can be found by a similar discussion to

the one for the large-signal model. If the controlling parameters vary

once per cycle, the half cycle model can be extended to a full cycle

model by applying equation (4.31) twice in succession. The small signal

model over a full-cycle then becomes

xk+1 = A2 xk + [A - I]Bqk (4.35)

(v) Eigenvalues and frequency-domain expressions

Equations (4.34) or (4.35) give the time-domain representation of

the perturbed system. To find the frequency-domain representation, we

take the z-transform of (4.34) which gives:

S(z) = (zI - WA) 1VB Q(z) (4.36)

This gives the transfer function (zI - WA)~ WB, from which the poles and

zeros of the system are determined. Bode-plots and root loci as a

function of any of the circuit parameters can then be computed. The

poles of the system transfer function, for the half cycle model, are the

eigenvalues of the matrix V A. For the full-cycle model of equation
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(4.35), the poles of the transfer function are the eigenvalues of the

matrix A 2 .

(vi) Perturbation in the switching freguency

If the interest is to develop a dynamic model of the the response

to perturbations in the switching frequency instead of in the switching

period, we use the fact that the steady state switching frequency (FS) is

related to the switching period (TS) by the following equation:

TS - 1/2FS (437)

and the perturbations ta and f. in TS and FS respectively are therefore

related by the following equation:

8 Ts 1
t -- fa -- f (4.38)

a FS 2FS2

(vii) Generalization of the model to other nower electronic circuits

The sampled-data small-signal model developed for the series

resonant converter has been generalized to other power electronic

circuits. The procedure is described in [61].

(6) Results and Discussion

In this section we shall present some of the results of the

sampled-data small-signal model for the series resonant converter.

Results obtained from the mathematical model will be compared with those

obtained using the Parity Simulator.

(A) Effects of the parity simulator Darasitic elements

There are some nonidealities of the Simulator components that will

contribute to the discrepancy between the theoratical and experimental
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results. For stability reasons, each element in the Parity Simulator

has a resistance of 5.0 ohms in series with it. The inductor model also

has a parallel resistance, the value of which depends on the value of

the inductance. These appear in the simulated circuit after they are

multiplied by the impedance scale factor. It is found that these

resistors have an effect on the value of the steady state point of the

series resonant converter. The parameters of the converter circuit and

the scale factors, as given earlier, are:

L = 1.94E-6 H C = 1.OE-7 F

V. = 14V F = 40 kHz
in S

fsc = 2.5E-4 isc = 0.001 vsc = 0.1

With these element values and scale factors, each element has a resistor

of 0.2 ohms in series with it. The parallel resistor across the inductor

is 1880 ohm. In each switch configuration there are seven elements

connected in series, so the total series resistance becomes 1.4 ohms.

The modified circuit is shown in Fig. 4-10.

(B) Results

The results obtained from the mathematical model agree with those

obtained using the Parity simulator. Given in Fig. 4-11 is a printout

of the results of the mathematical model obtained for the dynamics of

the series converter, when the output voltage V is zero. The frequency

of response of the output current (the rectified inductor current) in

this case is 4.172 kHz. This frequency equals the difference between

the switching frequency (40 kHz) and the resonant frequency (35.586

kHz).
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Fig. 4-10 The series resonant converter circuit including
the parasitic resistors on the simulator

Steady state results are:

ILO - -1.8070047870E+00
VCO - -1.9054185812E+01
TI - 5.2257566028E-06

The simulation results (using full period):-

THE F MATRIX
( 6.8048438620E-01 1.1787618525E-021

( -2.3405727626E+01 6.8639919314E-OlJ

THE G MATRIX
I -2.4483847438E+04J

I -1.7252606594E+071

THE POLES OF THE SYSTEM IN THE Z-PLANE ARE
Z1 - 6.8344178967E-01 +j 5.2525140867E-01
z2 - 6.8344178967E-01 -j 5.2525140867E-01

THE CORRESPONDING POLES ON THE S-PLANE ARE
al - -5.9416766921E+03 +j 2.6210425399E+04
s2 - -5.9416766921E+03 -j 2.6210425399E+04
Wn - 2.6875452024E+04 zeta - 2.2108192587E-01
fn - 4.2773610374E+03 fd - 4.1715187627E+03

THE ZERO OF THE INDUCTOR CURRENT IN THE Z-PLANE IS
zi - -7.6197767702E+00

THE ZERO OF THE CAPACITOR VOLTAGE IN THE Z-PLANE IS
zY - 7.1370036787E-01

Fig. 4-11 Results of the small-signal model for the series resonant
converter of Fig. 4-10, when V = 0.0 V
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The response obtained from the Parity Simulator is shown in Fig. 4-12.

The frequency of oscillation of the response of the output current is

voltage about 1.11 Hz. When this frequency is divided by the frequency

scale factor (2.5 E-4). to get the frequency on the actual circuit, it

is found that the frequency of the response is 4.44 kHz which agrees

well with the results obtained from the model.

Fig. 4-12 Response of the output current i
to a 5% step in the switching frequency 0

Another example of the match between the results of the model and

those of the Simulator may be seen when V is equal to 5.0 V. As stated

in the simulation shown in Section 3. the response from the Parity

Simulator has a kick in the opposite direction of the steady state.

This raises the question of the existence of a right half-plane zero.

