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Abstract

Spin liquids are fluid-like ground states of spin systems, where spins do not order at
zero temperature. These states have long-range entanglement and concomitant exotic
properties, such as fractionalized excitations and emergent gauge field. In this thesis
we use mean field approach and its extensions to address spin liquid states of spin-1
system which has no analogue for spin-1/2. Also, we consider impurity as a probe of
spin-1 system, and spinon-phonon interactions in Dirac spin liquid.

In Chapter 2, using a fermionic representation for spin-1 system, we find a state
where one flavor of spinons has a Fermi surface, while other flavors are gapped
out by d + id topological pairing [1]. Despite the existence of a Fermi surface, this
ground state has fully gapped bulk spin excitations. Within Variational Monte Carlo
techniques we study phase diagram of different spin-1 generalizations of Heisenberg
model [2]. For an SU(3)-invariant model with sufficiently strong ring-exchange terms,
we find a d+id paired quantum spin liquid with a Fermi surface of deconfined spinons.

Chapter 3 addressed the behavior of Kondo s = 1/2 impurity embedded in a
two-dimensional S = 1 U(1) spin liquid with a Fermi surface [3]. This problem
contains an interplay between non-Fermi-liquid behavior induced by a gauge field,
and a non-Fermi-liquid fixed point in the overscreened Kondo problem. We find that
the gauge field leads to observable changes in the physical properties of the system at
the overscreened Kondo fixed point. Thus, realization of overscreened Kondo physics
in U(1) spin liquid can be used as a probe of fermionic spinons.

Finally, in Chapter 4 we study the interaction of Dirac spinons with S = 1/2 with
lattice vibrations [4]. We establish the general procedure for deriving spinon-phonon
interactions which is based on a symmetry considerations, and illustrate it for different
algebraic spin liquids. Despite all considered algebraic spin liquids have identical low
energy description, spinon-phonon interaction probes the microscopic details and is
set by representation of projective symmetry group. We estimate the attenuation of
ultrasound, and discuss its experimental prospectives as probe of spinons.

Thesis Supervisor: Patrick A. Lee
Title: William & Emma Rogers Professor of Physics

3



4



Acknowledgments

Over the five years spent at MIT physics department I had countless number of

interaction with different people. Now I understand that it is these interactions that

molded and shaped me as a physicist. Acknowledging everybody who had some

influence on me seems a daunting task, and I shall attempt at least naming people

whose imprint cannot go unnoticed by any means.

First I would like to thank to my advisor, Patrick Lee, who introduced me to the

physics of strongly correlated systems - a terra incognito for me at the time of my

arrival to MIT. My explorations into the physics of spin liquids, supervised by Patrick

constitute the body of this thesis. It has been a great pleasure to work under the

guidance of Patrick, and I am grateful for all our discussions and his generous advice.

His deep physical intuition that sees the essence, or, physics, beyond complicated

equations and models fascinated me from the beginning of our work together, and

will remain a "gold standard" I will aim at. Another aspect, I am especially grateful

for was the freedom to work on problems that interested me. I am thankful for

Patrick's graciousness, patience and encouragement.

The work presented in this thesis was done in collaboration with T. Senthil, and

was fueled by his enthusiasm and relentless flow of ideas. I have learned a lot from

my interactions with Senthil, in particular about the field-theoretical language of

Condensed Matter - Senthil's "native" language. I also enjoyed collaborating with

Samuel Bieri on numerical approaches, and I am grateful for his introduction to

method of Variational Monte Carlo.

During my PhD I also worked on problems not related to spin liquids. It was

a great pleasure to work with Dmirty Abanin and Zlatko Papic on the problem of

many-body localization. Working with Dima was rewarding in a number of different

aspects. Dima possesses an ability to balance between thinking in a practical way,

while still finding fundamental and conceptually interesting problems. His driving

energy and enthusiasm along with high intellectual standards have left an indelible

mark on me. In addition, I am grateful to Dima for being a mentor and a friend, and

5



I have benefitted a lot from our philosophizing and his counsel.

During my time at MIT, I was also lucky to interact with several experimental

groups. Working hand-in-hand with experimentalists and casting some light on real

experimental data was truly rewarding for me as a theorist. I learned a lot from

the fast-paced work on topological crystalline insulators done together with Liang

Fu in collaboration with experimental group of Vidya Madhavan, and, in particular,

with Yoshinori Okada. I also acknowledge interactions with Pablo Jarillo-Herrero and

Leonardo Campos on the physics of trilayer grapehene.

I would like to express my gratitude to other that surrounded me throughout my

years at MIT. I am grateful to Leonid Levitov for his help and advices. I am very

grateful to Tim Chen and Justin Song with whom I spent many an hour talking about

physics, and truly became friends. I am especially grateful to Justin for his advice

on writing and proofreading of my papers - every other article in this thesis belongs

to him. I am also indebted for many discussions to Evelyn Tang, Matthew Pinson,

Brian Swingle, Maissam Barkeshli, Abolhassan Vaezi, Andrew Potter, David Mross,

Rahul Nandkishore, Fa Wang, Karen Michaeli, Rebecca Flint and many others.

I would like to thank people I met before I came to MIT. First and foremost I

am grateful to my master's thesis advisor, Mikhail Skvortsov, who gently introduced

me into the field of Condensed Matter Physics. Along with Mikhail, I would like to

acknowledge Andrei Varlamov and Alexei Morozov for working with me and teaching

me physics, and mentoring me throughout my years in Moscow.

The time I spent in Boston would not be so exciting and easy without the support

from my friends. I am very grateful to Alexey Vikhlinin for his support and generous

hospitality from my very first days in Boston, for his mentorship, ruminations on life,

and sincere arm in friendship. From the start Mark Mezei and Anna Posfai have been

a blessing. Mark and Anna were always offering a helping hand, and when we most

needed it - never failed including everything from cake disposal to babysitting our

daughter. I am also very indebted to Maxim Imakaev, Veronica Stelmakh and Jason

Hill, Vasily and Dasha Dzyabura for their help and support.

The Holy Epiphany parish in Boston made us feel at home; it was a single big

6



family. I am honored to be part of this family and I am grateful to the countless

number of exceptional people I have met there over past few years. I cannot list all

their names, but I am especially grateful to the Boldewskul, Bolberov, Medzhidov,

Parkhitko, and Soykin families.

I cannot express my gratitude to my wife Dasha for her endless love, patience,

and courage to follow me to the United States. All my endeavors over last five years,

would not be possible without Dasha; truly, all of them have been our endeavors. Our

lives would be much less colorful without our children, Marfa and Tikhon, who have

filled it with joy and adventure. Despite the physical distance that has separated me

from my parents and sister, I have felt their constant love, support, and confidence

in me. They have been a source of inspiration. I also thank my grandparents and my

in-laws for their love, support, and understanding.

7



8



Contents

1 Introduction 19

1.1 Defining spin liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Different spin liquids and their entanglement . . . . . . . . . . . . . 23

1.3 Mean field approach to spin liquids . . . . . . . . . . . . . . . . . . . 25

1.3.1 Beyond mean field: gauge field . . . . . . . . . . . . . . . . . 27

1.3.2 Beyond mean field: projection . . . . . . . . . . . . . . . . . 30

1.4 Main results of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.1 S = 1 spin liquid . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.2 Kondo physics in U(1) S = 1 spin liquid . . . . . . . . . . . . 33

1.4.3 Spinon-phonon interactions in algebraic spin liquid . . . . . . 33

1.5 Mean field: challenges and perspectives . . . . . . . . . . . . . . . . 34

2 S = 1 spin liquid on a triangular lattice 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 M otivation . . . . . . . . . . . ... . . . . . . . . . . . . . . . . 37

2.1.2 Possible spin liquid states with a Fermi surface . . . . . . . . . 38

2.1.3 M odels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.4 Representation of spin-1 via fermionic spinons . . . . . . . . . 43

2.2 Mean-field treatment of bilinear-biquadratic Heisenberg model . . . . 45

2.2.1 Expressing Hamiltonian via fermionic operators . . . . . . . . 45

2.2.2 Mean field equations from variational principle . . . . . . . . . 46

2.2.3 Different pairings and their symmetry properties . . . . . . . 48

2.2.4 Mean field equations for singlet pairing . . . . . . . . . . . . 51

9



2.2.5 Mean field equations for triplet pairing . . . . . . . . . . . . . 52

2.2.6 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Phase diagram from variational Monte-Carlo . . . . . . . . . . . . . 54

2.3.1 Variational wave functions for spin liquid ground states . . . 55

2.3.2 Long-range ordered states . . . . . . . . . . . . . . . . . . . . 57

2.3.3 Phase diagram of bilinear-biquadratic Heisenberg model . . . 61

2.3.4 Phase diagram of SU(3) ring-exchange model . . . . . . . . . 64

2.4 Physical properties of d + id state. . . . . . . . . . . . . . . . . . . . 67

2.4.1 Gauge theory for the d + id quantum spin liquid . . . . . . . . 67

2.4.2 Chiral edge modes for the d + id quantum spin liquid . . . . . 69

2.4.3 Thermodynamic properties and response functions of d + id

spin liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Kondo physics in S = 1 spin liquid with emergent Fermi surface 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.1 Spin liquid with fermionic excitations and impurity . . . . . . 83

3.1.2 Diagram technique . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1.3 Double expansion . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Perturbatively accessible fixed point . . . . . . . . . . . . . . . . . . 89

3.2.1 /-function in conventional Kondo problem . . . . . . . . . . . 89

3.2.2 Correction to /-function due to gauge field . . . . . . . . . . . 91

3.2.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Spinon-phonon interaction in algebraic spin liquid 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Low energy description of algebraic spin liquids . . . . . . . . . . . . 102

4.2.1 Effective field theory and projective symmetry group . . . . . 103

4.2.2 Example: wr-flux spin liquid on a square lattice . . . . . . . . 106

4.3 Spinon-phonon interaction . . . . . . . . . . . . . . . . . . . . . . . . 109

10



4.3.1 Spinon-phonon interaction Hamiltonian from symmetry consid-

erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2 Example: derivation for the 7r-flux phase . . . . . . . . . . . . 113

4.3.3 Results for the sFE, 7rF*, and OFo phases . . . . . . . . . . 116

4.3.4 Comparison between different phases . . . . . . . . . . . . . . 120

4.4 Sound attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.2 Sound attenuation in the sFD phase . . . . . . . . . . . . . . 124

4.4.3 Sound attenuation in 7rF* and OFo phases . . . . . . . . . . . 126

4.5 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Variational Monte Carlo 131

A.1 Fermionic wave functions . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Huse-Elser wave functions . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3 Symmetries of bilinear-biquadratic and SU(3)-models . . . . . . . . . 141

B Calculation of RG flow of Kondo coupling 145

B.1 Calculation of diagrams for -function . . . . . . . . . . . . . . . . . 145

B.2 Vertex corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C Spinon-phonon interactions 151

C.1 Elements of representation theory for relevant groups . . . . . . . . . 151

C.1.1 Basic facts from representation theory . . . . . . . . . . . . . 151

C.1.2 Group of square lattice and its representations . . . . . . . . 154

C.1.3 Group of honeycomb and kagome lattices . . . . . . . . . . . . 159

C.2 Calculation of the polarization operator . . . . . . . . . . . . . . . . 161

11



12



List of Figures

1-1 Cartoon picture of Neel and Anderson RVB state for just two spins

(top row) and on a square lattice. RVB state is a superposition of all

possible tilings of the lattice with nearest neighbor valence bonds. . . 21

1-2 Fractionalization of a single spin-i excitation into two spinons in a

RV B state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-1 Schematic representation of the ground state in different limits of the

Hamiltonian (2.1). White arrows represent average spin; arrows with

discs indicate the director of the nematic order parameter. Details are

discussed in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-2 Relative phase of the nearest neighbor pairing for p + ip-wave (a) and

d + id wave pairing (b) correspondingly. el and e2 are basis vectors of

triangular lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-3 The phase boundary between spin liquid ground states with p + ip and

d+id pairing. Panel (b) Gapped (dashed red line) and ungapped (blue

line) Fermi surfaces of x, y, and z-fermions for K/J = 0.55, D/J = 0.8. 54

2-4 Variational energies (per site) for the bilinear-biquadratic model, Eq. (2.37),

as a function of K, for D = -0.4. The system is N = 12 x 12 lattice

sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2-5 Pictorial presentation of the variational phase diagram that we find for

the SU(3) ring-exchange model (2.6). . . . . . . . . . . . . . . . . . . 64

2-6 Variational energies (per site) of the SU(3) ring-exchange model, Eq. (2.6),

as a function of a/7r. N = 12 x 12 lattice sites. . . . . . . . . . . . . 64

13



2-7 Optimized variational parameters A = I A- I (dot symbols, left scale)

and (S2) -2/3 (x symbols, right scale) for the d+id quantum spin liquid

state in the ring-exchange model (2.6). Among the states we consider,

the d + id state has the lowest energy in the range 0.177 < a < 0.337.

For 0.17w < a < 0.227, the optimal state is a 0-flux state with s = -1;

for 0.22w < a < 0.33w, we find a -flux state with A ce 0.5 and s = 1. 66

2-8 The four lowest energy levels of the d + id mean-field state (2.28) on

an infinite triangular-lattice strip as a function of wave vector kx along

the strip. The width of the strip is 200 sites. The boundaries are

chosen to be parallel to one lattice direction and we use open boundary

conditions. The spectrum of the f, spinon with a bulk Fermi surface

is omitted. The gapless states (blue online) are localized on the lower

boundary for left movers (dashed line), and on the upper boundary for

right movers. The higher states (red online) are delocalized and the

energy levels above them are "dense". . . . . . . . . . . . . . . . . . . 72

2-9 The spin susceptibility 2,x = XX/(PBg) 2 in the d + id phase as a

function of D/J for K/J = 0.55. The susceptibility is normalized by

the average density of states, 0 = (v, + v,)/ 2 , where vx is calculated

without the gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2-10 Wilson ratio, (2.51), for the d + id state as a function of the spinon

chemical potential, p, - [o. The shift po corresponds to the optimal

value of the chemical potential in the ring exchange model (2.6) at

a = 7r/4 (without single-ion anisotropy). . . . . . . . . . . . . . . . . 76

3-1 Summary of rules for diagram technique. Solid, dashed and wavy lines

represent fermion, pseudofermion and gauge field propagator respec-

tively. Also, interaction vertices of fermions with gauge field, 'ap, and

fermions with impurity pseudofermions, IPOg, are shown. All objects

are diagonal in flavor indices, which are thus suppressed. . . . . . . . 86

14



3-2 (a) Self-energy of the gauge field due to interaction with fermions.

Second diagram describes diamagnetic contribution. (b) Self-energy of

fermions due to interactions with gauge field in the leading order in 1/N. 87

3-3 Diagrams contributing to the -function in the leading order in 1/N.

Diagrams (a) and (b) describe corrections to the vertex in the sec-

ond and third orders of perturbation theory (symmetric counterpart

of diagram (a) with direction of one of the fermion line changed is

not shown). Diagram (c) is the correction to the self-energy of pseud-

ofermions, contributing to f-function via renormalization of Z-factor. 90

3-4 Two types of vertex corrections in the leading order in 1/N due to

gauge field. (a) Example of vanishing diagrams with a single gauge

propagator connected by at least one end to the internal line. (b)

Non-vanishing corrections, representing a new non-local vertex (first

diagram) and example of diagram leading to its renormalization (sec-

ond diagram ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4-1 Choice of the anzats for the rF[ phase. Red dashed line encloses the

unit cell. Numbers indicate the labeling of sites, used in the main text.

Hopping in the direction of arrows is proportional to +i. . . . . . . . 105

4-2 Double wavy line shows the gauge field propagator in the RPA approx-

imation. Thin wavy line is the bare Maxwell propagator. . . . . . . . 122

4-3 Contribution of spinons to the longitudinal sound attenuation. The

bare contribution from spinons is given by the diagram (a). Diagram

(b) accounts for the screening due to fluctuations of the gauge field.

Black dots represent spinon-phonon interaction vertex, specified in the

m ain text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B-1 Part of diagram with vertex corrections that makes the diagram vanish. 149

15



16



List of Tables

2.1 Variational energies (per site) for the spin-one triangular-lattice Heisen-

berg antiferromagnet, (2.37), for K = D = 0; N = 144 sites. . . . . . 63

2.2 Variational energies for the SU(3) model, Eq. (2.6), at a = 0 on N =

12 x 12 sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Explicit form of basis in terms of tensor products of Pauli matrices

for irreducible representations of C, contained within Gm,. Last two

rows show properties of basis elements under time-reversal and charge

conjugation. Plus implies invariance, whereas minus indicates a change

of sign under the action of corresponding symmetry. . . . . . . . . . . 112

4.2 Explicit form of basis for different irreducible representations of C,

contained within G10. Action of the group generators coincides with

Ref. [5]. Last row summarizes the transformation of basis elements

under time-reversal symmetry. . . . . . . . . . . . . . . . . . . . . . 115

4.3 Explicit form of basis for irreducible representations of C6 contained

within G . Notations and action of group generators coincide with

those used by Hermele et al. [6]. . . . . . . . . . . . . . . . . . . . . . 117

4.4 Irreducible representations of C6, contained within G and their ba-

sis. Each irreducible component occurs twice: first six representations

in the Table are diagonal in the valley space, whereas remaining six

are their off-diagonal counterparts. Adopted from Table III in Ref. [7]. 117

C.1 Irreducible representations of C4, and their characters. . . . . . . . . 155

17



C.2 Labeling of conjugacy classes of group C4. Below each label, number

of group elements, NC, belonging to a given conjugacy class, as well as

explicit form of these elements in Seitz notations are given. Vector a3

is a short-hand notation for the sum of lattice vectors, a 3 = a, + a2 . 15 7

C.3 Irreducible representations of C, and their characters. The first eight

representations are one-dimensional, the remaining six representations

are two-dimensional. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.4 Irreducible representations of the group C6, and their characters. . . . 160

18



Chapter 1

Introduction

This introductory chapter aims to provide background and motivation for the results

presented in Chapters 2, 3, and 4. We start with introducing the concept of emergence

and definition of quantum spin liquid in Sections 1.1-1.2. Section 1.3 introduces the

mean field description and its extensions. Afterwards, in Section 1.4, we briefly

summarize our results in the context of open questions in the field of spin liquids. We

conclude with a discussion of perspective and challenges of the mean field approach

to spin liquids.

1.1 Defining spin liquid

The physics of strongly correlated systems is a collective notion for a variety of phe-

nomena where interactions play a leading role. Despite recent progress made over the

last few decades with the development of such fields as high-temperature supercon-

ductivity and heavy fermion materials, there still remain a plethora of open questions

concerning strongly correlated matter.

The major difficulty in the physics of strongly correlated systems comes from

strong interactions. As a consequence, conventional methods, e.g. perturbing with

respect to some simple system like the free electron gas, breaks down. On the other

hand, this difficulty brings a promise. The fact that relevant physics cannot be

smoothly accessed from non-interacting limits, often indicates that it is qualitatively
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different from known non-interacting examples. Perhaps the most celebrated example

of such emergence are fractionalized excitations in the fractional quantum Hall effect.

There, a system of interacting electrons in magnetic field has elementary excitations

that are drastically different from electrons or holes; these emergent excitations have

a charge that is a fraction of the electron charge.

Quantum magnets is another family of systems where such emergence is known

to occur. Magnetism inherently lies in the realm of strongly-correlated physics, as

it arises due to the quantum mechanical nature of electrons and atoms. Moreover

it is quantum-mechanical interactions that are relevant for the majority of magnetic

effects. Akin to a quantum harmonic oscillator that retains its zero point motion

even in the ground state, one can imagine an interacting system of spins in which

its "quantumness" prevents ordering down to zero temperature. Such a ground state

bears the name of quantum spin liquid, reflecting the failure of spins to "freeze into a

solid" due to quantum mechanics (hence, "quantum") and will be a main subject of

this thesis.