Fig. 4-13 shows the model results when V is 5.0 V. The zero of the

inductor current transfer function in the z-domain is at z = 1.527 which

is to the right of +1 and therefore corresponds to a right half-plane

zero.
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Steady state results are:

ILO - -1.32978990399+00
VCO - -3.44909841762+01
Ti - 3.6971288654E-06

The simulation results (using balf period):-

THE F MATRIX
( 8.43574046049-01 7.54456764819-031

( -1.0173781722+01 7.995459063E-01i

THE 0 MATRIX
1 1.3874283337E+031

I -1.33876293499+071

THE POLES OF THE S!STE IN TIE Z-PLANE ARE
zi - 8.2156101334E-01 +J 2.7617409057E-01
Z2 - 9.2156101334E-01 -J 2.7617408057E-01

THE CORRESPONDING POLES GN THE S-PLANE ARE
al - -1.1441490560E+04 +J 2.5943227899E+04
s2 - -1.1441490560E+04 -j 2.S943227899E+04
Wn - 2.354166890E+04 zeta - 4.0352060439E-01
fa - 4.5127051799+03 fd - 4.128992959$E+03

THE ZERO OF THE INDUCTOR CURRENT IN THE Z-PLANE IS
zJ - 1.5275394403E+00

THE ZERO OF THE CAPACITOR VOLTAGE IN THE Z-PLANE IS
zY - 7.38139955349-01

Fig. 4-13 Results of the small-signal model for the series resonant
converter of Fig. 4-10, when V = 5.0 V

Fig. 4-14a shows the locus of natural frequencies or poles (which

are just the eigenvalues of A 2) for the discrete-time system of (4.35)

as the load voltage V varies. Mapping these back to "equivalent"

continuous-time poles, using the transformation z = e sTS, we get Fig.

4-14b. For small values of V the poles are lightly damped and at the

difference between the switching and resonant frequencies. It is

essentially at this difference frequency that the envelope of the

resonant current is observed to ring in response to a small step change

in the switching frequency, as discussed earlier for the case of V0 = 0.
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Fig. 4-14 Locus of the poles as V is varied
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(7) Other Related Issues

The dynamic model obtained for the series converter allows the

calculation of the sensitivity of the steady state to parameter

variations. It also makes the automatabilty of the analysis of such

converters feasible. The two issues are discussed in the following

sections.

(A) Sensitivity Analysis

It is important to know the effects of component and control

parameter variations on both the steady state and the dynamic behavior.

Sensitivity calculations can be derived directly from the expressions

developed for the dynamic model of a converter. For example, to find the

effect a system parameter on the system Dehavior, the parameter is

included as a control parameter P[i] of the vector Pk. To find the

expression for the sensitivity, assume that we want the sensitivity of

I[j] with respect to the control parameter Pi]. Then the normalized

sensitivity is defined as:

P[i]
S = (AX[j]/X[j])/(AP[i]/P[i]) (4.39)
'[j]

XI[j] and Pli] are the steady state values, and given in (4.19). Now A

Z[j]/AP[i] is the element determined by the j-th row and the the i-th

column of the Jacobian [AX/API, which can be obtained from (4.31) as:

[AX/A P] = -(I - A)~1B (4.40)

where A and B are as defined in equation (4.32). This shows that the

partial derivative matrices of F, G and a with respect to I, P and T

that have been calculated for the sampled-data model can be used to

determine the sensitivity.
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(B) Automatability

Computer programs capable of determining transient and steady state

responses of large linear networks are available. These programs

solve the circuit equations from a simple description of the circuit

topology and components. Some of these programs solve the circuit

equations symbolically, while others use numerical techniques. The

symbolic techniques obtain relations among circuit parameters,

irrespective of any numerical values, while the numerical methods need

numerical values to start various computational procedures. Symbolic

analysis can provide greater insight into the problem and its solution;

furthermore, solving the problem for a new choice of parameter values

usually involves only substitution and evaluation, rather than starting

the analysis again from scratch.

In the area of power converters, some of these techniques have been

successfully used to automate the analysis dc-dc converters, using

state-space-averaged models [63]. The key steps to automatically

obtaining a general sampled-data model may follow steps similar to [59].

where symbolical as well as numerical possibilities are discussed.

Symbolic automation

The use of digital computers in designing power converters has been

limited to numerical computations. However there is a growing

availability of programs such as MACSYMA [64] and SMP [65] to obtain

symbolic solutions of circuits. Such programs are attractive to

consider for use in automated model derivation and analysis. MACSYMA

(Project MAC's SYmbolic MAnipulation Program) is a computer package

developed over many years by the Mathlab Group at MIT. The program,

written in LISP, is capable of performing symbolic as well as numerical
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mathematical manipulations. We have used this program to derive a small

signal sampled-data model for the series resonant converter. All the

computations involved, starting from the state-space description of

equation (4.1) and going via the sampled-data descriptions (4.12) and

(4.15) to the small signal model given by (4.32) are carried out using

MACSYMA, yielding a symbolic model for the converter. Thus, each time a

new values for the converter parameters are given, the new model is

determined by simple substitution for the symbols after the new cyclic

steady state has been calculated numerically from (4.19). Matrix

exponentials and their associated integrals, as well as partial

derivatives and other results are obtained symbolically. In addition.

plotting and numerical computations can be carried out using MACSYMA.

Although the computations are done interactively, MACSYMA can also be

run in a batch mode. Therefore, essentially all the steps needed for

automated symbolic derivation of the general sampled-data model are

available. Other examples of use symbolic analysis of circuits can be

found in [53] and [541.

Numerical automation

As pointed out earlier, a lot of programs that numerically

determine the behavior of power converters are available. For instance,

most of the numerical programs used in (63] for automating dc-dc

converter models can be used in the automation of our general sampled

data model. Programs for numerically obtaining the state equations

from a circuit description exist and have been discussed in many text

books [53], [54], [68]. Many routines have been written to numerically

calculate matrix exponentials and their integrals [66], [67].
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Computation of the perturbations and derivation of the small signal

model as well as eigenvalues and frequency response are very much the

same as those used in [63].
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APPENDIX 4A

SOLUTION OF THE STEADY STATE FOR THE SERIES RESONANT CONVERTER

(1) Introduction

In this appendix we will discuss two methods for solving the steady

state nonlinear equations of the series resonant converter discussed in

chapter IV. The first is the Newton-Raphson iterative method, and the

second is a noniterative method that uses phase plane techniques.

The state variable vector x(t). as defined in Chapter IV, has the

inductor current i L(t) and the capacitor voltage vC(t). The steady

state is defined by the periodic or cyclic operation, as:

x(2T ) = x(O) = -x(T ) = I (4A.1)
5 5

where Ts is defined as half the switching period, and the minus sign is

because of the half-cycle symmetry of the waveforms of the state

variables.

The nonlinear equation relating the state vector I to the circuit

parameters P and the indirectly controlled transit time T1 can be

written as:

I = f(X, P, T1 ) (4A.2)

This equation is nonlinear because the transit time T depends on the

state I and control vector P. Two methods have been used, and will be

described in the following sections.

(2) The Iterative Solution (Newton-Raphson Method)

The dependance of T on I is given by the threshold condition that

the inductor current, which is also the diode current, vanishes at the

end of the transit time Ti, and is given by the equation below:
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iL(Tj) = c(I, P, TI)

This threshold equation (4A.3) together with the nonlinear equation

(4A.2) can be used in an iterative numerical method to solve for the

steady state values of I and T 1 . The Newton-Raphson method has been

used, and the steps of the solution are given below:

(i) Assume a value for T, (A better guess should be less than T.).

(ii) Calculate the value of I using equations (4A.2).

(iii) Substitute the calculated values of (ii) and T, in equation

(4A.3). If the result is zero then the assumed T, and the

calculated I are the required steady state values.

(iv) If the result of (iii) is not zero, then update T1 as follows:

iL(tk + T1)old)
T )new = Tj)old - _____-+--------(4A-4)

DEN

a iL a iL VC a iL a IL
where DEN - - + ----

a T1 1 VC a Tl a IL a T,

and iL = iL(tk + TI)

(v) Repeat steps (ii) through (iv) until (4A.3) is satisfied.

(3) Non-teratiye method (The Phase PJane method)

It turns out that for the case of the series resonant converter, a

non-iterative method can be used to find steady state. The solution of

each state equation for the converter can be represented by an arc of a

circle in a phase plain of iL(t) vs. vC(t). To illustrate this consider
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the circuit of Fig. 4A-1 which represents any of the four switching

configurations. The only variation in this circuit is that polarity of

the output voltage v0 changes, depending on which switch is conducting.

tL

Fig. 4A-1 Circuit diagram for the switching configurations
of the series resonant converter

KVL for the circuit can be written as:

vC + v L= (vI + v0) (4A.4a)

with,
iL = C dv C/dt (4A.4b)

v = L di /dt (4A.4c)

Therefore 
2
dvC

C+LC C = ) (4A.5a)
dt

multiplying (4A.5.a) by dv C/dt gives

C

dvC dvC d2 v d vC
v C + L C - ----- = (v + v) - (4A.5b)

d t d t d t d t
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which can be written as

vC dvC + (LC/2) d(iL C) 2 = (vI + v0) dvC

If z /L/C
0

and v = iL z then (4A.5.c) becomes

vC dvC + (1/2) d v = (vI + v 0 ) dv C

integrating (4A.6) gives:

2 '2
vC + v = 2 (vi +v 0 ) vC + K

which can be written as:

(VC + V1 ) 2
'2 2
+v = D

OR

2 '2
(vC +V2) + v =

K, Q and D are constants.

The phase plane of v vs vC

N.l on

0'-7
7-

7
715

Dl oo

//

with V, = VI + v0

with V2 = vI + v0Q
2

shown on Fig. 4A-2.

0 D2 on

V2

T

Vt N2 on

Fig. 4A-2 Phase plane of the inductor and the capacitor voltages
over a complete switching cycle
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Equations can be written from this phase plane and can be solved

for the steady state VC, IL and T, as follows:

V2 + Qej =-V, + Deip (4A.9)

Symmetry gives:

-V 2 + Q =-VI + D (4A.10)

Diode conduction time + transistor conduction time -Ts

or (x - a) + - Wr Ts (4A.11)

Equation (4A.9) gives

2 v, Ded" - QeiP (4A.12)

Equation (4A.10) gives:

2 v 0  D - Q (4A.13)

Substituting from (4A.11) and (4A.13) in (4A.12) gives

2 vI - D eJ(Wr Ts - x + a) -(D - 2v0 )e a (4A.14)

Equating the real parts of (4A.14) gives

(2 vj)2 - (D cos(Wr Ts - N) - (D-2v0) 
2 + D2 sin2 (Wr T - I)

which gives the following quadratic equation in D:

, D2 - 2v0 D - V1 V2 /cos
2 (Wr Ts) - 0 (4A.15a)

which can be solved for D as:

D = v0 + V0
2 + V V2/cos

2 (Wr Ts) (4A.15b)
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Q - D - 2 v0

D sin( WrTs-A
tan~1 (--- ------- ) (4A.15d)

-D ( 1 + cos Wr TS) + 2 v0

P = N - a (4A.15e)

The steady state values are given by:

Ti - (A/W) (4A.16a)

c - B + Q cosa (4A.16b)

IL = Q sina /Zo (4A.16c)

This phase plane method in addition to giving the exact steady

state solution, it saves a lot of computational time compared to the

iterative method. It may also applicable to all do-dc resonant

converter. It can also be of potential for the studying the large signal

response of the converter.
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CHAPTER V

CONTROL OF RESONANT CONVERTERS

(1) Introduction

The ability to characterize a resonant converter by a dynamic

model, using results of the previous chapter, makes the control system

synthesis for the converter possible. Ways to better control the

converter through feedback loops can be developed by examining different

controllers in the context of the model.

The essential control task is to implement a control algorithm that

generates the control signals to the converter based on measured output

signals from the converter. The controller must also generate the

control signals fast enough to retain control of the plant. Therefore,

speed can be a severe limitation on the controller for systems with

dynamics at high frequency. The use of microprocessors as a replacement

for conventional analog controllers, to implement discrete controllers,

therefore has advantages and limitations. The advantages are

flexibility, programmability and the ability to handle other

supplementary functions like start up and protection. On the other

hand, since the controller must operate in real time, there is a speed

limitation when controlling a very high speed system.

In resonant converters one usually controls the output voltage or

current by varying the ratio fsI r. In the past, designers have used

the static characteristics of the converter (dc gain) to control the

switching frequency. Such a controller can lead to stability problems.

A dynamic model such as the one developed in Chapter IV is useful in

determining the exact transfer function of the converter, which allows a
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circuit designer to apply all the simple techniques of linear network

and control theory such as Bode plots and root locus construction to

intelligently design feedback loops. In addition, it allows comparison

of the dynamics of different resonant converters and choice of the most

suitable one.