The simplest example of quantum spin liquid is realized in one-dimensional sys-

tems. However, one dimension is well-known to be special - restricted phase space

and strong quantum fluctuations lead to many exotic phenomena such as integra-

bility, spin-charge separation, and so on. Beyond the one-dimensional wonderland,

a very simple picture of quantum spin liquid state was proposed by Anderson [8]:

the resonant valence bonds state (RVB). In this proposal Anderson suggested that

the most intuitive way to get rid of spins is to pair them into singlets. For just two

spins of 1/2 such a singlet, (t4 - .it)/./2, gives us a spin-0 object, see top row of

Figure 1-1. This is to be compared with the Neel-type product state t4, where one

has zero total spin only after average. Note, that such a singlet, or a single valence

bond is a maximally quantum entangled state of two spins. For a lattice of spins

one can construct the RVB state by taking superposition of all possible tilings of the

lattice with such nearest-neighbor singlets.

The original Anderson construction features emergent fractionalized excitations.

Excluding a single pair of spins from participating in singlets produces a single ex-

20
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Figure 1-1: Cartoon picture of Neel and Anderson RVB state for just two spins (top
row) and on a square lattice. RVB state is a superposition of all possible tilings of
the lattice with nearest neighbor valence bonds.

citation with total S = 1. In the Neel state, such excitations, delocalized over the

bulk of the lattice, would become a spin wave. Note, that despite this delocalization

in real space, the spin wave carries a spin S = 1. In contrast to the Neel case, in

the RVB state two spins excluded from singlet formation are free to move away from

each other, as shown in Figure 1-2. This results in a pair of delocalized excitations,
each carrying spin-1/2, called spinons. As noted earlier, spinons are absent in the

Neel state shown in Figure 1-1. While the distance between spinons does not impact

the energy of the RVB state, in the Neel antiferromagnet long separations between

spinons produce "unhappy" bonds with their number proportional to the distance

between spinons. Therefore in the Neel antiferomagnet, spinons are confined, and

proper excitations are spin waves carrying spin-1 quantum number.

The resonant valence bond state discussed so far has fractional excitations, which

are, however, gapped: breaking a singlet pair costs a finite amount of energy. In prin-

ciple, there is no reason to restrict singlets to nearest neighbors, and one can include

longer range bonds in superposition that forms the RVB state. Valence bonds formed

by spins far apart are more weakly bound, thus including longer range singlets lowers

21
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Figure 1-2: Fractionalization of a single spin-1 excitation into two spinons in a RVB
state.

the minimal energy of excitations. If these longer range singlets have a substantial

weight, this may result in a quantum spin liquid state with gapless excitations. More-

over, these excitations may possess bosonic, fermionic or even more general statistics,

and, as we shall see below, are often accompanied by a gauge field, just like real

electrons that carry electromagnetic charge.

The RVB construction can be used to motivate a positive definition of a quantum

spin liquid [9]. Indeed, spin liquids cannot be classified according to broken symme-

try [101 as they do not break any symmetries. The absence of symmetry breaking is

a defining property of a spin liquid, which is, however, of little use. To prove that

a given state is a spin liquid, within such definition one would have to rule out all

possible orders.

Inspiration for a different definition of spin liquid provided by the RVB state comes

from a basic block of the RVB state - the spin singlet. A singlet state of two spins is

special since it has a maximum possible degree of quantum entanglement. Quantum

entanglement is a notion unique to quantum mechanics, where one can prepare an

entire system in a well defined state, while leaving the state of smaller constituents of

the system (such as individual spins) uncertain. The commonly accepted quantitative

measure of entanglement is entanglement entropy. It is equal to zero in any product

state, e.g. T4 or (t - 4)(t + 4)/2. On the other hand, the singlet is said to be a
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maximally entangled state, with an entanglement entropy equal to log 2. While taken

together, the two spins are in a pure quantum-mechanical state (t4 - -t)/V/2, each

of them considered separately has a maximum possible uncertainty, pointing up or

down with probability 1/2.

The RVB state is, by construction, a "soup" of spin singlets. From the discus-

sion of the entanglement structure of the singlet above, one may expect, that the

RVB and, more generally, spin liquid states possess a special structure of entangle-

ment. Formalizing this intuition, we define a spin liquid as a state with non-local

entanglement [9]. Non-locality of entanglement means that it violates usual scaling

laws. Depending on the nature of excitations in the spin liquid, the entanglement

non-locality has different manifestations. In the next Section, we will review different

types of spin liquids and discuss their entanglement structure.

1.2 Different spin liquids and their entanglement

Before discussing entanglement structure, we will introduce different type of spin

liquids. The next Section will discuss the specific route to these states offered by

mean field theory. According to the nature of excitations, spin liquids may be divided

into gapped (which are often dubbed as topological) and gapless classes. Within the

family of gapless spin liquids, one can separate states where excitations have bosonic

or fermionic nature. The latter, which will be of primary interest in this thesis, can

have fermionic spinons with a Fermi surface, or with a Dirac dispersion (so-called

algebraic spin liquids), and are often endowed with an emergent gauge field strongly

coupled to spinons.

We will begin by examining a gapped spin liquid phases, which are examples

of topological order [11]. Generic gapped states are known to obey an area law

scaling of entanglement. The entanglement entropy is always defined with respect to a

particular bipartition of the system. The area law scaling of entanglement formalizes

the intuition that only the degrees of freedom across the boundary are correlated:

entanglement entropy scales as Set ~- atd1, where fd-1 is a boundary area (or,
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length for two spatial dimensions, d = 2) of the corresponding region.

Topological order is usually defined via the degeneracy of the ground state that

depends on the topology of the system [11]. Another surprise of the ground state

with topological order is that their entanglement is smaller than usual, i.e. for two

dimensional systems there is a constant negative correction, Sent - at - y in the en-

tanglement scaling with f -+ oo, called topological entanglement entropy [12,131. Re-

cent advances in numerical techniques, in particular, density matrix renormalization

group [14,151, allowed for the calculation of -y in specific spin models. For a gapped

Z2 spin liquid (see discussion in Section 1.3.1), y was calculated numerically yielding

- = log 2 for ground states of the Heisenberg model on Kagome lattice [16,171. This

confirms the topological nature of the gapped spin liquid ground state [18].

After a brief discussion of gapped spin liquids which realize topological order,

we shift to spin liquids with gapless excitations - the main subject of the present

thesis. As discussed before, gapless spin liquids correspond to RVB states where

longer range singlets have a significant contribution. This may lead one to expect

a violation of the boundary law scaling for entanglement, in contrast to a constant

subleading corrections for gapped spin liquids.

Indeed, using a Variational Monte Carlo approach (see Section 1.3.2), Refs. [19,20]

demonstrated the scaling of entanglement as Sent ~ flog f for the gapless spin liquid

with a spinon Fermi surface, and a universal positive correction to entanglement for

the Dirac spin liquid, Sent ~ at + -y. The logarithmic correction to entanglement

for the spin liquid with a spinon Fermi surface is similar to the entanglement scaling

for the case of free fermions [21], and can be viewed as the most severe violation

of the area law. We note parenthetically, that we are discussing the ground state

entanglement, which should not be confused with the entanglement of highly excited

states which usually scales as a volume law, Sent ~ f2 (in two dimensions).

As discussed in the above survey, for all spin liquid ground states entanglement

behaves in an anomalous way, either by receiving corrections to scaling, or by violating

scaling typical of ground states. Therefore, non-local behavior of entanglement may

be viewed as a precursor of exotic properties, and a defining feature of spin liquids.
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With this, we turn to considering all spin liquids briefly discussed here using the mean

field approach.

1.3 Mean field approach to spin liquids

After an attempt to broadly define the spin liquid ground state, we dive into the

basics of mean field description of a spin liquids. This approach will be extensively

used throughout this thesis, as it provides a starting point for describing spin liquid

ground states. Starting with the mean field framework described below, one can later

include an emergent gauge field fluctuations, which we shall discuss in Section 1.3.1.

Also, mean field can be used a starting point to build variational wave functions, as

discussed in Section 1.3.2.

Although spin liquids lack any conventional order parameter, it is possible to build

a mean field-type description of spin liquid ground states. As usual, in the mean field

approach, one has to make an (educated) guess regarding the spin liquid state one

attempts to describe. Rather than using the spin operator itself as an order parameter

(recall, that (S)=O in spin liquid), the mean field description of the spin liquid relies

on the slave particle approach.

The spin operator is expressed in terms of slave bosons or fermions, subject to a

constraint necessary to retain correct the Hilbert space dimension. In what follows we

represent spin using fermions. In particular, a spin-1/2 operator can be represented

via ft, f. as:
-. 1
Si= -fC-f1i. (1.1)

2 s

The mapping between Hilbert spaces is exact, provided one imposes a constraint of

single occupancy,

itht + V 1, (1.2)

thus excluding states with no fermions or two fermions on each site.

To do the mean field decoupling, we express the spin operator via fermions, ar-
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riving at the Hamiltonian that is quartic in fermion operators:

H=Zj~.j-Z. (fif ftf +1t
( Jij. Si Jij jt aJf pf 3 + i' f tfj (1.3)

From here one can perform a Hubbard-Stratonovich decoupling of the quartic terms

using mean field parameters in the particle-hole, and, if necessary, in particle-particle

channels:

Xij = (ftAfja), / ij = (Uffj)- (1.4)

Keeping only the particle-hole channel, the resulting mean-field Hamiltonian becomes:

HMF =-1 Jij j f ja + H. c. - Xij2] + iAi(fitfia - 1), (1.5)
(i)

where we added a Lagrange multiplier to enforce the single-occupancy constraint. The

specific form of mean field decoupling, Xij can be determined variationally, which is

equivalent to finding a mean-field saddle point - see below. Depending on the solution

for Xij one can obtain a different type of dispersion for fermionic spinons that are

naturally represented by fia in this formalism. The ground state at the mean field

level corresponds to spinons filling a corresponding band structure (note, that fulfilling

constraint (1.2) on average, pins the Fermi level to a half-filling for the spin-1/2 case).

The choice of Xij in (1.5) is restricted by symmetries of the system. Naively, one

may say that the fully symmetric spin liquid necessarily has uniform Xij. However,

Wen [10, 221 found more that 200 symmetric spin liquids on a square lattice. It

turns out that due to the presence of constraint (1.2), representation (1.1) has a

gauge symmetry. This gauge freedom, discussed below in more detail, requires one

to expand the notion of the lattice symmetry group to that of a projective symmetry

group. Thus the number of different ansitze respecting all symmetries is expanded

from one to a much larger number, leading to a large number of symmetric spin

liquids.

Above, we described the mean field approach in the context of spin-1/2 systems.

However, in Chapters 2 and 3 of this thesis we will consider spin-1 system. A gener-
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alization of the slave-fermion type of mean field for spin-1 case will be described in

more detail in Section 2.1.4.

1.3.1 Beyond mean field: gauge field

Upon closer examination, the representation of spin (1.1) used above has an SU(2)

gauge redundancy. The U(1) subgroup of this SU(2) freedom is almost obvious: we

can adjust the phase of fermions on each site independently, without changing spin

operator (1.1):

fi,f( ) -+ e'i 'fi't(w) (1-6)

It appears [10] that this U(1) symmetry can be further expanded to SU(2), as

fit Uifit(17

ft ft

where Ui - SU(2) is a position-dependent unitary matrix.

The presence of the gauge degree of freedom in the original Hamiltonian (1.3) has

important consequences for the path integral formulation. Indeed, above we discussed

the mean field solution for Xi. It can be viewed as a saddle point approximation for

the path integral

Z = [Dfi][DAi][DXij]eis, with S = dL; (1.8)

L = f o fia - HMF, (1.9)

where mean-field Hamiltonian is given by (1.5). The presence of a gauge degree of

freedom is reflected in the appearance of fluctuations around the saddle point solutions

that do not cost any energy. Such degrees of freedom cannot be integrated out within

a saddle point approximation, and have to be included into an effective theory.

Saddle points of the action (1.8)-(1.9), depending on their structure [10,22] usually

break the original SU(2) symmetry (1.7), producing U(1) or Z2 . When the remaining

symmetry is U(1), the action (1.8) has a U(1) gauge field coupled to spinons. Indeed,
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the Lagrange multiplier, along with the phase fluctuation of Xij may be viewed as

a scalar and vector potentials of the emergent gauge field, a?, and ai3 which live on

lattice sites and links respectively:

HMF = -1Z ii Xij eiaiif! fja + H. c. - |xijl|] + a (f!fia - 1). (1.10)
2(ij) % i Z

The gauge transformation works as

fi --+ e0 fi, a9 -+ a9 +Oti, aj - ai + - (1.11)

leaving the action (1.8) invariant. Since we have a lattice version of the gauge field,

it is compact, i.e. defined modulo 27. Depending on the choice of Xjj, such ansatz

leads either to U(1) spin liquid with a Fermi surface, or to an algebraic spin-liquid,

where spinons have a Dirac-like dispersion.

The mean field description of Z2 spin liquid may be understood from further

breaking of U(1) symmetry. Akin to the conventional metal, where U(1) symmetry

is broken by the development of superconducting order, one can have a non-zero

pairing of spinons Aij, Eq. (1.4), in the mean field solution. In such a case, the phase

fluctuations become massive via the Anderson-Higgs mechanism, leaving behind a

discrete Z 2 gauge symmetry.

When gauge symmetry is broken, simultaneously the pairing may either fully gap

out spinons, corresponding to a mean-field description of the short-range RVB state;

or leave gapless nodal excitations, leading to a Z2 Dirac spin liquid. The 7r fluxes of

the remaining Z 2 gauge field correspond to another type of low-energy excitations,

called visons. Bound states of such ir-flux vortex and a spinon would have bosonic

statistics. Thus, the gapped Z2 spin liquid has gapped bosonic and fermionic spin-1/2

excitations.

Another important aspect of breaking U(1) symmetry to Z2 concerns the stability

of the spin liquid. The stability of a mean field construction is a non-trivial issue when

a continuous compact gauge field is strongly coupled to spinons. Indeed, one may
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easily imagine an onset of confinement due to strong gauge forces, which would result

in S = 1 excitations and invalidate the mean field description. For example Hermele,

et. al. [23] demonstrated the stability of the Dirac spin liquid coupled to a U(1) gauge

field for a sufficiently large number of spinon flavors. However, when the U(1) gauge

group is broken down to a discrete Z2 , the remaining discrete gauge field is incapable

of confining spinons, resulting in a stable spin liquid.

Finally, the presence of the gauge field explains the vast number of different sym-

metric spin liquids classified by mean field [10,22]. Naively, only very few choices of

Xii respect all the symmetry. However, once the action of the space-group symme-

tries can be supplemented by a gauge transform (1.11), there are many more allowed

choices of Xii. Such expansion of space symmetry group by a gauge transformations is

called a projective symmetry group, and will be extensively used in Chapter 4. Thus,

the classification of spin liquids within a mean field reduces to finding different repre-

sentations of a projective symmetry group, where the gauge field plays an important

role.

Above we discussed the presence of an emergent gauge field which often accom-

panies gapless fractionalized excitations in a spin liquid. It can change physical prop-

erties of the spin liquid, and often raises concerns regarding the stability of the mean

field construction. In some sense, the presence of such a gauge field strongly coupled

to fermionic spinons may be viewed as another signature of spin liquid. Thus, it is

interesting to consider, how one can experimentally probe the presence of not only

spinons, but of the gauge field as well. This question will be addressed in the last

two Chapters of this thesis, where the gauge field will be an important ingredient

responsible for many physical properties. In particular, in Chapter 3 we propose how

an impurity can be used as a probe of spin-1 spin liquid with spinon Fermi surface

and a U(1) gauge field. Chapter 4 considers the interaction of spinons with phonons

in the S = 1/2 spin liquid with spinons possessing Dirac dispersion.
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1.3.2 Beyond mean field: projection

The mean field approach discussed above is useful to access different spin liquid phases

and their properties. On the other hand, to answer a question about a ground state of

a specific spin model, one has to find a state with the lowest energy. While the mean

field approach is capable of accessing energies of different states, it is not reliable and

often fails. Indeed, as we relax the single occupancy constraint (1.2) and impose it

only on average, the resulting wave function is not a legitimate wave function of a

spin system. Generically, the wave function

IV)0) = J7 fk0), (1.12)
k=FS

describing a half-filled band of spinons, has components with double occupied/empty

sites in the real space basis. These components do not have counterparts in a spin

language, and thus are unphysical.

The most straightforward route to obtain a legitimate spin wave function from (1.12)

is to strictly enforce single occupancy. This may be done by applying the projection

operator PG to (1.12) [241:

14) = PG 1 [11(1 - fitfni)] I ). (1.13)

Now, IV)) can be used as a trial wave function of the spin system. Unfortunately,

projection precludes analytic treatment. Therefore, one has to resort to numerical

techniques to calculate the energy of the ansatz wave function 4'). The standard

method of choice for this uses Monte-Carlo type sampling. The energy is then mini-

mized with respect to different mean field parameters (e.g. different choice of Xii) to

yield the variational Monte Carlo (VMC) estimate for the ground state energy.

The VMC approach is a standard tool to access properties of spin-1/2 systems [24].

In this thesis, in Chapter 2 we will apply the VMC approach to study the phase

diagram of different spin-1 model on a triangular lattice.
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1.4 Main results of this thesis

As we discussed above, a quantum spin liquid is an exotic state of spin systems with a

characteristic long range entanglement. Until recently, theoretical development of spin

liquid physics was largely motivated by its relevance for the RVB theory of cuprate

superconductors [25]. However, within the past decade a number of experimental

materials that are likely to realize spin liquid physics, have been discovered. The most

celebrated examples are organic solid [26, 27] and kagome antiferromagnet [28, 29],

which both consist of two-dimensional planes. Also, a number of experiments suggest

a realization of spin liquids on essentially three-dimensional lattices [30]. Finally, all

of the aforementioned experiments concentrated on spin-1/2 system, as it is believed

to reveal the strongest quantum fluctuations. However, recently several spin-1 spin

liquids candidates were reported [31, 32].

The discovery of materials that possibly realize spin liquid ground states inspired

more active theoretical research, which can be roughly classed into one of three di-

rections:

(a) classification of possible spin liquid phases and understanding their properties;

(b) searching for the spin liquid ground state in realistic spin lattice models;

(c) studying different probes that allow for unambiguous identification of the spin

liquid.

Below we discuss the contribution of the present thesis in the context of these direc-

tions. Chapter 2 touches all three outlined directions in the context of S = 1 spin

liquids. On the other hand, Chapters 3 and 4 address issue (c), exploring different

probes of the spin liquid. Chapter 3 further details spin-1 physics by looking at its in-

teraction with a spin-half impurity. Additionally, Chapter 4 considers spinon-phonon

interactions as probe of emergent Dirac spinons in an algebraic S = 1/2 spin liquid.
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1.4.1 S = 1 spin liquid

As we already mentioned, most of the prospective spin liquid candidates are described

by S = 1/2 spins on different lattices. This is not surprising [9], as quantum fluctua-

tions that favor quantum spin liquid ground state, are typically suppressed for larger

spins. However, a discovery of spin-1 spin liquid systems [31,32] inspired a number

of theoretical proposals [33-37]. In particular, the basics of slave-fermion mean field

theory for spin-1 were considered in Refs. [35,36].

Chapter 2 of this thesis considers a S = 1 spin liquid on a triangular lattice,

covering all of the directions (a)-(c) outlined above. First, we use a mean field

approach to identify a spin liquid state that has no analogue for spin-1/2 systems.

Within the slave-fermion approach, representing the spin-1 operator via fermionic

spinons requires at least three flavors of spinons (according to S projection of spin

being 0, +1). This opens an interesting possibility, which is not present for spin-1/2

models, of gapping out two out of three spinons. We explore such states at the mean

field level, identifying an interesting quantum spin liquid ground state with a d + id

pairing of spinons. This state may be roughly viewed as a spin-1 analogue of the RVB

state where valence bonds are now represented by spin-one triplets.

We use the mean field approach, which is argued to be stable as the U(1) gauge

field acquires mass due to the pairing of spinons, to deduce the physical properties of

the d + id paired spin liquid ground state. This state on one hand, possesses a gapless

Fermi surface of spinons, which corresponds to nematic excitations, and dominates

the heat capacity. On the other hand, the spin excitations are gapped, resulting in

highly anisotropic spin susceptibility and a vanishing NMR relaxation rate. Finally,

this state is predicted to have gapless edge modes carrying S = 1 quantum numbers

and leading to a quantized spin Hall response.

Finally, we study the phase diagram of two different spin-1 models on a triangular

lattice using the variational Monte Carlo (VMC) approach. Even though mean-field

suggests a realization of the d + id quantum spin liquid state in the analogue of

Heisenberg model for spin-1, the more reliable VMC approach reveals a prevalence
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of ordered states. However, a more complicated Hamiltonian which contains ring-

exchange terms for spin-1, has a region of the phase diagram where the d + id paired

quantum spin liquid is a ground state.

1.4.2 Kondo physics in U(1) S = 1 spin liquid

Motivated by the results of Chapter 2, where we considered a S = 1 spin liquid

state with pairing, in Chapter 3 we address physical properties of the S = 1 spin

liquid without spinon pairing. Such a state has a U(1) gauge field strongly coupled

to three fermionic species of spinons with a Fermi surface. Properties of non-Fermi-

liquid (NFL) behavior induced by the gauge field coupled to fermions with a Fermi

surface were a subject of intense study, as a similar problem arises in a variety of

contexts [38-46].

In Chapter 3 we consider a spin-1/2 impurity embedded into S = 1 U(1) spin

liquid state. This problems is interesting as another realization of overscreened Kondo

physics: the spinons that carry spin-1 quantum numbers fail to screen the spin-1/2

impurity, leading to an NFL fixed point. However, even more intriguing is how this

overscreened NFL fixed point is influenced by the presence of the U(1) gauge field,

which itself leads to non-Fermi-liquid behavior.

Using a recently developed method of double expansion [451, we address how the

presence of gauge field influences the NFL fixed point. Extrapolating the results of

our calculations to the physical case, we discover that softening of quasiparticles due

to the gauge field reduces singular exponents associated with an overscreened Kondo

fixed point. Therefore, overscreened Kondo physics may serve not only as a probe of

fermionic spinons with a Fermi surface, but also indicate the presence of the gauge

field.

1.4.3 Spinon-phonon interactions in algebraic spin liquid

The last Chapter of this thesis, Chapter 4 studies lattice vibrations as another probe

of spinons. However, contrary to previous chapters, where we address spin-1 systems,
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the subject of the last Chapter is spin-1/2 spin liquid. To be more precise, we study

algebraic spin liquids, where low-energy excitations are spinons with Dirac dispersion,

coupled to a U(1) gauge field.

The interaction of spinons with phonons was considered for spinons with Fermi

surface in Ref. [47], where a universal form of interaction was discovered. However,

the treatment of Ref. [471 does not apply to the Dirac spin liquid. In Chapter 4 we

demonstrate that the case of the Dirac spin liquid is drastically different from the

spinons with Fermi surface.

Considering different algebraic spin liquids that have identical low-energy descrip-

tion in terms of U(1) gauge field and spinons with Dirac dispersion, we show that

spinon-phonon interaction "remembers" the microscopic structure of the algebraic

spin liquid. Intuitively, this happens because the spinor structure of Dirac particles

is tied to microscopic details of the underlying lattice. More precisely, the form of the

spinon-phonon interaction Hamiltonian is dictated by the specific representation of

the projective symmetry group. Therefore, the spinon-phonon interaction is poten-

tially capable of distinguishing between different types of spin liquids which are very

difficult to tell otherwise.

Using the explicit form of spinon-phonon interactions, we calculate the attenuation

of ultrasound from interaction with spinons. In this calculation, the presence of

the gauge field plays an important role, by canceling the leading order contribution

which does not depend on the projective symmetry group. Thus, we conclude that

the spinon-phonon interaction can probe not only the presence of spinons, but also

certain details of the underlying projective symmetry group. Finally, the symmetry

classification presented in Chapter 4 may be useful for deducing coupling of other

probes to the spinons.

1.5 Mean field: challenges and perspectives

The results of this thesis, summarized above address different aspects of spin liquid

physics. In particular, we suggested a novel spin liquid ground state for spin-1 sys-
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tems, and considered impurity physics and interaction with lattice vibrations as a

probes of spin liquid physics. For all of these, a mean field approach to a spin liquid,

and its extensions, were a key ingredient. Moreover, despite immense progress in

developing novel numerical methods, the mean field approach still remains relevant.

Rather than superseding it, the recent theoretical and experimental developments

present a new challenges for the mean field approach.

One such question is inspired by numerics. Novel numerical methods like density-

matrix renormalization group (DMRG) [14,15] as well as different modifications of

variational Monte Carlo enables access to ground states of specific spin models for

unprecedented systems sizes. However, these novel numerical methods are similar to

an experiment in that one has to interpret their results using some framework. At

this point one often resorts to the mean field approach, as it is able to provide clear

physical intuition, and a framework to understand the numerics. The open challenge

is to go beyond and use mean field to further guide numerics, and suggest ingredients

relevant for stabilizing given phases, or driving towards new states.

Another challenge for the phenomenological-type of mean field approach is coming

from experiments. Most of the experimental spin liquid candidates are "contaminated"

by additional ingredients that are beyond simple theoretical models. Very often these

are either some type of disorder or weak additional interactions. While incorporat-

ing these ingredients into numerics may seem intractable, one can possibly address

these ingredients within a mean field approach. Also, mean field and its extension

with gauge fluctuations can be potentially useful for attempting to describe an ex-

tensive amount of data obtained from neutron scattering experiments on spin liquid

candidates.

While the identification of spin liquid materials remains the current challenge for

the field of spin liquids, the theory and experiment are moving at a fast pace towards

its resolution, with a mean field approach playing an important role. An end to the

drought of quantum spin liquids [481 will hopefully bring new states of matter to the

laboratory and reveal many more interesting and exciting phenomena to study.
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Chapter 2

S = 1 spin liquid on a triangular

lattice

In this Chapter we investigate possible quantum spin liquid ground states in Heisenberg-

type models for S = 1 on triangular lattice. We start with a brief introduction, where

we outline experimental motivation behind our studies, introduce Hamiltonians and

fermionic representation of a spin. After this, we study the phase diagram of bilinear-

biquadratic Heisenberg Hamiltonian within a mean field approximation [1]. Next, in

Section 2.3 we use the projection to compare energy of different competing ground

states for bilinear-biquadratic Heisenberg and ring exchange models [2]. Finally, Sec-

tion 2.4 consider physical properties of the spin liquid state with d + id pairing of

spinons. We conclude with discussion of open questions and prospective directions in

Section 2.5.

2.1 Introduction

2.1.1 Motivation

As we discussed in the Chapter 1, spin liquid is a long sought exotic state of mat-

ter, where long range magnetic order is destroyed by quantum fluctuations at zero

temperature. A number of materials have been discovered which are promising can-
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didates for S = 1/2 spin liquid state [26,28, 30, 481. Spin systems with higher values

of spin, however, usually show a strong tendency towards long-range ordering and

lattice-symmetry breaking at low temperature. It is therefore not surprising that

spin-liquid candidates for higher values of spin have been more scarce to find.

More recently, possible spin liquid materials with S = 1 have been discussed. One

example is the insulating spin-1 quantum magnet on a triangular lattice, NiGa2S 4 ,

reported by Nakatsuji et al [31]. This material motivated a number of theoretical pa-

pers proposing different microscopic realizations of S = 1 spin liquid [33-37]. Another

example is a two-dimensional triangular magnet Ba3NiSb2O9 [32] produced via high

pressure synthesis. This material has two new high-pressure phases which possibly

realize two and three-dimensional S = 1 spin liquid.

In particular the 6H-B phase, described as a triangular lattice of S = 1 Ni 2+

ions, shows no magnetic ordering down to T = 350 mK, well below the Curie-Weiss

temperature scale Ocw = -75.5 K. Such behavior combined with the frustration of

triangular lattice suggests a possibility of spin liquid phase. The spin susceptibility

saturates to a constant at low temperatures; specific heat is linear in temperature over

over a wide range, T = 0.35 - 7 K, with high coefficient and Wilson ratio Rw = 5.6.

Such observations are highly unusual for a magnetic insulator and point to a spin

liquid with gapless fermionic excitations. Indeed, the only other example where such

behavior has been seen is the organic S = 1/2 spin liquid system [48]. Quantum

fluctuations are less important for S = 1, making these data even more striking.

2.1.2 Possible spin liquid states with a Fermi surface

Experimental data discussed above motivates us to think about possibility of spin

liquid states with phenomenology which would be consistent with the discussed ex-

periment. In view of the evidence for gapless fermionic excitations, the framework of

spin liquids where spin is fractionalized into fermions seems to be the most natural

way to address the above question. However, even within this framework, finding a

state consistent with experiment is a non-trivial problem. For example a Fermi surface

of neutral spin-carrying excitations is strongly coupled to a U(1) gauge field [49,50],
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and the specific heat is expected to behave as T2/3 . On the other hand paired spin

liquid states in the absence of impurities will typically have C/T -+ 0 in the T -+ 0

limit.

Below we propose a new candidate spin liquid ground state with a Fermi surface

coexisting with fermion pairing which gaps out the gauge field. We use the minimal

number of spinons required to represent spin S = 1, that is equal to three [35,361. The

basis of this three-fermion representation allows to obtain an exotic quantum spin liq-

uid state that reproduces the phenomenology of the experiment on Ba3 NiSb2O9 [32].

Our state is not the only one consistent with the experiment, as several alter-

native theoretical scenarios have been proposed in references [51,521. In particular,

Ref. [51], uses a representation of the spin S = 1 operator in terms of four flavors

of fermionic spinons and studies possible spin liquid states at the mean field level.

Such a fractionalization into four spinon flavors is most natural in the case of a two-

orbital Hubbard model with not too strong interactions (Hund coupling) between the

electrons. Another proposal not involving spin-liquid states is discussed in Ref. [52],

where inter-layer couplings between the Ni2+ spins tune the system to a quantum

critical point.

Currently, the details of the effective spin model describing Ba3NiSb2O9 are not

known. Therefore, we do not attempt to propose a realistic microscopic spin model

for this material. Instead, we investigate two families of promising antiferromagnetic

triangular-lattice spin-one models. The aim is to determine whether, at the mean

field level (Section 2.2), or, variationally (Section 2.3), the natural quantum spin-

liquid candidates (involving three spinon flavors) have a chance to win over long-range

ordered ground states in these microscopic models.

2.1.3 Models

Here we introduce the bilinear-biquadratic Heisenberg model with single-ion anisotropy

term, and, as its extension, an SU(3) symmetric model with three-site ring-exchange

terms. These models will be studied in what follows using mean-field and projection.
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Figure 2-1: Schematic representation of the ground state in different limits of the
Hamiltonian (2.1). White arrows represent average spin; arrows with discs indicate
the director of the nematic order parameter. Details are discussed in the text.

Bilinear-biquadratic Heisenberg model

The bilinear-biquadratic Heisenberg model consists of quantum S = 1 spins forming

a triangular lattice. For simplicity, we consider only nearest neighbor interactions.

The general form of Hamiltonian can be written as

HKD = i[J + K($4 - $5)2] + D z(S) 2 , (2.1)
(ii)

where we included Heisenberg exchange interaction with coupling J > 0 and bi-

quadratic exchange with coupling K. In addition we allow easy-plane or easy-axis

type of anisotropy controlled by the parameter D, but we neglect this anisotropy

in the couplings J and K since it is presumably small for transition metals. The

Hamiltonian (2.1) has been considered in the literature in limits when the anisotropy

is either zero or dominates over other couplings, or there are longer range competing

exchange couplings. Fig. 2-1 summarizes known results for the ground state (GS)
phase diagram in a schematic way. There are three different phases on the line of

zero anisotropy D = 0 [53-56]:
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1. In the range K = -0.4J... J GS is 120*-degree antiferromagnet (AFM).

2. For larger negative K system favors collinear ferro-nematic (FN) order, i.e.

nematic order that does not break lattice translational symmetry. In this state

the average spin vanishes (S) = 0, but full spin rotation symmetry is broken

down to rotations around an axis specified by the director vector d (see Refs. [54,

551 and discussion below).

3. For positive K > J the ground state is described by aniferro-nematic (AFN) or-

der. In this state director vectors di on three different sublattices are orthogonal

to each other (see Fig. 2-1), thus breaking lattice translation symmetry.

In addition, the ground state is understood in the limits of large positive (easy-

plane) and negative (easy-axis) anisotropy, D. In the extreme case of easy-plane

anisotropy (D > J, IKI), the GS is a trivial product of states of ISZ = 0) on all sites,

corresponding to the trivial single-site FN order.

For large but negative D, implying extreme easy axis anisotropy, only two states

with Sz = +1 on each site survive. This system can be described by a spin-1/2 XXZ

model with all exchange couplings being antiferromagnetic if 2J > K > 0 or with JZ

being frustrating and JI- ferromagnetic if K < 0. In both cases there is spin density

wave ordering of the z-component of the spin in the GS, supplemented by planar

AFN order in former and collinear nematic order in the latter case [571.

In what follows we study the phase diagram of Hamiltonian (2.1) for both signs

of D and K but will assume IDI, IK| < J. Except of very small |DI, this is outside

of the regions of known GS's shown in Fig. 2-1.

SU(3) ring-exchange model

To motivate our second choice of the spin-one model, let us consider an SU(3) sym-

metric Hubbard model for three flavors of fermions fa,

Hsu(3) = -t E aifaj + U~~ (2.2
0i1j) j
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where nr = E, nj = E. f faj. Let us consider the case when each flavor is at

1/3-filling (Ej naj/N = 1/3). For U >> ItI, the low-energy subspace of this model

corresponds to the spin-one Hilbert space. Similar to Refs. [58,591, we can derive a

low-energy effective spin-one Hamiltonian for (2.2). To lowest order in t, we find the

exchange term

f ffbijf faj - (2.3)

To next order, the following three-site term is expected to arise:

Iftbif bjfcjfk fak + h.c.}, (2.4)

where the sum (i, j, k) is over elementary triangles of the lattice. Let us write the

flavor exchange operators in (2.3) as Pig = Eab fatififb faj. The three-site terms in

(2.4) correspond to PijPjk + PjkPij. These operators move the local states clock-

and anticlockwise around the triangles of the lattice.

In the case of a similar Hubbard model with two fermion flavors (spin S = 1/2),

the exchange operator Pi appearing in the low-energy model corresponds to the

Heisenberg term in spin language, Pi3 = 2Sj -S3 + 1/2. In this case, a three-site term

PijPjk + h.c. is trivial in the sense that it can be reduced to a sum of two-site terms.

For three flavors, however, the situation is different. In that case and spin S = 1, one

finds [60]:

Pij = S -$j + (Ai -i )2 -1. (2.5)

Therefore, the lowest-order term (2.3) corresponds to the bilinear-biquadratic model (2.1)

with K = 1 and D = 0. The next-order ring-exchange term (2.4) is a nontrivial per-

turbation since it cannot be reduced to two-site terms. Ring-exchange models for spin

1/2 with nontrivial four-site plaquette terms [61] are believed to exhibit spin-liquid

ground states [49,62,63].

Motivated by the three-flavor Hubbard model, we propose to study the SU(3)
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symmetric ring-exchange model,

Ha = cos a E Pij + sin a 1 {Pijjk + h.c.}. (2.6)
(01j) (idj~k)

The sum in (2.6) goes over nearest-neighbor links (i, j) and elementary triangles

(i, j, k) of the lattice. The parameter of this model is a E [-7, w].

The mean field analysis of the ring exchange Hamiltonian (2.6), reveals the same

ordering patterns as we found in the case of the KD-model. Indeed, using uncorre-

lated three-sublattice product states, one gets a ferromagnetic phase in the parameter

range a < - arctan(3/4) ~ -0.27 and a > 7r - arctan(1/2) ~ 0.85w. Any uniform

product state lj ja)j is an exact eigenstate with energy c(a) = 3 cos a + 4 sin a, and

it is the lowest-energy three-sublattice product state in this parameter range. For

- arctan(3/4) < a < arctan(3/2) ~ 0.31w the 1200 antiferromagnetic product state

is stabilized. Finally, in the range arctan(3/2) < a <wr - arctan(1/2), the antiferro-

nematic order develops, with three nematic directors order in a common plane at an

angle of 120* to each other on nearest-neighbor sites (see also Fig. 2-5).

2.1.4 Representation of spin-1 via fermionic spinons

Below we consider fermionic quantum spin liquid wave functions for spin S = 1. The

most straightforward route to such states is to decompose spin operator in terms of

fermionic spinons, as we discussed in Section 1.3. Below we outline the basic details

of the mean field construction for spin-1.

To construct spin liquid states for spin S = 1, we follow an approach similar to

Ref. [36J. We write the spin operators in terms of three flavors of fermionic spinons,

fa, in the following way:

Sa = -iEabcffc , (2.7)

where a E {x, y, z}, and repeated indices are always summed over in what follows.

We choose to work with operators fa that create spin states 1a) in the time-reversal
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invariant basis, i.e.,

1
x) = () + I))

1y) = (11) - I), (2.8)

jz) = -ilO),

where 11), I1), and 10) are Sz-eigenstates with eigenvalues i1 and 0, respectively.

By representing spin in terms of fermions, we have enlarged the Hilbert space.

The fermion operators act in the eight-dimensional Fock space while the original

spin space is three dimensional. In order to recover the physical subspace, a local

constraint on the fermionic occupation number has to be enforced,

n = ff fa = Nf . (2.9)
a

Both particle (Nf = 1) or hole (Nf = 2) subspaces can be chosen, in contrast to the

case of S = 1/2, where we had a single choice. Nevertheless, they can be mapped

into each other by particle-hole transformation discussed below, supplemented by a

change of the sign of hopping. Therefore we consider only particle representation but

do not restrict hopping to be positive to include the hole representation'.

The spin operator remains invariant under the following transformations of the

fermionic operators

fa H+ e'fa (2.10)

and

fa + fj . (2.11)

Equation (2.11) is a particle-hole transformation and the constraint (2.9) is changed

according to Nf F-+ 3 - Nf. Hence, the local symmetry group for this representation

of spin S = 1 operators is the semi-direct product U(1) xZ2 [36].

1This is different from Ref. [351, where authors use combination of particle and hole constraints
in order to preserve particle-hole symmetry. Our treatment violates particle-hole symmetry from
the very beginning.
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In the time-reversal-invariant basis (2.8), the quadrupolar operators, defined as

Qab = (SaSb + SbSa)/2 - 2/3 6ab, (2.12)

acquire a particularly simple form [64]. In the particle representation (Nf = 1), we

have

SaSb = Jab - fiffb, Qab = Jab/3 - (fcifb + fifa)/2. (2.13)

2.2 Mean-field treatment of bilinear-biquadratic Heisen-

berg model

Here we analyze a bilinear-biquadratic Heisenberg spin Hamiltonian, Eq. (2.1) us-

ing mean field treatment. Although the phase diagram obtained within this section

will be superseded by the phase diagram resulting from variational Monte Carlo ap-

proach, Section 2.3, we will use the formalism developed here to address the physical

properties of the d + id paired spin liquid state.

2.2.1 Expressing Hamiltonian via fermionic operators

We employ representation (2.7) to express Hamiltonian, Eq. (2.1) via fermionic op-

erators. The bilinear term is expressed via fermions as

S - $ = (f4 f4)(h -A ) + fr(l - f-)f4 , (2.14)

where we introduced a short-hand vector notation f= (fx, fy, f,) and f . fj denotes

the scalar product. Using the constraint, which in new notations becomes f -A = 1,

the biquadratic term also can be expressed as a product of four fermion operators [53],

(, )2 =(2.15)
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Adding a Lagrange multiplier p to enforce the single occupancy constraint (2.9) on

average, we have

H = [J e( ) f()f+( J- K)( ) f-)(fi fj) + K]

(ij)

+ Z[p(1 - .f) + D(1 - ft!fiz)]. (2.16)

2.2.2 Mean field equations from variational principle

Having expressed the Hamiltonian via fermion operators we study the mean field

phase diagram of our model. To unambiguously decouple quartic fermion terms, we

use the Feynman variational principle [65, 66] which is equivalent to the trial wave

functions approach. We define an action based on the Hamiltonian (2.16),

S = dr [ fJi(Or - p)fai + H], (2.17)

as well as the trial quadratic action, 5, with the Hamiltonian H, which is quartic in

fermionic operators, replaced by H that is quadratic:

f=1 [f3T jf-+f + H.c.] + E . (2.18)
(ii)i

The mean field parameters Ti, Aij, and t; are determined from the stationary points

of the functional 'J'[5] = (S - 5)g - log 2,

Trab = J Jab (fjc fic) + (J - K) (fa fib),

= -J(fibfja) + (J - K) 6 ab(ficfic),

tb = z[J(fbfja) - (J - K)(f afjb)] - Dabsaz-

(ii)
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At zero temperature, T = 0, we get the estimate for the ground state energy, Eg.s. <

Eg.s. = (H)g, where

Egs. Z[Tj '(f! fib) + Aofa fb )]
(ii)

+ S[t(fafi) - D(fiftz) +6K + 2D]. (2.20)

We search for self-consistent solutions to the mean field equations that do not

break any additional symmetries other than T-reversal. When the full spin rotation

symmetry is present, the only possible pairing order parameter is A. ~ (fe -fj). Such

pairing preserves full rotational symmetry in spin space, the resulting state being

a spin singlet. We call this pairing singlet, since the total spin of the cooper pairs

is zero (see below). Singlet pairing is possible only with odd orbital momentum of

the cooper pairs, i.e. p, f-wave pairing. Since in Hamiltonian (2.1), only in-plane

rotational symmetry is present for D 4 0, the triplet pairing with order parameter

At ~ ((1 X J)z) = (fixfjv - fiyfp,) is allowed. However, the presence of two

order parameters simultaneously violates the symmetry with respect to rotations of

7r around the x or y axis.