The goal of this chapter is to investigate some of the above

issues. In particular, the goal is to design a feedback system based on

the model developed in Chapter IV, and determine some of the limitations

of the controller when microprocessors are used. A model operating at

low frequency, specifically MIT's Parity Simulator [69], is used to

study these limitations. Also, theoretical calculations of the delays

caused by the controller will be made to determine the limitations on the

speed of the controller.

We shall consider the application of the closed loop pole placement

method in the design of a computer based control system for a series

resonant converter. The purpose of the controller is to reduce the

error in the converter output current by dynamic control of the

switching frequency. This goal is accomplished by placing the closed

loop poles of the transfer function from the switching frequency to the

output current well inside the unit circle in the z-plane.

Section 2 of the chapter describes the control laws that we used,

namely full state feedback and periodically varying output feedback. In

Section 3 the problem of computer control and the effect of the computer

delay on the dynamics of a feedback system are addressed. Section 4

describes two approaches used to implement the controller. One uses the

Parity Simulator Generalized Controller [80]. and the other uses a

Compupro microcomputer. Section 5 discusses the control results.
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(2) Calculation of Feedback Gains

In this section we present the design of a feedback system based on

the state space model of a dynamic system. The technique we use is the

pole assignment or pole placement technique. The design results in the

assignment of the poles of a closed loop transfer function (zeros of the

characteristic equation) to desired locations. This method will be

applied to two control laws: state feedback and periodic output

feedback.

Consider the discrete linear time invariant (DLTI) dynamical

equation:

x(k+1) = Ax(k) + bu(k) (5.1a)

y(k) = cx(k) (5.1b)

In this case we assume a single input, single output system with n state

variables. Equation (5.1) is the same as the sampled-data equation

developed in Chapter IV for the dynamics of the series resonant

converter. To arbitrarily place the poles of the closed loop transfer

function, we have to assume that the system is controllable (see

definition of controllability in [70] or [75].

(A) State feedback gain calculation

Given the system in equation (5.1), under the state feedback

operation corresponds to generating the control input u(k) by the

relationship

u(k) = -Fx(k) (5.2a)

where

F = [F1 F2 .... Fn] (5.2b)
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Then (5.1a) can be written as

x(k + 1) = (A - bF)x(k) (5.2c)

If we choose the desired closed loop poles locations at

z = Z1 , Z 2 *......*... Zn (5.3)

Then the system characteristic polynomial is

PC (z) = det(zI - A + bF)

= (z - z 1 )(z - z 2 ) ..... (z - z.) (5.4)

In this equation there are n unknowns F1 . F2 9 "... Fn, and n known

coefficients in the right-hand side polynomial. We can solve for the

unknown gains by equating coefficients in (5.4).

As an example, let us consider a second order system. The

characteristic equation can be written as:

z - all + b1 F1

-a21 + b 2 F1

= Z2- q z - q2

= Z2- (z1 + z 2 ) z + z1 z 2

-a 1 2 + b1 F2

z - a2 2 + b2 F2J

q=

q2 =
=

Equation

matching

-(b 1 F1 - al1 ) - (b 2 F 2 - a2 2 ) = zl + z2 (5.5a)

(b1 F2 - a1 2) (b 2 F 1 - a2 1 ) -(b 1 F1 -a1 1 ) (b 2 F2 - a 2 2 )

- z1 z 2  
(5.5b)

(5.5) can be used to solve for F1 and F 2 . The procedure of

coefficients becomes difficult for a system higher than a
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second order system. A procedure that greatly simplify the calculation

of the gain matrix F is given in in [70] and [751.

(B) Periodic output feedback

Output feedback with time varying gain and the associated problems

of stabilization and arbitrary closed loop pole assignment have received

some attention in the literature, see [713, [73] and references therein.

Such a feedback system is in principle more flexible than output

feedback with a constant gain. The stability and eigenvalue assignment

have been investigated for a linear, time invariant, second order

discrete system with periodic feedback. It has been shown that with

two-periodic output feedback gain, the system can have both the closed

loop poles at the origin, and with three-periodic output feedback the

poles can be placed anywhere inside the unit circle [71]. It is not

known whether such results can be achieved practically. In this section

we will consider the theory behind periodic output feedback and present

some experimental results in Section 5.

Let us consider the discrete system of equation (5.1). When N-

periodic output feedback of the form

u(k) = F(k) y(k), F(k) = F(k + N). and F(k) is real, (5.6)

is introduced, the closed-loop system is described by

x(k+l) = (A + b F(k)c) x(k) = A(k) x(k) (5.7a)

y(k) = c x(k) (5.7b)

The system described by equations (5.7) is a linear periodic discrete

system because
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A(k) = A(k+N) (5.8)

The system dynamics is determined by the eigenvalues of the state

transition matrix Ac. over one period, given by

Ac = A(N-I+k) A(N-2+k) ... A(k) (5.9)

= (A + bF(N-1+k)c)(A + bF(N-2+k)c) .... (A + bF(k)c) (5.10)

If we choose the closed-loop poles locations at

z = z1 , z2 , ....*.... Zn,

then the system characteristic polynomial becomes

PC(z) = (z - zl)(z - z2 ) .... (z zn) = det(zI - Ac) (5.11)

It has been shown that for arbitrary assignment of the eigenvalues, the

period N must be greater than or equal to the number of state variables

n [71]. For N equal to n, the gains can be solved for by equating the

coefficients in equation (5.11). For N > n, we can choose (N - n)

gains arbitrarily, and the remaining n gains can be found by matching

the coefficients in equation (5.11).

As stated earlier, most of the existing analysis of periodic

output feedback has concentrated on the analysis of second order

systems. It has been that shown with two gains, a dead beat (both of

the closed loop poles at the origin) can be achieved. With three gains

the poles can be arbitrarily chosen inside the unit circle. Our results

have shown that for a third order system, with a period equal to 3, the

poles cannot be arbitrarily chosen inside the unit circle. Moreover.

the gains values are very sensitive to changes in the specified closed

loop poles.
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(3) Effects of the Computer Delay

The application of the feedback control laws discussed in Section

2. in a computer-based system would require an on line computation of

the input in equations (5.2a) and (5.6). The difficulty with such a

design is that there is a restriction imposed by the finite

computational delay inherent in any computer-based control system. so

that it may be impossible to have u(k) depend on x(k) or y(k). To model

this computational delay, define a delayed input v(k) as

v(k) = u(k+l) (5.12)

The original plant dynamics in equation (5.1) is then augmented to

include the computational delay, and the new system becomes

x(k) A b x(k) 0

+ v(k) (5.13)

u(k+l) 0 0 u(k) 1

which has (n+1) states. The state feedback control law then becomes

v(k) = F x(k) + Fn+i u(k) (5.14a)

u(k) = F x(k-1) + Fn+i u(k-1) (5.14b)

where F is as defined in equation (5.2a). The pole placement method

discussed earlier can now be used to determine the gains.