Both aforementioned types of pairing were considered by Liu et al. [36] in a similar

system, however without anisotropy but with competing third nearest neighbor J.

Their treatment of biquadratic exchange also differs from ours. The result of [361 was

that singlet pairing always wins. Below, after discussing different types of pairing

and their symmetry, we derive the mean field equations for each type of pairing. In

Section 2.2.6 we identify the region in phase space where triplet pairing has lower

energy within mean field. This result does not survive more rigorous treatment using

Gutzwiller projection. However, later, in Section 2.3, we find a region of the phase

diagram for the SU(3) spin model, where the triplet pairing has the lowest energy

among all considered states.
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2.2.3 Different pairings and their symmetry properties

Using notation A' = (faifbj), two types of pairing discussed above are written as

(i) equal-flavor singlet pairing where Afjz # 0, Af = AYY /4 0, Ag = 0 otherwise.

(ii) x-y triplet pairing: AY = -Ay 7 0, A0 = 0 otherwise.

On the one hand, for AT = AY = AJ, equal-flavor pairing (i) corresponds to

spin-one singlet pairing. The pairing term Agf 1f t creates a state (f* -))0) that is

invariant under spin rotation; hence, it is a singlet. In general, for AT = AYF / Af,

the state is not an eigenstate of ($$t)2 = (Si + S3 )2. However, for zg = =

-Af/2 one can check that ($gt)2 = 6; therefore, this bond operator creates a spin-

one quintuplet.

On the other hand, the x-y pairing bond operator Agf tft , (ii), creates a spin-one

tMplet. To see this, let us denote the state created by such operator as

11)ij = (Iry)ij - 1YX)zj) c (I11)ij - 1I1)ij).

Since (At)2 = 4 + 2Ai -Si, and [Si - 5 + 1]11)i = 0, we have the expectation value

j (11($g t)2 1),j= 2,

which corresponds to a triplet state.

Due to the anticommuting spinon operators, the pairing parameters A0 must

have particular symmetry properties under inversion of the link direction (i, j): For

equal-flavor pairing (i), we have Aa = -Aja; i.e., the pairing is odd under space

inversion, e.g. it can have only odd orbital momenta (p-wave, f-wave,...). For x-y

pairing (iii), we have AY = AY; i.e., the pairing is even under space inversion and

requires the orbital momentum of cooper pair to be even (s, d-wave,...). This is in

contrast to S = 1/2 spin liquids, where singlet pairing is even while triplet pairing is

odd under space inversion.
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Figure 2-2: Relative phase of the nearest neighbor pairing for p + ip-wave (a) and
d + id wave pairing (b) correspondingly. el and e 2 are basis vectors of triangular
lattice.

Angular momentum of the pairing specifies the phases of the order parameter on

different links of the lattice. Denoting nearest-neighbor links of the triangular lattice

by el = (1, 0), and e2, e2 = (+i, v/5)/2, we can write explicit form of order parameter

for singlet pairing (i), which can happen with p or f-wave orbital momentum. In

particular, p,, + ipy-wave (p + ip) pairing corresponds to [see Fig. 2-2(a)]

aa _ aa eir/3 _ A i27r/3
el e2 e3

whereas real f-wave pairing implies

'aa _ _Aaa = Aaa
el e2 e3

Note, that real p, d-wave pairings break lattice symmetry and are not considered.

For triplet x-y pairing (ii), the possible pairing symmetries are extended s-wave

-AY AxY - AxY
el e2 -41

and dx + idy-wave (d + id) with [Fig 2-2(b)]

= Ax ei27r/ 3 Ax ei4 7r/ 3
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Higher angular momenta would require spinon pairing between farther-neighbor sites,

which we choose to exclude from the present study.2

Symmetry of the quantum spin liquid states (2.29) under lattice rotations forbids

mixing of different types of pairing symmetries in the Hamiltonian (2.28). For exam-

ple, lattice rotation symmetry is broken in a state where the fz spinon is paired with

f-wave, and f2, fu are paired with p+ip pairing symmetry. Similarly, in the x-y paired

quantum spin liquid (ii), f, must remain unpaired unless lattice rotation symmetries

are broken. The reason is the following: After performing a lattice rotation on the

mean-field Hamiltonian (2.28), one would like to find a gauge transformation (2.10)

that brings it back to the original form. If such a gauge transformation exists, then the

corresponding spin wave function (2.29) is unchanged by the rotation (provided the

single occupancy constraint is fulfilled, and up to a phase). However, since all three

spinon flavors transform with the same U(1) phase, such a gauge transformation [22]

can only exist when all spinon flavors have identical pairing symmetries. 3

The quantum spin liquid states with extended s-wave and f-wave states respect

parity P (reflection on a symmetry axis of the lattice) and time-reversal symmetry

. The p + ip and the d + id states, however, break both P and e, but conserve the

product OP. In this sense, they can be termed chiral spin liquids [67], albeit for spin

S = 1. The p + ip state is fully gapped and, therefore, a conventional topological

state of matter. The d + id state, on the other hand, represents a new class of paired

chiral states in two dimensions that exhibit both P- and e-symmetry breaking and a

gapless bulk Fermi surface at the same time. These exotic properties will be discussed

in more detail in Section 2.4.

2 The case of x-y pairing also allows for on-site s-wave pairing with a term Axuft ft.. However,
we found that such a pairing term does not gain any variational energy in the models we consider.

31n this work, we also considered quantum spin liquid wave functions with mixed pairing sym-
metries, i.e., states that break lattice rotation symmetry. However, we find that such quantum spin
liquid states are always higher in energy than the rotation-invariant quantum spin liquid states for
the models we consider.
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2.2.4 Mean field equations for singlet pairing

We introduce the mean field parameters Xa, na, and Aa, a = x, y, z defined as

Xa = (fhfi+eia), na = (fafia), AS = (fiafi+eia). (2.21)

The hopping is the same on all links, whereas the pairings for the remaining two

orientations are (fiafi+e 2a) = A e , (fiafi+e3 a) = Ale2-, where the pair angu-

lar momentum 1 = 1, 2,3 for p + ip, d + id, and f-wave pairing respectively, see

Section 2.2.3 and Fig. 2-2 above. Spin rotation symmetry in the xy-plane requires

Xx - X", n' = n', AX' = Av. The Hamiltonian in momentum space (modulus non-

essential constant terms) can be rewritten as

S= ( Xkfkafka + Akfkaafka + k (2.22)
k,a

with mean field parameters

a = 27(k)[(J - K)Xa - J(Xx + X' + X)]+ 6Kna - p - J,D, (2.23)

= (k)[(J - K)(A[ + AY + Az) - JAa']. (2.24)

The function y(k) is a sum over nearest neighbors, -y(k) = cos k-e 1 +cos k-e 2 +cos k.

e3 .On the other hand, 4(k) depends on the type of pairing under consideration. For

p + ip-wave and f-wave pairings:

4'1 (k) = i(sin k -el - sin k -e 2 + sin k -e3),

4PtP(k) = i(sin k -e1 + eil/ 3 sink -e2 + e2ix/3 sink - e3 ).

Hamiltonian (2.22) is diagonalized with Bogoluybov transformation acting separately

on each fermion species. This results in the spectrum Ek = k(x/2)2 +IAI 2 , and
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mean field equations:

1 1__ X
X a = (k)7(k - , (2.25a)

A = L *(k) k (2.25b)
kk

na =1 ], (2.25c)

supplemented by the constraint equation (fi -) = 1.

2.2.5 Mean field equations for triplet pairing

For pairing with even orbital momentum hoppings are defined as in (2.21), whereas

pairing is Af' = 1/ 2 (fixfi+eiy - fiyfi+eix). The Hamiltonian is:

I = S xkfIkafka + Ak fkxfIky + Axy*f-kyfkx,
k,a

with xa given by Eq. (2.23), and

Axy = 2JV(k)Ax. (2.26)

Note, that the f, band is unpaired and retains its Fermi surface. We consider s-wave

and d + id-wave pairings (as we discussed above, d-wave violates lattice symmetry

and higher orbital momentum pairing requires inclusion of further neighbors). For

the case of s-wave pairing, the function 03 (k) = 7y(k). For d + id-wave pairing we

have Vdid(k) = cos k -e1 +e 2ix/3 cos k -e 2 +e-2ir/3 cos k -e3 . The Bogolyubov spectrum

is

Ek =kE = V(x4'Y)2 + IALT|, Ekz = Xz.(227

Self-consistent mean field equations for x and y-components are given by Eq. (2.25)

with the new expressions for the spectrum (2.27) and gap function (2.26). For the z
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component we have

XZ = 1 E (k)nF(XZk), z =nF(Xk)
Nk 3N k

Our mean field approach includes on-site FN order automatically. The on-site

nematic order is described by the order parameter tensor, Qab = 1/2( + ) -

2 / 36 b. For a single site with S = 1 all states with zero average spin (S) = 0

can be characterized by the unit director vector d [54], in the basis defined earlier,

Id) = d.Ix)+dy y)+d Iz). For this state Qab is expressed via d as Qab = 1/36ab-dadb.

For example, dI|i corresponds to the state ISZ = 0), and the nematic order is diagonal,

Qab = diag(1/3, 1/3, -2/3). In our model we also have states with vanishing spin

order and diagonal on-site nematic order. However, since our ground state is RVB-

like with long-range entanglement, Qab cannot be described by the above simple

form. We have to introduce the magnitude q, Qab = q(1/368a - dadb). Calculating the

nematic order parameter tensor in our model we have Q0b = 6 ab[1/3 - na], where na

is the average occupation of corresponding fermion. Since nx = ny, we have nematic

order with dI|i, with a magnitude given by q = nz - nx, varying from 1 for nz = 1

(state ISz = 0)) to -1/2 for n' = 0. Non-zero anisotropy D = 0 causes n' to be

different from 1/3, and therefore directly couples to FN order along the z-axis.

2.2.6 Phase diagram

Having studied the energies of all aforementioned states using Eq. (2.20), we found

that, among spin liquid states, the main competition is between states with p + ip

and d + id-wave pairings, all other states being higher in energy. As one increases K,

the effective coupling for the odd-channel pairing decreases, whereas for even pairing

it remains the same. Finally for K ~ 0.45J singlet pairing wins. The resulting phase

diagram is shown in Fig. 2-3. The boundary between two states appears to be weakly

dependent on D.

Note, that while obtaining this phase diagram we did not consider any ordered

states. Inclusion of such states in the next section shows that the Hamiltonian (2.1)
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Figure 2-3: The phase boundary between spin liquid ground states with p + ip and
d + id pairing. Panel (b) Gapped (dashed red line) and ungapped (blue line) Fermi
surfaces of x, y, and z-fermions for K/J = 0.55, D/J = 0.8.

does not have a spin liquid ground state in the considered range of parameters.

However, we do find the d + id paired spin liquid state in more generic SU(3) spin

model (2.6).

2.3 Phase diagram from variational Monte-Carlo

In the previous Section we presented mean-field treatment of the bilinear-biquadratic

Hamiltonian. This approach relaxes the single-occupancy constraint so that it holds

only on average. This procedure enables derivation of a low-energy effective theory for

possible spin liquid phases but is generically not reliable for addressing microscopic

stability of a particular ground states. Better suited for this purpose is a variational

wave function approach, that was discussed in Section 1.3.2.

In this approach, unphysical states are removed by hand from wave functions

that correspond to possible low-temperature phases of the theory. Thus, the single-

occupancy constraint is fulfilled exactly, and the resulting wave functions are genuine
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microscopic variational wave functions for spin-one models. Determining the best

variational state for a spin model then provides guiding information about the low-

temperature phase of the model. In this Section we present variational results for the

phase diagram of Hamiltonians introduced in Eqs. (2.1) and (2.6).

Below we introduce microscopic variational wave functions for spin S = 1 on the

triangular lattice. First, we describe quantum spin liquid wave functions that do

not break the space group symmetries of the lattice. Second, we outline a general

approach for constructing competitive long-range ordered states that have an en-

larged unit cell. Using these variational functions we determine the phase diagram of

both bilinear-biquadratic Heisenberg Hamiltonian, Eq. (2.1), and of the ring exchange

model, Eq. (2.6).

2.3.1 Variational wave functions for spin liquid ground states

We again start by writing down quadratic mean field (or "trial") Hamiltonian in terms

of the spinon operators,

Hqsi = E(sf i-faj + ALMfajfbj + h.c.) - pa f faj. (2.28)

(i,j) j

The sum (i, j) goes over the nearest-neighbor links of the triangular lattice. In this

trial Hamiltonian, the emergent gauge fields that would be present in the correspond-

ing low-energy theory are omitted. Particular values for the mean-field parameters

s=t1, A4, and Aa represent possible low-temperature quantum spin liquid phases.

Parameter s = +1 corresponds to flux of 7r or zero through all triangles of the lattice,

and implements the change in the sign of hopping which is equivalent to switching

between particle and hole representation. Next, we assume unbroken spin-rotation

symmetry around the z axis, and we focus on Stot eigenstates with Szot = 0. Note

that under spin rotations, j = (f., fr, fz)j transform as real vectors [i.e., fj transform

in the adjoint representation of SU(2)]. Furthermore, we restrict ourselves to states
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that have a single site per unit cell and that do not break the space group symmetries

of the lattice (translations, rotations, and inversion). In this situation, the following

cases exhaust the possible quantum spin liquid candidates on the triangular lattice:

(i) Equal-flavor singlet pairing: AfJ #0, AFT AYJ' #0, A0 = 0 otherwise.

(ii) x-y triplet pairing: ATY = -AW $0, A0 =0 otherwise.

(iii) U(1) state: A0 = 0.

The chemical potentials for x and y fermions are chosen to be identical, y~, = y.

Other possible pairings A0 than the ones considered in (i) or (ii) violate our symmetry

requirements, see discussion in Section 2.2.3. We also note that although we consider

triplet pairing among variational wave functions, the total spin per site for all con-

sidered states is small in the thermodynamic limit. We have ((Stot) 2 )/N ~ 1/VN

where N is the number of sites and Stot = j S.

Let us briefly discuss the intuition behind states (i)-(iii). In the "parent" U(1) spin

liquid (Aab = 0) state, all three spinon flavors have a Fermi surface. This corresponds

to the Coulomb phase of the emergent U(1) gauge theory where the photons are

massless. The paired states with Aab / 0 correspond to "Higgs" phases where the

global U(1) symmetry is spontaneously broken and the photon acquires a mass [68].

Among the equal-flavor pairing states, the state with pairing in f-wave channel has

gapless nodal points in the spectrum while the p + ip spin liquid is fully gapped. In

the x-y paired spin liquid, the spin excitations are gapped. However, the fz spinons

correspond to nematic (S, = 0) excitations which form a gapless Fermi surface and

are weakly interacting (and therefore deconfined). We expect the Fermi surface to

survive after Gutzwiller projection because the other fermion flavors are gapped and

the U(1) gauge field is also gapped due to the Higgs mechanism.

In order to obtain a microscopic variational quantum spin liquid wave function, we

take the ground state I'io) of (2.28) and apply the Gutzwiller projector PG(nj = 1),

enforcing single occupancy on each site and thereby removing unphysical components.

In this way we construct a genuine spin-one RVB spin-liquid wave function, general-

izing similar approaches to S = 1/2 spin liquids [691. Here, we choose to work in the
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microcanonical formalism where the fermion number is held fixed; i.e., we project the

wave function to a fixed total number of spinon flavors, Na = Z naj,

IN) = PNPG(nj = 1)1,0o), (2.29)

with N = (Nx, Ny, Nz). Since N. = Ny (to maintain spin-rotation symmetry around

the z-axis) and from the local constraint we have 2Nx + N, = N, where N is the

number of lattice sites (N = 12 x 12 in most of our calculations). Expectation values

in RVB wave functions (2.29) can be calculated numerically within Variational Monte

Carlo (VMC) techniques [24]. More technical details on our numerical scheme are

given in Appendix A.

The variational parameters we are using for the microscopic quantum spin liquid

wave functions are the amplitudes IA"I for all pairing symmetries discussed above

and the chemical potentials px and pz. Furthermore, we consider the cases s = +1 in

(2.28), corresponding to the presence or the absence of 7r flux through the triangles of

the lattice, and effectively switching between particle and hole representations of spin.

For the paired states, N, is used as an additional variational parameter (independent

of p,,; see Appendix A.1 for more details).

2.3.2 Long-range ordered states

In order to make reliable statements about the low-temperature phase of a spin model,

the energies of quantum spin liquid wave functions have to be compared with com-

petitive long-range ordered states. We consider natural ordering patterns that are

suggested within a simple product-state ansatz (e.g., a 1200 magnetic ordering in

the case of the antiferromagnetic Heisenberg model on the triangular lattice). The

quantum spin liquid wave functions (2.29) are highly correlated states. To be able

to compare the variational energies, we also need to introduce nontrivial quantum

correlations to the ordered states.

We use the following two complementary schemes to introduce quantum correc-

tions on top of long-range ordered product states. The first approach builds on the
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fermionic representation and gauge theory description of the spin model. Long-range

ordered phases can be captured within the following quadratic trial Hamiltonian,

Hod = s f -ifa- h da*d&fjfbj - Pa Ef faaa ja (2.30)

Similar to the quantum spin liquid wave functions (2.29), the Gutzwiller-projected

ground state of (2.30) serves as a variational state. The normalized complex vectors

d3 specify a particular spin-one ordering pattern. The variational parameter h inter-

polates from the U(1) spin liquid (h = 0) to the product state IOP) = I[1 Ea djIa)j

when h -+ oo. As before, we set p,, = Y,; yu - , is taken as a variational parameter

and we consider 7r- and 0-flux states by s = +1.

Another route to constructing correlated long-range ordered wave functions is to

apply spin Jastrow factors to a product state. The analysis of such wave functions

for the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice was

pioneered by Huse and Elser in Ref. [701. For that model, Huse-Elser wave functions

were found to give low variational energies, comparable to exact energies on small

clusters. A generalization of the Huse-Elser wave function to the case of spin S = 1

can be written as

13) = exp(- Z{#(SziSzj) + -y(SziSzj) 2 })'$'I)p. (2.31)
(ij)

Here, I4'p) is a product state of spin one. In this paper, we restrict ourselves to

nearest-neighbor Jastrow factors, and take /, y to be real variational parameters.

A general spin-one product state can be written as

[Vp) = d Ia)j , (2.32)
ja

where Ia) E {x), ly), Iz)} span the local Hilbert space; see Eq. (2.8). Let us write

d = u + iv, where u and v are real vectors, and consider the single-site state 1) =

E. dala). We can always take d = (dx, dy, dz) to be normalized and u -v = 0 (choice
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of phase). The spin expectation value in this state is given by

(S) = 2u x v. (2.33)

If d is real, the corresponding state is a spin nematic with (S) = 0. In this case, d is

called the director and we have

(S2) = 1 - (da) 2 . (2.34)

On the other hand, u2 = v 2 = 1/2 corresponds to a spin coherent state where

( = 1 is maximal [64].