In cases where the calculation time is small compared to the

sampling period, the computer delay can be ignored. Some experimental

results demonstrating the effect of including or ignoring the computer

delay will be presented in Section 5.
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(4) Control Implementation

A computer-based control system has been used to control a Parity

Simulator model of the series resonant converter shown in Fig. 5-1.

7

VC

Fig. 5-1 The series resonant dc-dc converter

The parameter values for the series resonant converter are:

L = 197 uH C = 100 nF

Vin 14V Vo = 5.0 V

fs = 40 kHz

and the simulator scale factors are:

vsc = voltage scale factor = 0.1

isc = current scale factor = 0.002

fsc = frequency scale factor = 2.5e-4

The simulator model is slowed down by the factor fsc. The objective

here is to test the control algorithm; speeding up the hardware is left

for a later development.
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The state variables are the inductor current iL(t) and the

capacitor voltage vC(t). The output is the rectified inductor current

i0 . The input is the drive frequency f. which controls the transistors

N, and N 2 . The waveforms of the state variables for one switching

period are shown in Fig. 5-2. The goal is to control the output current

io by changing the switching frequency fa. Recall that the linear

sampled-data model we obtained in Chapter IV describes small

perturbations away from the steady state operation. The controller

therefore samples the output or the state variables once every cycle.

and compares the sampled values with the steady state values. The error

is fed back through a gain and added to the reference switching

frequency. The open loop A and b matrices of the dynamics of the

converter, due to small changes in the switching frequency, are:

0.635 0.0124 -2.42e-5

A= b = (5.15)

-16.72 0.563 0.004

If we are to use the model developed in Chapter IV, the sampling

instant in the waveforms of Fig-5-2 is corresponding to the start of

conduction of the diode Di. Controlling the state variables at these

points implies the control of any other point in the cycle, because the

other points in the cycle are related to the sampled points by the

auxiliary variables equations defined in Chapter IV. For example, the

average or the peak of the waveforms can be considered as auxiliary

outputs that are function of the state variables. The small signal

transfer functions the switching frequency to such auxiliary outputs

have the same poles but different zeros.
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Fig. 5-2 Waveforms of the state variables of the series
resonant converter in Fig. 5-1

The controller has been implemented in two ways: On the Parity

Simulator Generalized Controller [80] and on a Compupro microcomputer.

In the following subsections we shall discuss each implementation and in

Section 5 we shall present some of the corresponding results.

(A) The parity simulator generalized controller

A generalized controller has been constructed for use with the

Parity Simulator. The purpose of the controller is to allow the user of

the Parity Simulator to design the control-system portion of a circuit

under evaluation by way of digital simulation rather than by other

means, such as breadboarding a hardware controller. Implementations of

basic control blocks such as integrators, differentiators, gains and
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summers have been included. Twenty one functions are available to the

user. These functions, together with the time to execute each of them

on the the present IBM PC-XT implementation, are given in Table 5-2.

They can be combined to implement a variety of control strategies.

Table 5-2 Generalized controller functions

The hardware of the controller consists of an IBM microcomputer attached

to the simulator via a panel interface card cage. A compiler has been

written for the controller. This computer program generates an assembly

language source file containing the necessary instructions for the

microcomputer to perform the control simulation specified by the user.
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Control Function Execution Time (psec)
Analog Input 86
Analog Output 75
Angle-to-voltage Converter 30
Digital Input 7
Digital Output 5
Comparator w/ hysterisis 45
Dead Band 30
Differentiator 82
Divider 24
Gain 25
High-pass Filter (single-pole) 82
Integrator 100
Limiter 40
Logic-controlled Switch 10
Look-up & Interpolate
Low-pass Filter (single-pole) 80
Multiplier 24
Summing Junction (1 input) 30
Summing Junction (2 inputs) 40
Summing Junction (3 inputs) 50
Time Delay 40
Voltage Reference no run-time penalty



Signals from the Parity Simulator are connected to the controller

input terminals. These signals are processed by the control computer

during each sampling period of the controller. The control-block

functions performed by the controller are specified by the user. The

control signals generated at the controller output are connected to

functions on the simulator panel such as pulse-width modulated (PWM)

gate drives and frequency generators. The controller has the capability

of sampling and generating up to 8 analog signals and 8 digital signals.

The generalized controller has been used to implement both state and

output feedbacks to control the series resonant converter.

(i) State feedback

A block diagram showing the connections of the Parity Simulator and

its generalized controller for the control of the series resonant dc-dc

converter are shown in Fig. 5-3. The inductor current iL and the

capacitor voltage vC are available to the controller through the sensors

Y, and X, respectively. The signals are connected to two analog inputs

of the Generalized Controller. Each analog input has a scaling factor

associated with it. These gains are chosen to be the inverse of the

current and voltage scale factors (isc and vsc) in the Simulator.

Therefore the outputs of controller analog inputs correspond to the

actual circuit currents and voltages.

The signals are then sampled synchronously with the turn-off of N 2 ,

when D, starts to conduct. The sampled signals are connected to summing

junctions where the steady-state operating operating values ILR and VCR

are subtracted. The outputs of the summing junctions correspond to the

sampled errors in the inductor current iLe(k) and the capacitor voltage

vCe(k). These errors are multiplied by their respective gains ki and
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kv. calculated from the state feedback control design. They are then

summed with the correction error in the input switching frequency fse(k)

times a gain kf, see (5.14). The output of the summing becomes the

correction in the input frequency fse(k+l) at the next cycle, which is

the reason for including the delay element in Fig. 5-3. In this case we

are using a third order model, namely the second order system of the

series converter augmented by the computer delay.

Fig. 5-3 A block diagram of the closed-loop control of the series
resonant converter using the generalized controller
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The control correction signal fse(k) is added at another summing

junction to the reference switching frequency FSR. The output of the

summing junction is a voltage proportional to the switching frequency.

It is multiplied by a gain that equals the ratio of the frequency scale

factor (fsc) to the voltage scale factor (vsc) of the Parity Simulator.

This is then fed into the input of a VCO built in the simulator to give

the required switching frequency.

If the computer delay is small comapred to the sampling period, one

can ignore it and the block diagram of Fig. 5-3 can be redrawn as in

Fig. 5-4. This implementation corresponds to a state feedback for a

second order system.

VCF

4

44)4

VCR

V 5 C~L

Cc

kc

Le~k

Fig. 5-4 State feedback implementation without
a delay block using the generalized controller
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(ii) Periodic output feedback

Fig. 5-5 shows the implementation of the periodic output feedback

using the Generalized Controller. This block diagram differs from Figs.

5-3 and 5-4 in that only the inductor current is fed back. This is

because the output current io that we want to control is equal to the

rectified inductor current. The error in the inductor current is

multiplied by a variable gain K(k). The switching from one gain to

another is implemented by a software counter function whose cycle is equal

to the period of the feedback ( which we have picked to be 2 for a

system without the computer delay and 3 for a system with the computer

delay).

Fig. 5-5 Generalized controller implementation of
the periodic output feedback
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(B) The compupro microcomputer

The two control laws have also been implemented using a Compupro

microcomputer. This implementation is the same as the generalized

controller, except that its software is written using the C language,

and the circuit that interfaces the computer with the Parity Simulator

is built externally, whereas in the Generalized Controller the software

is written in assembly language and the interface circuit is built into

the computer. Fig. 5-6 shows a block diagram of the Compupro

implementation of the state feedback.

s/H-

A/D

V/CO

Fig. 5-6 A block diagram of the state feedback
control using the Compupro microcomputer
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The state variables are sampled and fed into an analog-to-digital

circuit (A/D). The data output of the A/D is entered into the Compupro

microcomputer, using three input/output (I/0) ports which are also used

to control the interface circuit. The software performs the following

functions :

(i) It subtracts the sampled state variables from their

corresponding steady state values.

(ii) It multiplies the errors in the state variables by their

corresponding gains, and adds them to obtain the control

correction to the switching frequency.

(iii) It adds the frequency correction calculated above to the

reference switching frequency, and loads the result through the

I/O ports to the input of the digital-to-analog converter (D/A)

which gives an output voltage proportional to the commanded

switching frequency.

The circuits showing the connections of the A/D and the D/A

interfaces are shown in Figs. 5-7 and 5-8 respectively. The computer

I/O ports are labelled 128, 129, and 130. Signals to the input of the

A/D are obtained from the output of the analog multiplexer AD7501 whose

inputs are selected by a 3 bit control signal from the microcomputer.

The synch pulse is used to synchronize the Compupro and the Parity

Simulator. This pulse occurs at the sampling instant when the diode Di

of Fig. 5-2 starts conducting. The comparator LM311 is used to generate

a step change in the reference switching frequency.

The implementation of the periodic output feedback control, using

the Compupro, is the same as explained in the case of periodic output

feedback using the generalized controller.
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(5) Results and Discussions

In this section, experimental results obtained from the above

described implementations are described. We shall first present the

results obtained for state feedback control using the generalized

controller and the Compupro. Secondly we shall present the results of

the periodic output feedback.

(A) State feedback

(i) Using the parity simulator generalized controller

For the series converter circuit, with the parameters specified

earlier, the implementation of the state feedback has been done with and

without the computer delay.

Fig. 5-9a shows the open loop response of the output current to a

5% step changes in the reference switching frequency, and in Fig. 5-9b

the same step response is shown when the input is fed from the

controller rather than from the simulator. The open loop output current

response with the input frequency fed from the controller has some

irregularities. This could be related either to quantitization error or

some noise in the controller. The upward transition of the response is

different from the downward transition, because the response depends on

the operating point of the converter. The downward transition

correspond to the 40 kHz switching frequency.

The closed loop is first implemented with a control delay of one

sampling cycle, but with state feedback designed assuming no delay. i.e

using the second order model. The system is designed to have closed

loop poles at z = 0.2 +jO.2. The gains required are ki= 1169.3 and

kv = -192.4. The response to 5% step changes in the switching frequency

is shown in Fig. 5-10a. The response is close to unstable at a
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frequency equal to one-fifth the switching frequency. This is a very

interesting result that demonstrates the importance of the modeling

computer delay.

To ensure that the instability is due to ignoring the effect of

the computer delay, the two gains above with a third gain kf of zero are

used in the augmented third order model (5.13). (5.14) that takes

computer delay into account. The closed loop eigenvalues of the system

are found to be at: z = 0.316 + jO.943 and z = 0.476. The complex

conjugate pair lies virtually on the unit circle, and at an angle of

almost exactly + 21/5. which correlate excellently with the observed

behavior. A numerically simulated discrete time step response for the

third order model, obtained using the MATRIX X program, is shown in Fig.

5-10b. The frequency of oscillation is equal to five samples, which

also agrees with what is found experimentally.

The experiment is now repeated with a state feedback designed using

the more accurate third order model that includes the effect of the

computer delay. The gains are calculated to yield closed loop poles at

z = 0.2 and z = 0.2 + jO.2. Fig. 5-11 shows the response of the output

current to 5% change in the reference switching frequency. The response

is now very stable compared to what is seen Fig. 5-9a. This result

again demonstrates the importance of modeling the computer delay. When

we ignore the computer delay, we obtain a response worse than the open

loop response, and when we take the computer delay into account, we

obtain a closed loop response that is much better than the open loop

response.