The fermionic states (2.30) and the Huse-Elser wave functions (2.31) are two

general and complementary ways to introduce nontrivial quantum fluctuations on

top of spin-one product states (2.32). Although additional variational parameters

can be built into the product state itself, we need to choose a suitable (family of)

product states (specified by dj) to start with. As the example by Huse and Elser [701

suggested, good ground-states energies can be obtained by choosing the product states

that minimize the energy of the spin model. Below we will use a similar choice guided

by a variational study of the model (2.1) at the level of product states. Such study,

performed in Ref. [55], suggested a three-sublattice ordering pattern, generalizing the

ordering pattern of Ref. [341 to D # 0. Motivated by these results, we choose the

antiferromagnetic and nematic ordered states as an input to our correlated ordered

states discussed above.

Antiferromagnetic ordered state

First, we consider an antiferromagnetic (AFM) state where the spins (VipISjIPp) have

a constant length and lie in a common plane at an angle of 1200 to each other on

nearest-neighbor sites. The average spin length, I ('p I jSj I0p) 1, is taken as a variational

parameter. In the notation of Eqs. (2.30) and (2.32), the spin states on sublattices

59



A, B, and C of the triangular lattice are written as

djeA = (0, -i sinq, cos 7),

djeB,c = - 2 sinq, i sin 77, cos 7) (2.35)
2 51172

where q E [0, -r/2] is a variational parameter. Using Eq. (2.33), one may check

that this state corresponds to 1200 antiferromagnetic ordering in the x-y plane with

I(0P|I$ 5kp)I = sin 277. We also consider the same ordering in the x-z plane.4 For

77= r/4, each site is in a spin-coherent state; i.e., I(A)I = 1. The values q E {0, 7r/2}

correspond to spin-nematic states with (Si) = 0. For q = 0, all directors point

along the z axis (ferro-nematic state), whereas for 77 = r/2, the directors on nearest-

neighbor sites lie in a common plane at an angle of 1200 (1200 nematic state).

Spin-nematic ordered states

As a second ordering pattern, we consider spin-nematic (NEM) states with (op ISj $5P) =
0. The angle between the directors on different sublattices is constant and taken as a

variational parameter ("umbrella" configuration). More precisely, we take the follow-

ing family of spin-nematic states,

djeA = (0, - sin , cos 77),
v/5 1 .(2.36)

djEB,c = (F -- 2 sin, sin, cos 77) ,

where the variational parameter 7 controls the angle between the nematic directors on

different sublattices. As before, the special value 7 = 0 corresponds to a ferro-nematic,

while y = 7r/2 is a 1200 nematic state. At the intermediate value sin r = V2/3, the

directors are perpendicular to each other on neighboring sites (900 antiferro-nematic

state [34]).

4 We always choose the spin Jastrow factors in the 120'-AFM Huse-Elser wave function (2.31) to
lie perpendicular to the ordering plane of the spins. That is, for D < 0 (when the spins order in the
x-z plane) the Jastrow factor in Eq. (2.31) should read exp{-,3SySyj - I(3,Syj)21.
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2.3.3 Phase diagram of bilinear-biquadratic Heisenberg model

We start by considering the bilinear-biquadratic model introduced in Eq. (2.1),

HKD ={S Sj + K(i -Sj)2}+ D ES2, (2.37)
0ij) 3

where we set the Heisenberg exchange energy J = 1. Below, we restrict ourselves to

the parameter range IK 1.5 and IDI 1.5.

For intermediate values of D, one may expect an x-y paired quantum spin liquid

to be stabilized in this model. Since S2 j = 1 - nj, the single-ion anisotropy D acts

as a chemical potential for the fz spinon. For nonzero D, the Fermi surfaces of f,

and of fx, fv in the U(1) state are expected to mismatch, and it is conceivable that

fx and fy pair while leaving fz with a spinon Fermi surface. Indeed, in Section 2.2

mean-field theory found that for K < 0.5, the p + ip quantum spin liquid wins, while

for K > 0.5, the d + id state with a spinon Fermi surface is the most stable quantum

spin liquid candidate [1]. Below we discover that the variational energy of ordered

states is always lower than the one of the quantum spin liquid states when the local

constraint (2.9) is taken into account exactly.

Our variational results confirm the known phase diagram at D = 0 discussed in

Section 2.1.3. Furthermore, we find that the three-sublattice ordering of the ground

state persists for nonzero values of D; i.e., all spin liquid states are higher in energy

than the three-sublattice ordered states we considered.'

A typical plot of the variational energies (for D = -0.4) is shown in Fig. 2-

4. For K < 0.3, the magnetic Huse-Elser wave function (J-AFM), Eq. (2.31), is

the best variational state. For 0.3 < K < 1 the fermionic antiferromagnetic state

(f-AFM), Eq. (2.30), is the state with the lowest energy. As discussed above, the

corresponding product states [specified in Eq. (2.35)] are magnetically ordered with

partially developed spins at 120' angles between sublattices. For D > 0, the ordered

spins lie in the x-y plane while for D < 0, the spins order in a plane that contains

5 We investigate the range IDI < 1.5 in detail. But even greater values of D do not seem to
stabilize the quantum spin liquid states.
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Figure 2-4: Variational energies (per site) for the bilinear-biquadratic model,
Eq. (2.37), as a function of K, for D = -0.4. The system is N = 12 x 12 lattice sites.

the z axis. For K > 1, the fermionic nematic state (f-NEM) with directors specified

in Eq. (2.36) is the one with the lowest energy. For D = 0, the best state is the

90' antiferro-nematic state [34], and for D - 0, the three nematic directors close

(D > 0) or open up (D < 0) relative to the z axis, depending on the sign of the

single-ion anisotropy. In the fermionic long-range ordered states (2.30), the optimal

variational parameter is h ~ 1.5. For this parameter value, the spinon excitations are

fully gapped. Therefore, the low-energy spinons are absent at the mean field level,

and we expect that bosonic spin-wave excitations for these ordered states capture the

low-energy physics of this model [34].

The energetically best quantum spin liquid states are the p + ip-state for K ,< -1

and D - 0, and the unpaired U(1) state for K - 1, both having zero flux through the

triangles (s = -1). All the other spin liquid states show very small or no condensation

energies with respect to the U(1) state. It is remarkable that for K - 1, the U(1)

state with three spinon Fermi surfaces is actually lower in energy than the optimized
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Huse-Elser J-AFM -1.783(1)
Fermionic f-AFM -1.570(2)
p+ip spin liquid -1.33(0)
U(1) spin liquid -1.00(3)

Table 2.1: Variational energies (per site) for the spin-one triangular-lattice Heisenberg
antiferromagnet, (2.37), for K = D = 0; N = 144 sites.

Huse-Elser wave function. We do not find any pairing instability of the U(1) spin

liquid on the line K ~ 1 for D ,> -0.8. For D < -0.8, there is a small energy gain

from pairing in the d + id channel. However, the ordered fermionic states are still

lower in energy. When D = 0, the three spinon Fermi surfaces match exactly. For

D > 0, the f, Fermi surface expands while f., and f, Fermi surfaces shrink. The

opposite happens for negative D. The kink in the U(1) energy in Fig. 2-4 marks the

polarization to a ferro-nematic state with (S,2) = 0, for K < -0.6. That is, the

spinon Fermi surface of f_ spinons disappear at this point.

The variational energies for the spin-one Heisenberg antiferromagnet (K = D = 0)

are displayed in Table 2.1. Note that the Heisenberg energy for the optimal product

state of fully developed (coherent) spins ordered at 1200 is -1.5. At the Heisenberg

point, the spin liquids are even higher in energy than this uncorrelated product state.

At the point K = 1 and D = 0, the model (2.37) acquired SU(3) symmetry [64].

On the line D = 0 and arbitrary K, the remaining symmetry is SO(3) spin-rotation.

This symmetry is broken to U(1) (generated by S_) when D # 0. However, on the

line K = 1 and arbitrary D, the model possesses an SU(2) symmetry generated by

the operators S, S Y - S , and SXSv + S,,. The generator S -. allows rotation

of the antiferromagnetic and the nematic ordered states [specified in Eqs. (2.35) and

(2.36)] into each other and they are degenerate. This property of the product states

remains valid after the introduction of quantum fluctuations via (2.30) or (2.31), and

it explains the degenerate crossings for the ordered states seen in Fig. 2-4 at K = 1.

See Appendix A.3 for a more detailed discussion of these symmetries.
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Figure 2-5: Pictorial presentation of the variational phase diagram that we find for
the SU(3) ring-exchange model (2.6).

2.3.4 Phase diagram of SU(3) ring-exchange model

We recall that analysis of Section 2.1.3 revealed the same ordering patterns for the

SU(3) ring exchange model, as one we found in the case of the KD-model. Therefore

in what follows we use the same trial wave functions specified in Eqs. (2.35) and (2.36)

to construct correlated ordered states for the ring-exchange model.

We calculate the variational energies of the quantum spin liquid states (2.28) as

-0.2
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-0.25

.+1 U(1) QSL- - -........ -............ ----.. ................... --/- ---- ---
- d+id QSL
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Figure 2-6: Variational energies (per site) of the SU(3) ring-exchange model, Eq. (2.6),
as a function of a/7r. N = 12 x 12 lattice sites.
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well as the energies of correlated three-sublattice ordered states (2.30) and (2.31) for

the ring-exchange model specified in Eq. (2.6). The scheme of the phase diagram is

shown in Fig. 2-5, and energies of different ground states are compared in Fig. 2-6.

We see that the conclusions we draw from the simple product state calculation in

Section 2.1.3 agree with the result using correlated wave functions in most of the

parameter range: the phase diagram has domains of FM, AFM and nematic ordered

states.

However, in the region between the AFM and the 120*-nematic phase, around

a ~ 7r/4, we find an extended region where the d + id quantum spin liquid has the

lowest energy. The optimal d+id variational parameter IAx'I along with (Si) - 2/3 =

1/3 - Nz/N are shown in Fig. 2-7. The ring-exchange term favors a 7r-flux d + id state

with s = 1: As a increases, the 0-flux state with a large pairing term ((A-m| ~ 4)

changes to a -flux state with IAxYJ ~ 0.5 at a ~ 0.227r.

Note that the d + id quantum spin liquid phase in Fig. 2-5, as well as the adjacent

1200 nematic phase, exhibit a ferro-quadrupolar order. For the d + id state this is

apparent from Fig. 2-7 since (S2) > 2/3. In contrast, lattice rotation symmetry

is unbroken in the d + id quantum spin liquid while both adjacent ordered phases

spontaneously break lattice rotation.6

As discussed above, for a = 0 and up to a constant, (2.6) corresponds to the model

(2.37) with K = 1 and D = 0. The ground state of this model was recently approached

with density matrix renormalization group (DMRG) calculations in Ref. [71]. In this

work, the authors found a three-sublattice ordering pattern that is consistent with

our result. The DMRG energy is displayed in Table 2.2 along with the variational

energies of the lowest-energy states used in the present paper.

6 Note that the 1200 nematic state only involves two out of three flavors. Therefore, in this phase,
the SU(3) symmetry of the model is spontanously broken to SU(2). As a result, the three-site ring
exchange term merely renormalizes the two-site Heisenberg term, and the ground state is the SU(2)
Nel state on the triangular lattice. We thank A. Liuchli for this remark.
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Figure 2-7: Optimized variational parameters A = IAYI (dot symbols, left scale) and
(S2) - 2/3 (x symbols, right scale) for the d + id quantum spin liquid state in the
ring-exchange model (2.6). Among the states we consider, the d + id state has the
lowest energy in the range 0.177r < a < 0.337r. For 0.177r < a < 0.227r, the optimal
state is a 0-flux state with s = -1; for 0.227r < a < 0.337r, we find a wr-flux state with
A ~ 0.5 and s = 1.

State SU(3) energy
Fermionic f-AFM -0.57(8)
Huse-Elser J-AFM -0.27(7)
U(1) spin liquid -0.34(3)
DMRG [71] (N = 8 x 10) -0.678

Table 2.2: Variational energies for the SU(3)
sites.

model, Eq. (2.6), at a = 0 on N = 12 x 12

Phases of perturbed ring exchange model

We also consider additional perturbations to the ring-exchange model (2.6) in order

to assess the effect of such terms on possible low-temperature quantum spin liquid

phases. First, we add a single-ion anisotropy term D >A S'. As discussed in the

previous section, such a term breaks the SU(3) symmetry of the model to SU(2).
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For small D, the ordering plane is explicitly chosen. Large D deforms the three-

sublattice ordering pattern in a way similar to the bilinear-biquadratic Heisenberg

model (2.37). However, we find that the phase boundaries of the d + id state with the

adjacent ordered states are barely affected by D (we investigate the range IDI < 1.5).

Second, we add a next-neighbor exchange term J2 ((ij)) 1i'P to (2.6). Such a

term strongly frustrates three-sublattice ordering. At a = 0, we find that the three-

sublattice ordering is destroyed for J2 as small as J2~ 0.25, and the U(1) quantum

spin liquid has the lowest energy among our ansatz wave functions. However, an

analysis of this model in terms of product states reveals that the competing ordering

pattern is spiral. So far, we have not included spiral states into our variational analysis

and this is an interesting open question.

2.4 Physical properties of d + id state.

In this Section we discuss the physical properties of the d + id paired spin liquid state.

We start by reviewing the gauge theory of this state, and then consider the physics of

the edge modes, as well as thermodynamic functions and response properties of the

above state.

2.4.1 Gauge theory for the d + id quantum spin liquid

In this section, we discuss the low-energy gauge theory description of the d + id spin

liquid and some of its properties. In order to impose the local particle-number con-

straint (2.9), the Lagrange multiplier A3 is introduced in the Euclidean path integral

for the spinon partition function, [69]

Z = DA fJ[DfjDfa e~S. (2.38)

The action is given by

S = j d-r {f t(a, - iAj)faj + iA zj + H}. (2.39)
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The Ising variables zj E {1, 2} specify whether site j is constraint to the particle

(Nf = 1) or hole (Nf = 2) representation. The Lagrange multiplier Aj turns out to

be the temporal component of the emergent U(1) gauge field. H is the microscopic

spin-one Hamiltonian under consideration, written in terms of the spinon variables

faj. As already stated in Eqs. (2.10) and (2.11), a local transformation that leaves

the spin operator (2.7) invariant is given by an element gj E U(1) xZ2 . Under the

transformation g3 = (eioki, Xi = t), the fields transform as

f,,j fa 1 X + Xft , (2.40a)

z '- 3 2 + Xjz) (2.40b)

Aj XjAj +'-> . (2.40c)

Note that the action (2.39) is not invariant under time-dependent particle-hole

transformations Xj. Therefore, the particle-hole part of the local symmetry group is

not a genuine gauge symmetry of the action. In the following, we can simply choose

a particular static Z2 configuration, e.g. zj = 1, in (2.39). Furthermore, generic

mean-field decouplings break this local particle-hole symmetry.

In a next step, the spinon interaction terms in H can be decoupled by appropriate

Hubbard-Stratonovich fields as is done in the usual slave particle formalism [691. To

maintain the gauge invariance of the action, we need to introduce link variables aij

that are the space components of the U(1) lattice gauge field. The gauge field (A, aij)

mediates the interaction between the fermionic spinons. So far, all manipulations are

formal transformations that do not change the physical content of the action. The

question remains whether the resulting U(1) lattice gauge theory exhibits a phase

with deconfined spinons. Possible low-temperature phases of the gauge theory are

specified at the mean-field level by quadratic Hamiltonians (2.28) and (2.30).

Let us now specialize to the d + id phase that we found previously in the SU(3)

ring-exchange model (2.6). This is a Higgs phase where particle-number conservation

is spontaneously broken and the U(1) gauge field acquires a mass mo oc IAxyl. At

the same time, the fermions fx and f, are gapped and can safely be integrated out
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in the path integral. This generally leads to a Maxwell term for the U(1) gauge

field in the low-energy effective action. Another low-energy term is a Chern-Simons

term Ef"Aa,o9,aA. The Chern-Simons term violates time reversal E and parity P.

Therefore, its coefficient 0 h cannot vanish in the chiral d + id spin liquid [67]. Hence,

in the continuum limit, we arrive at the following effective action

/ (V -ia)2 f
Seff= drdx {f1 [o9, - iao - pz + (V- |a2IfZ2m (2.41)

'O2 Uh ,iVA
+ -a2 + 2 E a,,a +...},

where the ellipsis denotes higher-order terms in derivatives and gauge fields. In this

theory, the f. spinon maintains its Fermi surface, and it is only weakly interacting

via the massive photon. The excitations corresponding to f' are therefore deconfined

in this phase.

2.4.2 Chiral edge modes for the d + id quantum spin liquid

In Ref. [72] it was shown that the d + id superconductor is a topological state with

Chern number equal to two. From the bulk-edge correspondence, this indicates the

presence of two chiral edge modes. A semiclassical argument [731 supports this con-

clusion. Here we recapitulate this semiclassical argument and generalize it to chiral

topological superconductors. After this, we specialize to the d + id quantum spin

liquid state. We calculate its energy spectrum on a triangular-lattice strip, and we

discuss the corresponding low-energy edge theory.

Edge modes in chiral superconductors

In the bulk of a superconductor involving two fermion flavors, writing b = (ci, c2),

the Bogolubov equations are

(s - E A(k)
Ok = 0 . (2.42)

A* (k) - k - Ek

69



Here, we consider fully gapped superconductors with IA(k) > 0. The spectrum is

given by Ek = +/k + A(k)| 2 .

Next, consider a superconductor with a boundary along the x-direction. Asymp-

totically (i.e., for kly > 1), an incident bulk wave packet Ve ik with k = (kx, ky)

is reflected at the boundary to an outgoing wave packet ,kreik''r with wave vector

k' = (kx, -ky). The two wave packets "see" the gap functions A(k) and A(k'), re-

spectively. For a given incident wave vector k, it seems therefore possible to map this

problem on the half plane to a one-dimensional scattering problem where the order

parameter A(y) interpolates from A(k) as y -+ -oo to A(k') as y -+ +oo:

(-i4 - E A(y) kx (y) = 0 (2.43)
A* (y) i~y - E)

This one-dimensional problem can now be solved in the usual way [74, 75]. For

simplicity, let us choose a bulk potential of the form A(k) = AeilO(k) where 1 E Z

is the winding of the phase of the order parameter around the Fermi surface, and

cos 9(k) = kx/Ik 1. A scattering state with incident angle 9 results in an outgoing angle

9' = 7r - 9. The asymptotic potentials can therefore be chosen as A(k) = Ae"(0-7/2)

and A(k') = Ae-"(O-,/ 2 ). Accordingly, the order parameter A(y) in (2.43) has a

constant real part A cos 1(9 - 7r/2), and an imaginary part A sin 1(9 - 7r/2) that

changes sign across the boundary. This problem can be solved exactly for certain

special cases of the interpolating gap profiles [74,761. For example, a kink profile with

A(y) = A[cos 1(9 - 7r/2) - i tanh(y) sin 1(9 - 7r/2)] yields the bound-state spectrum

7r 7r
Eo = A cos[l(9 - i)] sgn[sin l(9 - i)], (2.44)

with corresponding eigenvectors

1 7r
00(y) 1 (1, sgn[sin l( -)]) . (2.45)2 cosh(y) 2

We observe that E as a function of 9 vanishes exactly 1ll times. Therefore, there are
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1l1 gapless edge modes. Using cos 0 ~ k,/kf and expanding Eq. (2.44) around a node

at momentum k", we get Eo ~ -1(k, - k")A/kf + .... The edge modes are chiral

and propagate with the velocity vn = -lAl/kf. In the simplest nontrivial and well-

known case of a p+ip-superconductor [74, 75, 771 (1 = 1), a single chiral edge mode

is located at k, = 0. Higher angular momenta have chiral modes at k" $ 0. Since

the phase winding of the order parameter around the Fermi surface is a topological

property, we expect that the number of chiral edge modes is a robust feature of the

state, too. The precise location of the nodes {k,"} and the corresponding propagation

speeds IvnI, however, depend on further microscopic details.