A numerical simulation of the step response using MATRIX X is again

used to quantitatively the experimental results, see Fig. 511b. There
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is one difference between the two results: the MATRIX X simulations

track the point at which a diode turns ON (the point that is described

by the model and sampled by the controller), and the ones obtained on

the simulator give the response of the peak of the output current. The

two transfer functions to the two responses have the same poles, but

different zeros. This means that the diode turn-on point has the same

general dynamic behavior as the peak of the output current waveform, but

for example the initial kick in the response in Fig. 3-11b is opposite

to that of the response in the peak (corresponding to the fact that the

transfer function governing the former response has a zero to the right

of z = 1 while the other one does not).

Responses for other closed loop locations are shown in Figs. 5-12.

The response in Fig. 5-12a are for closed loop locations at z = 0.2,

z = 0.3 + jO.3. and the response in Fig. 5-12b the three closed loop are

all at z = 0.1

Now the experiment is repeated with the cycle delay in the control

removed from the implementation, so that the second order model now is

applicable. The difference between this experiment and the previous

ones is illustrated by Fig. 5-13. In Fig. 5-13a, which corresponds to

the earlier experiments, the control instant (i.e the instant to turn

off a transistor) is determined from the computation made in the

previous cycle. In Fig. 5-13b, which correspond to this experiment, the

control instant is determined from computations made on the same cycle.

The closed loop poles are placed at z = 0.2 +j 0.2. The response

corresponding to 5% step changes in the switching frequency is shown in

Fig. 5-14. It is a stable response, but the steady state value of the

output current is different from that of Fig. 5-9a, though the step
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change is the same in both cases. The reason is that the computer

calculation time is subtract from the switching period obtained by the

feedback calculations, and since the switching period (or frequency)

controls the output current, a change in its value will affect the value

of the output current.

One observation to be seen in the response of Fig. 5-14 is that the

steady state value for the step change io is different from that of Fig.

5-9a. This due to the fact that the instant at which a transistor is

turned off is advanced by an amount equals to the computational time.

This affects the final value of switching frequency which affects the

steady state value of the output current.

(a) f5 obtained from (b) f5 obtained from the
the Simulator generalized controller

Fig. 5-9 Open-loop response of the output current to
a 5% step change in fs
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(a) f. fed from the generalized controller

0 5 10 15 20 25 30 35 40

(b) MATRIX X simulation

poles at 0.2 + jO.2

Fig. 5-10 Closed loop response of the output current using
a second-order model and including a delay of one cycle
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Upper trace: switching frequency (fsc = 2.5x10~ 4, VCO scale is 1-Hz/V)
Lower trace: output current io

(a) f. fed from the generalized controller

.00006
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.00002

0

-.00002

e00004
0 i 2 3 4 5 6 7

(b) MATRIX X simulation

closed-loop poles at: z = 0.2, z = 0.2 +j 0.2

Fig. 5-11 Closed-loop response of the output current using the
generalized controller with a third-order model
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(a) closed-loop poles at: z = 0.2, z = 0.3 +j 0.3

(b) closed-loop poles at: z = 0.1, 0.1, 0.1

Fig. 5-12 Closed-loop response of the output current using the
generalized controller with a third order-model
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(a) Including the computational delay

cycle
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compute 7
control
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sample control

(b) Neglecting the computational delay

Fig. 5-13 Sampling and control instants

0--

Upper trace: output current io
Lower trace: switching frequency

poles at z = 0.2 + jO.2

Fig. 5-14 Closed-loop response of the output current
using a second-order model without a cycle delay
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(ii) Using the Compupro microcomputer

The implementation of the state feedback using the Compupro

microcomputer differs from the one using the generalized controller in

that the Compupro software is written in the C language, and the

generalized controller software is written in assembly language. This

makes the calculations faster in the Generalized Controller than in the

Compupro microcomputer. Also, the circuit that interfaces the

controller with the Simulator is built into the Generalized Controller

computer, whereas it is externally built for the Compupro microcomputer.

The simulation has therefore been slowed down by a factor of 2 in the

case of the Compupro microcomputer. The circuit parameters are changed

so that the switching frequency and the resonant frequency of the

circuit controlled by the Compupro are half those of the circuit

controlled by the Generalized Controller.

Fig. 5-15 shows the open-loop response of the output current to a

5% step change in the switching frequency. In Fig. 5-15a the control

signal is taken from the Parity Simulator, while in Fig. 5-15b the

control signal is fed from the Compupro computer with the feedback gains

being set to zero. The two responses are similar.

Fig. 5-16a shows the closed-loop response with the one-cycle

computer delay taken account of. The closed-loop poles are chosen at z

= 0.0, 0.1 and 0.5. The response is faster, and with no overshoot,

compared to the responses in Fig. 5-15. The response also matches that

of Fig. 5-16b. which has been obtained numerical simulation using

MATRIX X Also, the kick in the opposite direction to the steady state is

present in both responses. This is due to a zero to the right of +1 in

the closed-loop transfer function from the switching frequency to the
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output current. The zero of that transfer function is in fact found to

be at z = 2.3.

(B) Periodic output feedback

Periodic output feedback has been implemented using the third-order

model that accounts for the computer delay. The gains are found by

substituting the closed-loop poles in (5.11) and matching the

coefficients on the two sides of the equation. It turns out that one

cannot place the poles arbitrarily inside the unit circle, for a

third-order system. Moreover, the gains are very sensitive to small

changes in the specified closed loop poles. One might find a set of

gains for a certain set of closed-loop poles, but no gains when one of

the poles is changed by a small value.

The responses obtained through periodic output feedback are not

nearly as good as those obtained using state feedback. The practical

problems of implementing the periodic output feedback, and the resulting

performance, need further study.

Fig. 5-17 shows the open-loop and closed-loop responses of the

system under periodic output feedback using the generalized controller.

The closed loop poles are chosen to be at z = 0.0. 0.1 and 0.1. The

response of the closed loop is more damped than that of the open loop.

but is mtich slower than the open loop response. The oscillations in the

envelope of the closed-loop response are due to problems with the

generalized controller, because they are present also in the open-loop

response when the control signal is fed from the Generalized Controller.

Fig. 5-18 shows the open-loop and the closed loop responses when

the periodic output feedback is implemented using the Compupro

microcomputer. The gains are calculated for closed loop poles at z = 0.
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-0.1 and -0.1. In this case, the open-loop response is better than than

the closed-loop response. As mentioned earlier, the reason may be the

sensitivity of the gains to small changes in the closed loop poles.