Low energy edge theory for the d + id quantum spin liquid state

According to the above semiclassical argument, the d + id quantum spin liquid state

(1 = 2) is expected to exhibit two chiral edge modes located at wave vectors k,' ,e

ikf /x/. To substantiate this claim, we calculate the spectrum of the d + id state

(2.28) on an triangular-lattice strip of infinite length [here, we neglect the local con-

straint (2.9) and work in the fermionic Fock space]. The four lowest energy levels are

shown in Fig. 2-8 as a function of wave vector k, along the strip. The triangular-

lattice d + id state indeed exhibits two gapless left movers localized on the lower

boundary and two right movers localized on the upper boundary. The spectrum of

f_ spinons with a bulk Fermi surface is omitted in Fig. 2-8.

As discussed above, the low-energy degrees of freedom localized on the edge for

the d + id quantum spin liquid state are two chiral Dirac fermions. To discuss the

physics of these edge states, it is convenient to go to the spinon basis creating S,

eigenstates. We have

1
f. (f - i-fv), (2.46)

with o- = 1. We also denote fj = f._1. The x-y (triplet) pairing term of the d + id

state is fxifyj - fyifxj = i(f1 ifi - flifi). Let us consider an edge along the x

direction and denote the momentum along the edge by k = kx E [-7r, 7r]. The two
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Figure 2-8: The four lowest energy levels of the d + id mean-field state (2.28) on an
infinite triangular-lattice strip as a function of wave vector km along the strip. The
width of the strip is 200 sites. The boundaries are chosen to be parallel to one lattice
direction and we use open boundary conditions. The spectrum of the fz spinon with
a bulk Fermi surface is omitted. The gapless states (blue online) are localized on the
lower boundary for left movers (dashed line), and on the upper boundary for right
movers. The higher states (red online) are delocalized and the energy levels above
them are "dense"

gapless points in the boundary spectrum are denoted by k1g = k0 with k0 > 0.

Using the semiclassical expression (2.45), the edge states are created by operators

xe(k) ~ fox + c-sgn(k)f~,(47

for Ik| ~~ k0. The excitations Xi(k) and Xj(k) carry spin Sz = i1, respectively. Note

that the edge states at positive and negative momenta k are not independent: We

have Xf,(k) = a-sgn(k) xt-(-k). The low-energy effective edge Hamiltonian is therefore
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given by

7 =vO ( (k - kV) X1(k)X,(k), (2.48)
k ko

where the sum over k is restricted to the vicinity of the node at momentum +kO to

avoid double counting of states.

Similar to the ordinary quantum Hall effect, the chiral edge modes are expected

to be robust with respect to disorder and impurities because no backscattering is

possible [78]. Furthermore, due to S_ conservation, hybridization terms such as flxe
cannot appear in the low-energy Hamiltonian. In a mean-field decoupling, interaction

terms such as ftffXtX, only shift the chemical potentials of bulk and edge gapless

modes, and do not significantly alter the edge physics. The presence of protected

chiral edge modes carrying spin S_ = +1 implies a quantized spin Hall conductivity.

We also expect a thermal Hall conductivity in the d + id quantum spin liquid state.

In the d + id quantum spin liquid phase with unbroken lattice symmetries, f,
must necessarily form a spinon Fermi surface (see Sec. 2.3.1). However, this argument

becomes invalid when the lattice symmetries are explicitly broken. For example, close

to the boundary of the sample, symmetry allows a pairing term for f,. Similarly, we

expect the spinon to acquire a local gap in the vicinity of bulk impurities. This

property makes the Fermi surface of f, spinons hard to detect in any experiment that

involves local probes.

2.4.3 Thermodynamic properties and response functions of

d + id spin liquid

After reviewing the gauge theory description and physics of the edge mode, here we

release the local constraint (2.9) in order to analyze the spectral properties of the

d + id mean field state. This can be justified from the point of view of the U(1) gauge

theory since we are in a Higgs phase where gauge fluctuations can be neglected. In

this case, the fz spinon can be treated as a weakly interacting Fermi liquid.
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Figure 2-9: The spin susceptibility ~xx = XX/(p'g) 2 in the d+id phase as a function
of D/J for K/J = 0.55. The susceptibility is normalized by the average density of
states, i = (vx + v,)/2, where vx is calculated without the gap.

Static spin susceptibility and NMR relaxation rate

The response function, Raa (iw) = g fl dT e"r (Sai (T) Saj), in the d + id state has

the following properties: Since fx and f, fermions are paired, we have Rzz(iw) = 0,

and Xzz vanishes. However, Rxx(iw) = Ryy(iw) do not vanish at low temperature. In

the low-frequency, low-temperature limit, Iwi < T -+ 0, we find

Xxx = Re[ Rxx(0)l = d2 kE-sgn(k)k (2.49)
JBZ 27r Ek(Ek + I 1)

where (k = 2s[cos(ei - k) + cos(e2 - k) + cos(e3 - k)] - [a is the dispersion of the

x- and z-fermions. Ek = (()2 +|Ak 2, and the d + id gap function is A"'=

A[cos(ei - k) + e 27i/ 3 cos(e2 - k) + e-2i/3 cos(e3 -k)]. As before, e1,2,3 are vectors of

nearest-neighbor links on the triangular lattice.

We find that the static spin susceptibility Xxx takes a nonzero value given by the

integral over the Brillouin zone (BZ), Eq. (2.49). Its numerical value depends on

the parameters A, yu, pz, and on s = 1. In the limit when gap is much smaller

than anisotropy of chemical potentials, A < I[px - [zI < 1, Xxx approaches the Pauli

susceptibility of two unpaired Fermions, Xxx ~ 2vz, where vz = fBz d2 k/(27r) 6(cz) is

the density of states at the Fermi surface. In the opposite limit, /px - ZI < A < 1,

the susceptibility approaches approximately half this value, Xxx ~ vz. The full curve
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of xx/(Bg) 2 normalized by the density of states at intermediate values of A as a

function of Mtx - pizt is plotted in Fig. 2-9.

The nuclear spin relaxation rate is given by T7-1 ~ TIm[R.a(iw -+ 0)]. Since two

out of three fermions are gapped, Im[R.a(iw -+ 0)] vanishes for temperatures and

frequencies smaller than the gap for all a. This implies the NMR relaxation 1/(T1T)

is exponentially small for temperatures below the pairing scale. These results tell

us that the Fermi surface associated with f, [see Fig. 2-3 (b)] should be viewed very

differently than the spinon Fermi surface in the S = 1/2 spin liquid which carries spin-

1/2 quantum numbers and leads to gapless spin-1 excitations. In our case S' = 1

excitations are gapped even though the static spin susceptibility Xxx, Xyy = 0 and the

specific heat has linear T dependence.

Specific heat and Wilson ratio

In the d + id spin liquid, the magnetic specific heat at low temperature is linear in

temperature due to the f, spinon Fermi surface. The coefficient is given by

TM 2 (2.50)
T3

The Wilson ratio is defined as

Rw = . (2.51)
3 -y

For the case of powder samples, a directional average should be used in this expression

for comparison with experiment, - = 2xx/3.

The Wilson ratio, Rw = 8xx2/(3vz), for the d + id state is plotted as a function

of pz - po in Fig. 2-10. The choices of parameters (A = 0.5 and 2.6 for the 0-

flux state, and A = 0.5 for the wr-flux state) are examples of lowest energy d + id

states in the ring-exchange model, (2.6), at a ~ 7r/4. Note that, in this plot, we

adjust the chemical potential p, = y such that the constraint is satisfied on average,

Ea(na) = 1. The shift it is the optimized chemical potential for the ring-exchange
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Figure 2-10: Wilson ratio, (2.51), for the d + id state as a function of the spinon
chemical potential, Pz - Mo. The shift po corresponds to the optimal value of the
chemical potential in the ring exchange model (2.6) at a = 7r/4 (without single-ion
anisotropy).

model, i.e., for D = 0. In Fig. 2-10, we see that the Wilson ratio is enhanced in the

d + id state with respect to a metal (where Rw = 4/3) by a factor of approximately

two at pz = po. This can be attributed to the fact that only a single fermion flavor

contributes to the coefficient of specific heat in the quantum spin liquid state. Since

Sz = 1 - f fz, a single-ion anisotropy term in the Hamiltonian acts as a chemical

potential for the f, spinon. We have D oc (p, - p'), and Rw can be further enhanced

by a non-zero D. An easy-plane anisotropy (D < 0) shrinks the spinon Fermi surface,

resulting in enhancement of Rw. For an easy-axis anisotropy (D > 0), the Wilson

ratio is enhanced due to an increase in magnetic susceptibility in the case of the 7r-flux

state.
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Thermal Hall effect

Due to the spinon Fermi surface of fz, the d + id quantum spin liquid state exhibits

a longitudinal heat conductivity [79]. According to the Wiedemann-Franz law, it is

of the form

07= , (2.52)
h

where go = 7r 2T/(3h) is the thermal conductance quantum, Ef is the Fermi energy of

the f, spinon, and T is its lifetime. However, no longitudinal spin current will flow

since the spin excitations are fully gapped in the bulk. Nevertheless, we expect a

thermal (and spin) Hall conductivity due to the chiral edge modes [80,81]:

XY ~ 2go . (2.53)

Since the state is compressible, r'Y is not expected to be exactly quantized. The f'
spinon with a bulk Fermi surface also contributes to i'Y due to a classical Hall effect

in the chiral spin liquid. On the other hand, the spin Hall conductivity is expected

to be exactly quantized.

2.5 Conclusion and outlook

In this Chapter, we constructed all natural quantum spin liquid states with three

flavors of fermionic spinons for spin S = 1 Heisenberg and ring exchange models on

the triangular lattice. We compare their variational energies with the ones of various

long-range ordered states. We find that for large biquadratic and ring-exchange terms

(of the order of the Heisenberg exchange J > 0), an exotic chiral quantum spin liquid

with a spinon Fermi surface is stabilized.

The d + id spin liquid state has a number of exotic physical properties, such as

coexistence of spinon Fermi surface with gapped spin excitations, edge modes and

quantized spin Hall response. It is instructive to contrast these properties to different

Z4 spin liquid state proposed by Xu et al. [51] for spin-1 models. The Z4 state from

Ref. [51] has gapless fermionic spinon excitations with quadratic band touching. This
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leads to a T-linear specific heat and a constant spin susceptibility at low temperature.

However, in contrast to the d + id state, the bulk spin excitations are gapless in the

Z4 state, and no chiral edge modes are expected. This leads to a finite spin relaxation

rate at low temperature as well as absence of thermal and spin Hall effects in this

state.

Another interesting state is the U(1) state has Fermi surfaces for all three spinon

flavors. However, since this state is in a Coulomb phase, the U(1) gauge fluctuations

are expected to be relevant leading to non-Fermi-liquid behavior. Physics of this state

will be a subject of the next Chapter.

The natural open question is if the considered spin-1 ring exchange model can

describe the relevant magnetic interactions in magnetic materials. A perturbative

expansion in t/U of a two-band Hubbard model with an additional orbital degree

of freedom and strong Hund coupling would produce a spin S = 1 Heisenberg term

S - Si to order t2 . Only to next order, t, one expects biquadratic terms (Si - ) as

well as three-site terms (SA - S)(Sj - ) [82,83]. Those three-site terms has to be of

the same order as the Heisenberg term to realize the ring-exchange model. We found

that a dominant nearest-neighbor Heisenberg term disfavors the d + id quantum spin

liquid ground state.

While it is unclear, at present, whether the ring-exchange model (2.6) can realisti-

cally describe the magnetic materials such as Ba3NiSb2O9 , it is a very natural model

to study if one starts from an integer-filled three-band Hubbard model. Such three-

(and higher-) band Hubbard models are currently of great interest, both theoretically

and experimentally, in the cold-atom community; see, e.g., Refs. [71,84].
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Chapter 3

Kondo physics in S = 1 spin liquid

with emergent Fermi surface

In this Chapter we study the behavior of Kondo s = 1/2 impurity embedded in a two-

dimensional S = 1 U(1) spin liquid with a Fermi surface [3]. This problem contains

an interesting interplay between non-Fermi-liquid behavior induced by a U(1) gauge

field coupled to fermions and a non-Fermi-liquid fixed point in the overscreened Kondo

problem. Using a large-N expansion together with an expansion in the dynamical

exponent of the gauge field, we find that the coupling to the gauge field leads to weak

but observable changes in the physical properties of the system at the overscreened

Kondo fixed point. We discuss the extrapolation of this result to a physical case and

argue that the realization of overscreened Kondo physics could lead to observations

of effects due to gauge fields.

3.1 Introduction

Impurity models constitute an important chapter in modern condensed matter physics.

Since the original paper by Kondo [85] considering electron sea screening a single

impurity spin, this problem has attracted significant theoretical and experimental

attention [86-109]. More recently, impurity physics has been studied in the context

of strongly interacting systems. Numerous examples include [110] an impurity in
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systems with vanishing density of states 1111-116] high temperature superconduc-

tors [117-121], and quantum magnets [122-132]. Quantum magnets are particularly

versatile as a host system, having a large number of possible ground states with

different low energy excitations.

In this Chapter we consider a spin-half impurity embedded in a spin-1 quantum

paramagnet with a spin liquid ground state [8,25]. We consider the situation where

the low energy excitations of the paramagnet are described by emergent fermionic

excitations with a Fermi surface, coupled to a U(1) gauge field. This study is mo-

tivated by the recent appearance of several S = 1 spin liquid candidate materi-

als [32,133]. Theoretically, a number of spin liquid ground states for spin-1 system

have been proposed [2, 33, 134-140]. One possible scenario described in Chater 2

above, involves emergence of three fermionic excitations carrying spin-1 quantum

numbers [2, 136, 1391. In the previous Chapter we considered different scenarios of

(partially) gapping out the Fermi surfaces of three spinons. Assuming that Fermi

surfaces of these excitations are not destroyed by a pairing instability, we obtain the

U(1) spin-1 spin liquid that is considered below as a host system for the impurity.

Impurity physics in a spin-1/2 spin liquids has been considered in the context of

bosonic spin liquids [127], algebraic spin liquids [129, 130], and spin liquids with a

Fermi surface [132]. In particular, Ribeiro and Lee in Ref. 132 concluded that physics

of a spin-1/2 impurity embedded in a spin liquid with S = 1/2 fermionic excitations is

similar to that of the conventional Kondo problem [101]. In what follows we argue that

a spin-1/2 impurity in a S = 1 spin liquid with a Fermi surface realizes overscreened

Kondo physics. Although our results are qualitatively similar to the overscreened

Kondo effect in conventional systems, there are observable differences due to the

presence of an emergent gauge field coupled to spinons.

Our findings suggest that an impurity in a S = 1 spin liquid can be used to probe

fermionic excitations. As discussed in Section 1.4, experimental detection of spinons

is an open problem. Different experimental probes have been suggested in the context

of spin-1/2 spin liquids [47,141-145]. We suggest that the realization of overscreened

Kondo physics is a possible way to unravel physics of spin-one spin liquid, allowing
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probes of fermionic excitations, as well as the presence of an emergent gauge field.

Overscreened Kondo physics is realized in multichannel Kondo models, where a

single spin is coupled to N copies (flavors) of itinerant electrons [88]. On the one

hand, such a generalization of original Kondo model may be seen as merely a theoret-

ical tool, allowing a perturbative expansion in 1/N. On the other hand, the physics

changes drastically depending on the interrelation between impurity spin length, s,

and the number of flavors coupled to the impurity. When the number of flavors, N,

is just enough or less than needed to screen the impurity spin, N < 2s, antiferromag-

netic coupling between the impurity and electrons flows to infinity in the infrared,

meaning that at low temperatures impurity spin is screened to the maximum pos-

sible extent by electrons. For the case of perfect screening, N = 2s, this results

in Fermi-liquid behavior [89, 101]. In the underscreened case residual ferromagnetic

interaction leads to a singular Fermi liquid [146,147]. However, in the overscreened

regime, N > 2s, i.e. when there are more channels than required to screen the impu-

rity spin, the system has a non-Fermi-liquid fixed point [91,93, 95,97]. This state is

characterized by singularities in different physical observables, such as impurity spin

susceptibility, specific heat, etc. It is particularly interesting as a solvable example

of a system with a non-Fermi-liquid fixed point [911. Despite the rich and interesting

physics, the overscreened regime of Kondo model has only few realizations (in partic-

ular quantum dots and two levels systems [100,102,103,148,149]). Hence our system

is also interesting as a possible implementation of overscreened Kondo physics.

Qualitatively, the problem of a spin-half impurity hosted by isotropic S = 1 spin

liquid looks similar to the conventional overscreened Kondo impurity model. When

coupled antiferromagneticaly, itinerant excitations carrying spin-1 quantum numbers

cannot screen the impurity. However, the presence of emergent coupled to fermionic

excitations (see Section 1.3.1), makes these two problems different. Even without

the impurity, fermions are in a non-Fermi-liquid regime [39-451 due to the gauge

field. The fermion propagator is dressed by a singular self-energy, so there are no

well defined quasiparticle excitations in the system. This is manifested, for example,

in the singular behavior of the specific heat C oc T21/3 in two dimensions at low
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temperatures [39,43].

Coupling the impurity to fermions with non-Fermi-liquid behavior allows us to

study the interplay between the gauge field induced non-Fermi-liquid behavior and the

Kondo non-Fermi-liquid fixed point. The conventional approach to the Kondo prob-

lem is either an exact solution by mapping it onto one-dimensional problem [90,108],

or 1/N expansion. Both methods are not directly applicable in our case. The presence

of gauge field impedes the mapping of our model to a one dimensional problem in the

radial channel. On the other hand, a rigorous 1/N expansion is not possible, due to

singular self-energy corrections [44, 150]. The latter issue has been recently resolved

in the paper by Mross et. al. [451, where a controlled double expansion scheme has

been provided. It combines the 1/N expansion with an expansion in another small

parameter (related to the dynamical critical exponent of the gauge field).

We adopt the recently developed double expansion method [451 to our problem.

Since the double expansion includes the large N limit, we expect to have a pertur-

batively accessible fixed point. At leading order, the gauge field does not affect the

position of this non-Fermi-liquid Kondo fixed point. However, it leads to corrections

to the scaling dimension of the Kondo coupling. Assuming that the results obtained

using the double expansion interpolate to the physical case, we conclude that physical

properties such as impurity spin susceptibility, specific heat, etc. are still character-

ized by singular behavior. Unlike the case of the Kondo model in the regime of perfect

screening [132], where the coupling to the gauge field has no consequences to leading

order in 1/N, in our case the gauge field influences Kondo physics.

This Chapter is organized as follows. In the remainder of this Section, we introduce

the basics of our model, diagram technique and briefly explain the idea behind double

expansion. In Section 3.2 we first review known results for the -function in the

overscreened Kondo problem without the gauge field. Afterwards, we calculate the

$-function with the gauge field and study the changes in scaling behavior of different

physical quantities. Finally, in Section 3.3 we discuss the extrapolation of our findings

beyond the double expansion, and comment on possible experimental realizations and

experiments to detect Kondo physics. Details regarding the calculation of corrections
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to the 3-function due to gauge field are given in the Appendix B.

3.1.1 Spin liquid with fermionic excitations and impurity

Let us consider a spin Hamiltonian on a lattice consisting of spin-1 sites,

Hspin= J L3- + ( Si$-$) +..., (3.1)
ii

where ellipses denote other possible terms such as ring exchange. We are motivated

by results of Chapter 2 [21 which shows evidence of stabilizing a spin liquid phase

with spinon Fermi surface on a triangular lattice with nearest neighbors bilinear,

and biquadratic spin interactions along with ring exchange terms. The low energy

description of such a state is a theory of fermions strongly coupled to a U(1) gauge

field. From now we assume that such a spin liquid state exists and work only with

the low energy effective theory described below.

Let us briefly summarize results for the effective theory [10] of U(1) spin liquid.

A spin-1 operator at a given site is represented using three fermion operators, fA,

A = 1, 2,3 as in Section 2.1.4:

3

= Z E R , (3.2)
A,p=1

with JAP being the set of three spin-1 matrices (generators of SU(2) in spin-1 repre-

sentation) [136]. The explicit form of JAP may be chosen as in Eq. (2.7), but it is

not important to us. In order to remove unphysical states from the Hilbert space,

introduced by the representation in Eq. (3.2), one has to enforce a single occupancy

constraint on each site. Fermionic fA are the low energy excitations of the spin liquid,

carrying spin-1 quantum numbers. In addition, the low energy description contains

a U(1) gauge field, that is coupled to fermions fAA and enforces the single occupancy

constraint.