To conclude this chapter, note that we have achieved the goals that

we set at the beginning. Specifically, we have shown that the dynamic

model obtained for the series resonant converter in Chapter IV can be

used to design feedback for the converter. Also, we have demonstrated

the importance of the computer calculation delay in the dynamics of

systems using digital controllers. Moreover, we have pointed out some

of the problems associated with the implementation of periodic output

feedback, since most of the work done on that area has been theoretical.
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(a) Control from the Simulator

(b) Control from the Compupro computer

For both:
Upper trace: switching frequency
Lower trace: output current

Fig. 5-15 Open-loop response of the output current to a 5%
step in the switching frequency
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Upper trace: switching frequency
Lower trace: output current

(a) Compupro microcomputer
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0

-.00005
0 2 4 6 8 10 12 14

(b) MATRIX X simulations

Closed-loop poles at z = 0, 0.1 and 0.5

Fig. 5-16 State feedback response using the Compupro microcomputer
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(a) Open-loop response

Poles at z = 0. 0.1, 0.1

(b) Closed-loop response

Fig. 5-17 Periodic output feedback response of the output current
using the generalized controller
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(a) Open-loop response

(b) closed loop response with poles at z = 0, -0.1. -0.1

For both:

Upper trace: switching frequency
Lower trace: output current

Fig. 5-18 Periodic output feedback using the Compupro microcomputer
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CHAPTER VI

SUMMARY AND DIRECTIONS FOR FURTHER WORK

(1) Summary

The literature review presented in Chapter II summarizes the work

done on resonant converters in the following two areas:

(i) Analyzing a specific converter and deriving design nomograms

using some normalized parameters such as: the output power

range, frequency range, distortion factor on output voltage and

current, efficiency, voltage and current ratings of circuit

components, and weight and size of the converter [1] - [371.

(ii) Overcoming the limitations of the thyristor turn-off time at

high frequency. In this area, thyristor inverter circuits have

been modified to perform at frequencies higher than those set

by the thyristor turn-off time. Many authors have successfully

applied the technique of time-sharing to some conventional

thyristor power inverters and developed new time-sharing

inverter technology to overcome the operating limitations of

the thyristor turn-off time.

The work of this thesis has explored three topics in the area of

resonant converters. The first topic is concerned with developing

methodologies that systematically categorize the resonant converter

topologies. The second topic is the development of dynamic models for

resonant converters. The third topic studies the use of these dynamic

model to design feedback controls for resonant converters.

In the area of topology, three methods to systematically develop

resonant converter topologies have been presented in Chapter III. The

first method starts with the fundamental function of a resonant
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converter as a dc-ac converter, and the three parts that constitute the

converter: source, a switching network and a load. A switching cell

that connects the source to the load is suggested, and two basic

topologies are then developed. These are the asymmetric and symmetric

topologies. In the asymmetric topology the voltage across the load is

unidirectional. An asymmetric positive voltage implies that load

voltage can be either equal to the dc source or zero, while asymmetric

negative voltage implies that the load voltage either equals the

negative of the dc source or zero. In the symmetric topology the dc

voltage is symmetrically applied to the load. This is can be done in

two ways: either by using one voltage source, one switching cell and a

load, or by using two voltage sources, two switching cells and one load.

The topology that results from the first way is named the full bridge

topology, and the topology that results from the second way is named the

half bridge topology. For these topologies the types of switch and load

are also studied. For a voltage-fed converter, the switch can be either

a unidirectional current switch or a bidirectional current switch, and

the load can be a series resonant load or a parallel resonant load or

their combination.

In the second method the structural symmetry of resonant

converters is used to derive other topologies. The topologies are

obtained either by splitting the resonant inductor, the resonant

capacitor or both of them. When the resonant load inductor is split, the

topology is referred to as a divided-inductor topology, and when the

resonant load capacitor is split it is referred to as a

divided-capacitor topology.
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The third method uses duality to explore the relationships among

resonant converters. Issues such as the type of switch, the number of

components (weight and size), and the modes of operation

of dual converters are discussed.

The topologies derived using the above three methods are also

derived using linear network theory, as presented in Appendix 3A.

In the area of dynamic modeling of resonant converters, discussed

in Chapter IV. Sampled-data models for both large-signal and small

perturbations about a cyclic steady state have been developed. Although

the procedure is general, it is illustrated using a series resonant

converter. Transfer functions to the output of the converter from

perturbations in the switching frequency, the input voltage, or load are

directly obtained. Results obtained from the model match with

simulations done using the MIT's Parity Simulator. Other issues such as

sensitivity of the steady state operating point to changes in the

circuit parameters, automatability of the converter analysis, and

extension of the modeling approach to include other power electronic

circuits have been discussed.

In the area of control of resonant converters, two control laws

have been implemented, based on the dynamic model obtained in Chapter

IV. These are state feedback control and periodic output feedback

control. The two control laws are tested on a series resonant converter

simulation set up on the Parity Simulator. The laws are implemented

using two digital controllers. The first uses the Parity Simulator

generalized controller, and the other uses a Compupro microcomputer.

Interesting results have been obtained. First, it is demonstrated that

one can obtain great improvement in the closed-loop reponse of the
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series converter, compared to its open-loop response. Second the effect

of the delay caused by the calculations in the computer on the

closed-loop dynamics of the converter is investigated. Results have

shown that this delay is important and should be modeled in the

dynamics.

(2) Suggestions For Future Work

Extensions of the work done in this thesis could be done in the

following:

(i) In the area of topologies, a comparative study among resonant

converters needs to be done. This would extend the

comparisons done in the this thesis, for dual converters.

(ii) A sensitivity study of the dynamic and steady state operation

of a converter to changes in the controlling parameters, using

the results obtained from the dynamic modeling of Chapter IV,

is called for.

(iii) The control results of Chapter V need to be explored further.

In particular, the results obtained for the periodic output

feedback are not yet satisfactory, though the method holds

promise. Also, it is important to apply both state feedback

and periodic output feedback to control an actual resonant

converter.
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