Before proceeding further, let us reiterate the question of interest. We want to

understand if the non-Fermi-liquid fixed point of a conventional overscreened Kondo
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model is changed by the presence of the gauge field in the bulk. The model outlined

above provides us with a particular setup to study the influence of the non-Fermi-

liquid bulk on the overscreened Kondo fixed point. However, in order to have control

over calculations we need to resort to the large-N limit.

There is a freedom in the implementation of the large-N limit, constrained by

the crucial requirement for the generalization procedure to retain the presence of

the overscreened Kondo fixed point. We choose a model with N species of spin-half

fermions, fiam with a = T, 4, and m = 1... N as a large-N generalization. This is

the simplest model which allows for controllable calculations.

The corresponding Lagrangian for our generalized model may be split into a

fermionic part (including coupling to gauge field and impurity spin), and a gauge

field Lagrangian,

L = Lfermion + Lgauge. (3.3)

The generalized fermion Lagrangian becomes:

Lfermion = dT E (Jkam (r - Ek)fkam

- e f gmv(k) - a fqm - JK()- ), (3.4)
2 .S(O)k 2 2

where we use imaginary time. In accordance with the discussion above, fermion

operators fiam now carry spin-1/2 quantum numbers (a = t, 4). We omit the time

component of gauge field from the coupling, since it is screened [421, and do not write

the diamagnetic term, including it in the gauge field propagator. The fermion spin

at r = 0 is

S(O) = _am 2 &8M (3.5)
k,p,a,#,m

with a = (a', ay, aZ) being the set of three Pauli matrices, and K being a number of

sites in the lattice. In what follows, Greek indices label spin projection, a,3, ... = t, 4,

whereas Latin indices m, n, ... = 1... N label channels. The coupling to the impurity,

JK, is assumed to be antiferromagnetic, JK > 0.
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The gauge field Lagrangian is

Lgau 1 a dqdw * , (3.6)
gauge = (27r 3 ) a* w)D 1 (q, iw)a3 (q, w),(

where the time component of the gauge field is excluded. The bare gauge field propa-

gator is zero, since the gauge field is not dynamical but rather represents fluctuations

around the mean field ansatz. However, nontrivial dynamics are generated if one

accounts for coupling to fermions, leading to a non-zero Dj1 (q, iw), discussed in Sec-

tion 3.1.3.

3.1.2 Diagram technique

The impurity spin is conveniently represented via fermionic operators,

ai
s=Z c c#, (3.7)

where c+ (ct,) are creation (annihilation) operators of spin up or down pseud-

ofermions [861. In what follows we use the term "pseudofermions" to distinguish

the operators ca from the operators fk,,cm, which describe low energy excitations in

the spin liquid. A faithful representation of spin via fermion operators requires an

additional constraint to exclude doubly occupied and empty states from the Hilbert

space. However, in the case of a single spin-1/2 operator, s, in Eq. (3.7), gives zero

when acting on unphysical states in the Hilbert space. Therefore, one can ignore the

constraint in this case [86], writing the impurity Lagrangian as

Limp = Jdr m(Or - pimp)cm, (3.8)

where pimp is the large positive energy corresponding to the chemical potential for

impurity pseudofermions (see discussion in Ref. [86]).

The rules for diagram technique, following from Eqs. (3.4)-(3.8) are summarized in

Fig. 3-1. Propagators for fermions and pseudofermions along with interaction vertices
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G(k, iw)

F(iw)

D(q, iw) %tAV\

Pa/3ya

Figure 3-1: Summary of rules for diagram technique. Solid, dashed and wavy lines
represent fermion, pseudofermion and gauge field propagator respectively. Also, inter-
action vertices of fermions with gauge field, Ia, and fermions with impurity pseud-
ofermions, Fapy6, are shown. All objects are diagonal in flavor indices, which are thus
suppressed.

are given by

G,"(k, iw)

Fa (iw)

]mn
ck/3Y6

_7-Ina,6

lo- IMimp

=- JK 4apymn,

e
- Vke 6 c3Jmn,

where $k = Ek - A is the fermion energy relative to the Fermi surface. The self-

energy, included in fermion Greens function [Eq. (3.9a)] is discussed below. We note

that interaction between fermions and the impurity is local in real space. Therefore,

in Fourier space, the momenta of two fermion operators in the impurity interaction

vertex [Eq. (3.9c)] are unrelated. Fermion propagator and interaction vertices are

diagonal in flavor indices. Thus the only contribution of flavor indices is an extra

factor N for every loop of fermions, and they will be suppressed in the remainder of

this Chapter.
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(a)

(b)

Figure 3-2: (a) Self-energy of the gauge field due to interaction with fermions.
Second diagram describes diamagnetic contribution. (b) Self-energy of fermions due
to interactions with gauge field in the leading order in 1/N.

3.1.3 Double expansion

We briefly review the double expansion framework introduced in Ref. [45]. First, we

specify dynamically generated propagator of the gauge field. To leading order, the

propagator is given by the fermion bubble with current vertices along with diamag-

netic term shown in Fig. 3-2 (a). In the Coulomb gauge, V -a = 0, the propagator is

transverse and can be written as [40, 42, 45]

D-1(q, iw) = Ji - D 1(q, w), (3.10a)

Do 1 (q, iw) = 7 + Xoqz -1, (3.10b)
q

with zb = 3 and -y = 2n/kF, Xo = 1/(24'rm) for fermions with quadratic dispersion.

Note that the Landau damping term is non-zero only for jwI < vFq. We assume

zb takes general value Zb < 3 and use it as a control parameter. This approach is

consistent because terms qZb-1 for zb < 3 are non-local. Since zb is not going to be

renormalized within perturbation theory, it is a valid control parameter.

The singular form of the gauge propagator [Eq. (3.10)] leads to a singular self-

energy correction for fermions. In the leading order in 1/N, the diagram in Fig. 3-2(b)
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gives us [42,44,45]:

E(iw) = -iA IW1 2/Zb sign w, (3.11a)

A-e 2 VF 1 (7 )2/Zb 31bev 1(.- 2zb(3.llb)

N -y 47r sin -M X0

For zb > 2, the self-energy is more important than the bare iw term in Greens func-

tion [Eq. (3.9a)], when Iwi < wo. The energy scale wo is set by a combination param-

eters y, Xo and VF [see Eq. (3.14)] and is of order of Fermi energy, the only energy

scale related to fermions.

When the self-energy, Eq. (3.11), is singular compared to the bare frequency de-

pendence of the fermions' Greens function, a factor of 1/N in the fermion self-energy

leads to an extra power of N in the numerator of the Greens function. This spoils

naive power counting in the 1/N expansion [44,150] requiring a summation of an

infinite series of diagrams of a particular topology (genus) at any given order in 1/N.

However, if we assume a gauge field dynamical exponent,' zb = 2 + e, and take the

double scaling limit [451:

e -+ 0, N -+ oo, EN = const, (3.12)

we obtain finite A oc 1/(Ne) in Eq. (3.11b), rather than A oc 1/N -+ 0. The absence

of the factor 1/N in front of the self-energy restores naive power counting, where the

gauge field interaction vertex contributes 1/VN and each fermion loop gives a factor

of N.

Finally, before proceeding further, we rewrite E(iw) in a simplified form, valid in

the double scaling limit,

E(iw) = -i 1w - / (3.13)
Ne w

where scale wo is explicitly given by

xo e2 VF 2/c
S2r X (3.14)

'In notations adopted in Ref. [421, rq = Zb - 1 = 1 - e
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3.2 Perturbatively accessible fixed point

The renormalization group (RG) approach in conjunction with 1/N expansion has

been proven to be fruitful when applied to the conventional Kondo impurity prob-

lem [86-88, 97, 98, 151]. The renormalization procedure is defined with respect to

the fermion bandwidth, D. Eliminating states far away from the Fermi surface, one

studies the induced flow in the dimensionless coupling g = vJK (v is the density of

states per spin per channel assumed to be constant within the whole band). The

corresponding -function is defined as

(g) = d log g (3.15)
d log D'

and can be calculated perturbatively in g. This simplification is brought by the 1/N

expansion and is justified in vicinity of fixed point located at small g* oc 0(1/N).

When there is a gauge field coupled to fermions, the RG approach still can be

applied. However, it requires some modifications. The usual 1/N expansion has to

be replaced by the double expansion discussed above, but the RG flow is still defined

with respect to bandwidth, D. Coupling of the fermions to the gauge field, e2 , is

treated as a constant, since a single impurity can not change its flow under RG.

Likewise in the conventional Kondo problem, there exists a perturbatively accessible

fixed point. After briefly reviewing the calculation for RG flow in conventional Kondo

problem, we calculate the /-function in the presence of the gauge field and obtain

physical properties in the vicinity of the fixed point.

3.2.1 3-function in conventional Kondo problem

While reviewing the RG procedure for the usual Kondo impurity problem we mostly

follow Refs. [86,87]. Renormalization of the dimensionless coupling g in the leading

order is given by diagrams shown in Fig. 3-3. Diagrams (a) and (b) in Fig. 3-3

represent corrections to the bare interaction vertex in the second and third orders

of perturbation theory. These are the only diagrams up to the third order, which
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(a) (b)

(c)

Figure 3-3: Diagrams contributing to the /-function in the leading order in 1/N.
Diagrams (a) and (b) describe corrections to the vertex in the second and third orders
of perturbation theory (symmetric counterpart of diagram (a) with direction of one
of the fermion line changed is not shown). Diagram (c) is the correction to the self-
energy of pseudofermions, contributing to 3-function via renormalization of Z-factor.

are logarithmically divergent and thus renormalize the coupling. Note, that diagrams

(a) and (b) describe the contributions of the same order, since the latter diagram

in addition to extra power of g oc 1/N has a factor of N from the fermion loop.

Diagram (c) in Fig. 3-3 describes renormalization of Z-factor of pseudofermions and

also contributes to the /-function.

Calculation of the diagrams in Fig. 3-3 gives the /-function:

_d log g _2N 3
0(g) dlog - + -g +. .. , (3.16)d log D 2

where ellipses denote terms CjNg 4 + C2N2 g5 from higher order diagrams. The coeffi-

cients C1,2 are readily available in the literature [91,97,98,152] and are listed below in

Eq. (3.20). As we shall see, these extra terms are subleading in vicinity of fixed point.

One can easily solve for a stable non-Fermi-liquid fixed point of this 3-function:

2
= - + (3.17)

N
I* 2

A0 = 0'(g*= - + . .,(3.18)
N
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where A0 is the negative slope of the 8 function at this fixed point. Ellipses here

stand for terms 0(1/N2 ). We see that g* is indeed small in 1/N, justifying the use

of perturbation theory.

3.2.2 Correction to 3-function due to gauge field

As we shall see, within the double expansion framework, the gauge field produces a

small correction to the regular -function. Therefore, it suffices to consider the effect

of the gauge field to leading order.

There are two types of effects related to the gauge field. First, the gauge field

destroys well-defined quasiparticle, leading to non-Fermi-liquid behavior. This is

manifested by the singular self-energy due to the gauge field in the fermion propa-

gator [Eq. (3.13)]. Therefore, one has to recalculate diagrams in Fig. 3-3 using the

fermion propagator which contains the self-energy. A lengthy but straightforward

calculation (see Appendix B.1 for details) yields an answer identical to the case with-

out gauge field, however, with a modified divergent logarithm. Namely, the standard

log-divergent contributions are replaced by

D D 1 1
log- -+ log 0' = 2N 1+ (Ne)- 1 ' (3.19)

where energy scale wo oc D was defined in Eq. (3.14).

Another effect of the gauge field is the appearance of vertex corrections. All dia-

grams describing vertex corrections can be split into two classes with representatives

of each class depicted in Fig. 3-4 (a) and (b) respectively. Diagrams belonging to the

first class have at least one of the ends of the gauge field propagator connected to the

internal fermion line. In Appendix B.2 we show that due to the transverse character

of the gauge field propagator and the locality of interaction with the impurity, all

diagrams of this type with single gauge propagator exactly vanish [132].

In the vertex correction diagrams attributed to the second class, the gauge field

propagator connects two external lines. One can think about these diagrams as

describing a new interaction vertex [first diagram in Fig. 3-4 (b)] and its renormal-
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# 14

Figure 3-4: Two types of vertex corrections in the leading order in 1/N due to gauge
field. (a) Example of vanishing diagrams with a single gauge propagator connected by
at least one end to the internal line. (b) Non-vanishing corrections, representing a new
non-local vertex (first diagram) and example of diagram leading to its renormalization

(second diagram).

ization [all other diagrams of this type]. This new vertex contains an additional

small factor 1/N, compared to the original impurity interaction vertex. However, it

is non-local, since it depends strongly on the relation between outgoing and incoming

fermion momenta, k and p respectively. The vertex is logarithmically divergent when

the transferred momentum Jk - pI is close to 2kF and is small otherwise [40,42,45].

The flow of this vertex to leading order in 1/N is identical to the flow of the standard

vertex. Thus it does not influence the scaling in the vicinity of the fixed point. The

effect of this vertex is to provide subleading corrections to different observables (due

to the extra factor 1/N). Therefore, in what follows we do not consider this vertex.

As we demonstrated, no new diagrams contribute to the /-function up to order

1/N3 . Calculation of diagrams in Fig. 3-3 with self-energy included into fermionic

propagator gives us

W(g) = (1 - r) (g2 + N-g3) + -(1 +log 2)g4 - N2
5  (3.20)

2 2 4

where terms in the second line come from higher order diagrams and are 0(1/N3 ) in

vicinity of fixed point. The terms in the first line are universal w.r.t. the reparametriza-
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tion of the coupling constant g [108]. These terms have to be included for consistency,

since r, oc 1/N, but are identical to those in the /-function without gauge field,

Eq. (3.16) [account for gauge field in these terms will produce corrections 0(1/N4)].

The obtained 8-function, Eq. (3.20), differs from the 3-function without gauge

field, Eq. (3.16), by terms 0(1/N3 ). This correction does not shift the fixed point g*

even at order 1/N2 , compared to fixed point2 Eq. (3.17). However, it modifies the

slope of O(g) at the fixed point,

(321A, = 2 (1 - r,) +...=(1 - r,)Ao, (3.21)

compared to the slope for the case of the conventional Kondo problem, AO [Eq. (3.18)].

Below, the slope of the /-function, A1 will be used to determine the flow of the

coupling in the vicinity of the fixed point, as well as the singular behavior of different

measurable quantities [97,98]. Therefore, the difference between AO and A1 modifies

the behavior of different observables compared to conventional Kondo problem.

3.2.3 Observables

In order to understand how the non-Fermi-liquid fixed point manifests itself in ob-

servables, we first find the dependence of the running coupling constant gR(w) on w.

It can be determined from the flow equation dgR(w)/d log w = -(gR), by employing

results for 3-function and its slope at the fixed point. Denoting the bare value of

coupling at w = D, as gR(D) = g, we have [97,98]:

(TK)

where A is the slope of the /-function which depends on the presence of the coupling

to the gauge field. The position of the fixed point, g*, Eq. (3.17) is not influenced

by the gauge field. The Kondo temperature is TK = D(T(O)/D)AO/A, where T( -

2The fact that g* does not change up to 0(1/N2 ) becomes clear if we multiply the second line
of Eq. (3.20) by the (1 - K) as well. Such operation is allowed, as it leaves intact all terms up to
O(1/N 3 ).
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DgN/ 2 exp(-1/g) is the Kondo scale for the case without a gauge field, and ( =

(g*) 2/e. We assumed here that w < TK and that the initial value of coupling, g, is

small.

The power law behavior of the running coupling leads to a similar behavior in

different physical quantities. Corrections to different measurable properties within

perturbation theory can be expressed as a series in coupling g. Applying the renor-

malization group to this series results in singular behavior as a function of frequency

or temperature with exponent proportional to A. For the case when there is no gauge

field present, this program has been implemented in Refs. [97, 981. Generalization of

this procedure to the case with the gauge field is straightforward.

The main effect of the gauge field is always related to the different values of slope

of 3-function, A. Without a gauge field A = AO is given by Eq. (3.18). When there

is a gauge field, we have A = A1 , specified in Eq. (3.21). While for thermodynamical

quantities this is the only effect, transport properties and other quantities acquire

small corrections to prefactors which are not given here.

Calculating the contribution of impurity to the imaginary part of self-energy of

fermions gives the scattering rate due to the impurity. As a function of frequency, it

acquires a cusp at w = 0,

37rnimp ( - N( (3.23)vrimp(W) =2N2 N TK

which has to be contrasted with a Lorentzian shape of vi (w) for a Fermi liquid

fixed point. The correction to the resistivity due to Kondo interaction has a similar

form, however, it is of little interest due to neutral character of fermionic excitations

in spin liquid. The correction to the heat conductivity is potentially more interesting.

Using Eq. (3.23) and assuming that impurity scattering time Timp is much longer

that the relaxation time without impurity, To, we find the correction to the inverse

two-dimensional thermal conductivity

[.-1 9 = i" I -N( -T (3.24)
- 2 WjkT n TK
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where we restored h, and kB is the Boltzmann constant.

Also one can calculate corrections to different thermodynamic properties. A rig-

orous calculations of the self-energy allows us to find impurity specific heat with a

critical exponent a = 2A:

37r2 OA T 2A (.5Cimp = ( 2 A - .) (3.25)
C'P 2 (TK

Magnetic properties, such as the impurity susceptibility as temperature T -+ 0 and

dependence of magnetization on the field h = PBH at T = 0 are given by

Ximp = 2 1(T) 2 A (3.26)
(2 T TK

M -) . (3.27)
2 TK

Likewise, it is possible to find an expression for fermion-fermion, fermion-impurity

and impurity-impurity susceptibilities [97. Lastly, we list results for Xfm(w, T)/w

which is a contribution to the NMR relaxation rate due to the impurity. Its behavior

is again specified by A, and for w < T

Xm(w, T) oc T2 A 2 . (3.28)

3.3 Discussion

We have investigated the effect of the gauge field strongly coupled to fermions at

a non-Fermi liquid overscreened Kondo fixed point. Using the double expansion

framework, we demonstrated that the gauge field does not alter the position of the

perturbatively accessible non-Fermi-liquid fixed point, but leads to corrections to

exponents characterizing the behavior of different physical properties in the vicinity

of the fixed point. In particular, it "softens" the non-analytic behavior of specific heat,

magnetization, spin susceptibility, compared to those for a Kondo problem without

the gauge field. The physical origin of this effect is the "smearing" of the sharp
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quasiparticles by the gauge field.

Let us discuss the extrapolation to the physical case. In order to have a control

over calculations, we worked in the double expansion limit, Eq. (3.12), with N species

of spin-half fermions. We note, that if the coupling to gauge field was absent, the

considered model for N = 4 corresponds to the one channel of spin-one itinerant

moments coupled to impurity [95,99]. The same equivalence was checked to hold in

our perturbative calculations of -function for the case when there is a coupling to

the gauge field.

Thus, we expect that the physical case corresponds to N = 4, s = 1. Assuming

that our results can be extrapolated to these values of N and E, we can argue that

the non-Fermi-liquid Kondo fixed point is not destroyed by the presence of a gauge

field. However, we expect singularities in different physical properties related to the

non-Fermi-liquid fixed point to be weakened compared to their values without gauge

field. In such a case, the realization of overscreened Kondo physics in S = 1 spin

liquid may be used not only to observe neutral fermionic excitations, but as evidence

for the presence of a gauge field. Indeed, non-Fermi-liquid behavior may be used as

an indication of fermionic excitations present in the system. At the same time, the

difference of observed scalings from those for the case without a gauge field [91,99] may

be used as a litmus test for the presence of a gauge field coupled to fermions. From an

experimental point of view, specific heat (proportional to impurity concentration), as

well as spin susceptibility and NRM relaxation rate are the most promising probes.

It is instructive to compare the role of the gauge field in our case to the case of

the Kondo model in the regime of perfect screening, Ref. [132]. In the latter case, the

system flows to the infinite coupling fixed point, and the results of Ref. [132] show no

changes in impurity specific heat and spin susceptibility due to the presence of the

gauge field.

Finally, we discuss possible experimental realizations of our proposal. In a re-

cent experiments [32,133] materials that could possibly realize the spin liquid with

fermionic excitations [2,136,139] has been found. One can speculate on the possible

stabilization of U(1) spin liquid phase in the same or similar type of materials. The

96



presence of spin-half impurities in such a phase would realize the scenario considered

in our work. Another way to implement the discussed physics is to go to lower dimen-

sions. A gapless phase for spin-1 with bilinear and biquadratic interaction has been

established for a certain range of couplings. [153-157]. A spin-half impurity in such

a chain is expected to realize overscreened Kondo physics. A detailed consideration

of this problem is an interesting and open question.
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Chapter 4

Spinon-phonon interaction in

algebraic spin liquid

In this Chapter following Ref. [4] we study the interaction of spinons with lattice

vibrations. This study is motivated by a search for experimental probes to access the

physics of fractionalized excitations called spinons in a spin liquids, We consider the

case of algebraic spin liquid, when spinons have fermionic statistics and a Dirac-like

dispersion. We establish the general procedure for deriving spinon-phonon interac-

tions which is based on a symmetry considerations. The procedure is illustrated for

four different algebraic spin liquids: 7r-flux and staggered-flux phases on a square

lattice, ir-flux phase on a kagome lattice, and zero flux phase on a honeycomb lattice.

Although the low energy description is similar for all these phases, different underlying

symmetry group leads to a distinct form of spinon-phonon interaction Hamiltonian.

The explicit form of the spinon-phonon interaction is used to estimate the attenuation

of ultrasound in an algebraic spin liquid. The prospectives of the sound attenuation

as probe of spinons are discussed.

4.1 Introduction

Unambiguous experimental identification of a spin liquid [8, 25], an exotic ground

state of a spin system in a dimension larger than one without a magnetic order
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remains an open question [48]. A number of theoretical scenarios leads to a ground

state with charge-neutral excitations, which carry spin-1/2 quantum number and have

fermionic statistics. These excitations, called spinons, may have a Fermi surface or a

Dirac spectrum [9,48], and are usually strongly coupled to a gauge field. The latter

case, so-called Dirac spin liquid phase, will be the primary subject of attention in the

present paper.

Naively, one would expect that the presence of fermionic excitations in the system

could be easily tested experimentally. However, measurements of different thermody-

namic quantities, such as spin susceptibility or specific heat, often require subtraction

and extrapolation to zero temperature, which can be ambiguous. Transport measure-

ments are limited to a heat conductivity due to neutral character of spinons. The

heat transport measurements are difficult to perform at low temperature. Finally,

neutron scattering, potentially a direct probe of spinons [29,158], requires large single

crystals which are not always available. The difficulties with experimental detection

of spin liquid phases has lead to a number of theoretical proposals. These include but

are not limited to Raman scattering [143], inelastic X-rays scattering [144], Friedel

oscillations [145], electron spin resonance [159], impurity physics [3, 130, 132], and

optical conductivity [160,161].

Coupling between spinons and phonons can open another channel of decay for

phonons, and change the attenuation of ultrasound. Thus, the sound attenuation

is another potential probe of spinons. 1 The case of spin liquid with spinon Fermi

surface has been recently considered by Zhou and one of us in Ref. [47]. The spinon-

phonon interaction in the long wavelength limit was deduced from hydrodynamical

arguments [47,162,163]. Assuming that electrons stay in equilibrium with lattice (due

to presence of impurities) and making canonical transformation to the moving frame

one can easily derive interaction Hamiltonian. The same interaction Hamiltonian

can be reproduced from microscopical considerations using so-called deformable ions

model [164,165].

'Also, optical phonons has been suggested as a possible mean for detection of VBS order in
Ref. [6].
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However, as was pointed out in Ref. [47], spinons with a Dirac spectrum require

a different treatment. Here we address this problem and consider the contribution of

spinons to the attenuation of ultrasound in a Dirac spin liquid. In contrary to the

case of electrons [163-165] or spinons with Fermi surface [47J, it appears that there

is no universal form for the interaction of spinons with acoustic phonons in Dirac

spin liquid. This is related to the spinor nature of spinons with Dirac dispersion.

Similarly to graphene, spinor structure describes the character of wave function on

different sublattices, i.e. on the microscopic scale. Consequently, one possible route

of deducing the form of spinon-phonon interaction would be to find the change of

the Hamiltonian of electronic subsystem induced by the long wave modulation of

the lattice parameters, starting from a microscopic Hamiltonian. This procedure,

although giving explicit values of coupling constants is not universal. It depends

on the microscopic implementation of a different spin liquid phase. Moreover, it is

difficult to guarantee that one finds all possible terms in the interaction Hamiltonian.

We adopt a different approach and use symmetry considerations to find a spinon-

phonon interaction Hamiltonian. Similar route has been recently used to deduce

electron-phonon interaction in graphene [7,1661. There, representations of the lattice

symmetry group of the honeycomb lattice on continuous Dirac fields were used to find

all possible symmetry allowed electron-phonon couplings [7]. However, in a Dirac spin

liquid, also referred to as an algebraic spin liquid, the notion of symmetry group has

to be extended to the projective symmetry group [10,22].

In this paper we generalize the derivation of spinon-phonon interaction Hamilto-

nian to the case of projective representation of lattice symmetry group. The procedure

is straightforward, and it requires studying the representation of symmetry group on

spin-singlet fermionic bilinears. We consider four different realizations of the Dirac

spin liquid: ir-flux [23] and staggered-flux [5] phases on a square lattice, as well as

ir-flux phase on a kagome lattice [6] and a Dirac spin liquid phase on a honeycomb

lattice. Within low energy effective field theory, all these phases can be described in

terms of a Dirac excitations, coupled to a gauge field [5,6,23,167-170]. Nevertheless,

these phases retain the information about their microscopic origin. This information
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is encoded in the projective representation of spinon operators under the action of

the corresponding symmetry group.

As we will see below, the projective character of the representation of symmetry

group has a profound consequences on a spinon-phonon interaction. For all algebraic

spin liquid phases considered here except for the Dirac spin liquid on a honeycomb

lattice, only the coupling to the density of spinons is allowed by symmetry at the

leading order. However, we find that this coupling is screened due to the gauge field.

The sound attenuation coming from the next order terms is suppressed by an extra

factor and behaves as T3 at low temperatures. In contrast, the Dirac spin liquid on a

honeycomb lattice has a sound attenuation oc T. Although the sound attenuation in

all cases is suppressed compared to the case of a spin liquid with a Fermi surface, the

spinon contribution is still the dominant process at low temperature and experimental

observation of the attenuation of ultrasound due to spinons may be possible.

This Chapter is organized as follows. Section 4.2 introduces the low energy de-

scription of Dirac spin liquid and projective symmetry group. We use the 7r-flux

phase on a square lattice as an example. Next, we discuss interaction of spinons

with phonons in Section 4.3. We describe the general procedure of obtaining spinon-

phonon interaction Hamiltonian from symmetry considerations. It is later illustrated

in more details for the ir-flux phase on a square lattice. Having found the interaction

Hamiltonian, in Section 4.4 we study the sound attenuation, concentrating on atten-

uation of longitudinal sound. Finally, in Section 4.5 we summarize and discuss our

results. Basic facts from the representation theory of finite groups and details on the

calculation of sound attenuation are given in Appendix C.

4.2 Low energy description of algebraic spin liquids

We review the description of algebraic spin liquid fixed point using language of low

energy effective field theory [5, 6, 23, 167-170]. This description suits our purposes

since we are interested in coupling between acoustic phonons in the low energy limit.

In addition, it provides universal framework applicable to a variety of different alge-
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braic spin liquid phases. In short, three ingredients are needed in order to specify low

energy field description of a given algebraic spin liquid phase. These are low energy

Hamiltonian for continuous fields, gauge group and representation of projective sym-

metry group specified by its action on fields. Below we review these ingredients for the

general case, as well as illustrate them for the 7r-flux phase on a square lattice (irFo

phase). We do not list details for the staggered flux phase on a square lattice (sFo),

ir-flux on kagome lattice (7rF*), and Dirac spin liquid phase on honeycomb lattice

(OFo). The reader is referred to Refs. [5, 6, 23] for more details, specific for these

phases.

4.2.1 Effective field theory and projective symmetry group

The starting point is the spin S = 1/2 model on some (not necessary Bravais) two-

dimensional lattice. The symmetries of spin Hamiltonian are assumed to include

SU(2) spin rotations, time reversal and the full lattice group of a given lattice. We

write Hamiltonian as

H = JijS . S+..., (4.1)
(ij)

where bold indices i, j denote lattice sites and sum goes over nearest neighbor pairs

of sites. Ellipses denotes other short-range interaction terms required to stabilize

required spin liquid phase.

In order to get access to phases with no spin order, we use slave-fermion mean

field theory. As discussed in Chapter 1, we represent spin operators using spinon

operators fi,a, a =t4:
-. 1Si = 2 c-ao 4. (4.2)

The mapping between Hilbert spaces is exact, provided one imposes a constraint of

no double occupancy, fa !fi = 1, where summation over repeating indices is implied.

Such representation of spin has SU(2) gauge redundancy. Therefore, mean field de-

coupling of spin interaction has to include SU(2) gauge field on the links of the lattice.

Saddle points of the mean field theory, depending on their structure [10,221 may break
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this SU(2) symmetry down to U(1) or Z2.

We will be mostly interested in phases with U(1) gauge symmetry (the only SU(2)-

symmetric algebraic spin liquid phase considered here is the irFE phase [10]). General

lattice gauge theory Hamiltonian at the saddle point is

Hu(1) h e - K E cos(o) + S [yXiei'ai f !fja + H. c.], (4.3)
(ij)plaq. Wi)

where we assume that the choice of Xij leads to a Dirac spectrum. The gauge re-

dundancy lead to appearance of aij, a compact U(1) vector potential living on the

bonds of the lattice, and eij which is canonically conjugate electric field taking integer

values. We also defined #%, living on the dual lattice, as the lattice version of curl of

gauge field ai3 . Gauge constraint is (div e)i + f !fia = 1. Although initially vector

potential does not have any kinetic terms, these will be generated due to coupling

with fermions and are written in (4.3) with coefficient K. For K = 0, h > IXij 1,

one recovers spin model from Eq. (4.3). Mean field is a good approximation when

K > Xij > h and describes the algebraic spin liquid phase. It has been argued

that this phase is stable [5,23]. Monopoles are irrelevant, leading to the gauge group

becoming non-compact in the low energy limit. Therefore it should be accessible

starting from the spin Hamiltonian in Eq. (4.1) for some range of initial parameters.

More detailed discussion of stability of algebraic spin liquid phase is presented in

Refs. [5,23].

Provided that choice of Xij leads to a Dirac spectrum, we use continuous fermionic

fields to write low-energy Hamiltonian. In the momentum space it reads

H = vF d 2 'OacA(k - a) -Tap /a/3- (4.4)

The indices -, a and a in continuous eight-component fermion field /,aa label spin,

Dirac valley and sublattice respectively. In what follows, we will use three different

sets of Pauli matrices acting in different spaces. Pauli matrices acting on the spin

indices are denoted as {o', ay, ojZ}. The second index distinguishes between different
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I 0: I -J11 21

Figure 4-1: Choice of the anzats for the 7rFE phase. Red dashed line encloses the
unit cell. Numbers indicate the labeling of sites, used in the main text. Hopping in
the direction of arrows is proportional to +i.

Dirac points (valleys) and we label Pauli matrices acting in this space as {pA, py, pZ}.

Finally, Eq. (4.4) involves Pauli matrices {T, T, TZ} acting on spinor (sublattice)
indices. Below we will omit the sign of the tensor product implying e.g. OUYT =

UY 0 1 0T'.

A particular choice of anzatz Xij naively violates some symmetries of the orig-
inal Hamiltonian. However, representation Eq. (4.2) is invariant under the gauge
transformations

fi -+ fie'0O, ai -+ aij + Oi - 93. (4.5)

Consequently, there is a freedom in the choice of the action of different symmetries:

one can supplement them with some gauge transformation. Requiring mean field
Hamiltonian (4.3) to remain invariant we can fix this freedom and show that all
symmetries of original spin Hamiltonian remain unbroken.

The fact that the action of symmetries on fermionic fields is supplemented by
gauge transform has a deep consequences. Rather than forming usual representation

of lattice symmetry group, fermions are said to realize projective representation of
lattice symmetry group [10,22]. This representation is fully specified by the action of
the lattice symmetry group generators on the fermionic fields. Knowing the mapping

from the lattice fields fij to 4, one can easily find the action of generators on the
continuous fermionic field. Below, we will demonstrate this procedure for the rFLI
phase.
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4.2.2 Example: wr-flux spin liquid on a square lattice

We use the the 7rFL phase [23] to illustrate the abstract construction presented above.

The starting point is the choice specific values of Xjj in Eq. (4.3) to fix the mean field

anzats. Our notations are different from those in Ref. [231. We quadruple our unit

cell, so it includes four sites. Sites within the new unit cell are labeled by an index

m = 1... 4 as in Fig. 4-1. The Xij and a9 are chosen as

= i, X+ = (-)~ii; a? = 0. (4.6)

Resulting mean field Hamiltonian with the spin index and gauge field omitted is:

Hmf = - Z [i(f 2 + fr4)f,-1 + i(f 3 + fr+a2I)fr4

+ '(f +al - fr 3)fr2 + i(fri+al4 - fr+a2 2 )fr3 + H. c.], (4.7)

where Bravais lattice vector r = ni a i + n2 a 2 with ni, n2 integers labels unit cells,

and a, = 26, a2 = 2y. Making Fourier transform

frm = j I eik rfkm, (4.8)

where N is the number of unit cells, we obtain the Hamiltonian in momentum space

Hmf= ft Hm(k)fkn, (4.9)
k

o -1+K* 0 -1+K*

1- K, 0 1 - K 0
Hmn(k) = 2 (4.10)

0 -1+K 2  0 1-K1

1-K2  0 -1+K1* 0

with the notation K1 ,2 = eik-al,2. The momentum is measured in the units of the

inverse lattice constant of the original lattice (i.e. before enlarging the unit cell), which

is set to one in what follows. We choose the Brillouin zone as km, ky E [-7r/2, 7r/2).
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The energy levels of the Hamiltonian (4.9)-(4.10) are doubly degenerate. Therefore

there is only one doubly degenerate gapless Fermi point in the Brillouin zone, that is

located at the momentum Q = (0,0). In the vicinity of this point the dispersion is

described by Dirac fermions and we can define continuum fermion fields. We choose

the following representation for two copies of spinor field V)..(k):

1 ifk 2+f- +444
V)1(k) ~-- -, (4.11a)

2 k -ifk1 - f43

1 fki + ifk3
02(k) ~7 ,(.1b

2 -f42 - ifk4 (

where the index a = 1, 2 labels different Dirac points, K , both located at the IF

point of the Brillouin zone. Consequently, the low-energy continuum Hamiltonian is

written as

HDirac = VF J k2 V/4a(kTX + kyTr) i)ca, (4.12)

where made spinor index implicit. Fermi velocity, provided lattice constant is set to

one, coincides with J, VF = J.

The continuous fields Iaa (k) realize a projective representation of the lattice sym-

metry group. This representation is fully specified if one knows the action of group

generators on continuous fields. The relevant lattice symmetry group in this case,

denoted as C,,, is different from the point symmetry group of square C4v due to

enlarged unit cell. Consequently, the group C4,, in addition to elements from C4 ,

contains translations by a unit vectors of square lattice along x and y-axes. The full

set of generators, action of which is to be specified below, contains rotation for angle

7r/2, R,/2, reflection of x-axis, Rx (these are generators of C4,) and lattice transla-

tion by vector a1 , Tx. In addition we also have to specify the action of time-reversal

symmetry, T, and charge conjugation operators, C.

Let us illustrate the derivation of the action of reflection generator on the contin-
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uous fields. Action of R, on the unit cell may be symbolically shown as

t1-3, 
34

2 1-2L 1 (4.13)

From here we can understand the action of R on the lattice fermion fields, as ex-

changing fermionic operators with indices 1 ++ 2 and 3 ++ 4. However, in order to

leave Hamiltonian (4.7) invariant, this has to be supplemented by gauge transform

that changes the sign of all hoppings [thus reversing the direction of all arrows in the

r.h.s. of Eq. (4.13)]. One can easily check that transformation

f,1 fr/2, fr-2 - fr/1, (4.14a)

fr3 - fr4, fr-4 - fr'3, (4.14b)

r' = R,,r = (-r,, rY) (4.14c)

leaves Hamiltonian (4.7) invariant. The action of R-, on operators f, is easy to

translate into representation of R, on the continuous fermionic fields using their

definition (4.11). In terms of different sets of Pauli matrices introduced above, it can

be written as

V) -+ R7 with R., = ipry. (4.15)

Using analogous procedure we get the representation of the remaining generators to

be

R7r/2 = (p" + [Y)(1 + irz), (4.16)

TX =Ap. (4.17)

Finally, for the 7r-flux phase there exist two additional SU(2) transformations not

related to lattice symmetry group. These are time reversal, T, defined as a antiunitary

operator which flips the direction of spin operator (4.2), and charge conjugation, C.

The latter operation may be viewed an SU(2) rotation in the spin space by 7r around
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y-axis [23], supplemented by the particle-hole transformation. On the lattice level (in

momentum space) these can be conveniently represented by

T : fke,3 fb,3, fka2,4 ++ -ft,4 (4.18a)

C: fktf - fikpu fcn -+ -fi._n, (4.18b)

where T-reversal also includes complex conjugation operation, spin indices were re-

stored. Although these definitions may look counterintuitive, one can check that the

charge conjugation (4.18b) indeed leaves the spin operator invariant, whereas the

time-reversal symmetry, defined as in (4.18a), flips the direction of spin operator in

Eq. (4.2). Mapping this action to continuous fermionic fields, we have:

T : +pz t),(4.19a)

C : 4 -+ (ioA)(ipar")(4f)T. (4.19b)

As we pointed out earlier, the representation of the lattice symmetry group on

fermions is projective. This can be easily seen from the action of generators, Eqs. (4.15)-

(4.17), if one tries to test some group identities. For example, (R,/2)4 is a trivial

transformation. However, using the explicit form of the representation of IZ,/2 for

continuous fermionic fields, Eq. (4.16), we find

(Rr/2)4 = -1. (4.20)

Thus all group identities hold only up to some gauge transformation, which leaves

the Hamiltonian invariant.

4.3 Spinon-phonon interaction

Having a low energy description of Dirac spin liquid phases at our disposal, in this

section we consider the spinon-phonon interaction.

As we explained in the introduction, the hydrodynamic approach [47, 162, 163],
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applicable for the case of spin liquid with the Fermi surface, is not straightforward

to use in our case. It is the presence of spinor structure, inherently related to the

microscopic details such as two inequivalent sublattices, that prevents application

of hydrodynamical arguments. Of course one can always resort to the microscopic

derivation of spinon-phonon interaction. Despite the advantage of giving specific

values of coupling constants, this route is highly non-universal and is not guaranteed

to yield all possible couplings.

We present universal procedure for finding all possible terms in spinon-phonon

interaction Hamiltonian, allowed by symmetry. First, we introduce phonons and the

general form of the spinon-phonon interaction Hamiltonian. After this the general

idea behind the procedure is described. Implementation of this procedure for the frF 

phase serves as an example. Finally, we present results for other Dirac spin liquid

phases and discuss the underlying physics. The derivation of these results extensively

relies on a representation theory for finite groups. Necessary concepts, as well as

basic facts about point groups of square, kagome and honeycomb lattices are listed

in Appendix C.1.

4.3.1 Spinon-phonon interaction Hamiltonian from symmetry

considerations

We start with specifying conventions for the spinon-phonon interaction Hamiltonian.

It is written using the operator Hs-ph(k, q) as

Ws-ph = #E3 (k + q)Hs-ph(k, q)i(k). (4.21)
kc,q

In what follows we will refer to the operator Hs-ph(k, q) itself as a spinon-phonon

interaction Hamiltonian. Normally, the operator Hs-ph(k, q) obtained from the pro-

cedure described above, would contain only zeroth order terms in the distance from

the Dirac point, k, Hs-ph(k, q) = Hs-ph(O)(q). As we shall see, in some cases, all such

terms vanish. Then, to find a non-zero interaction Hamiltonian, we allow the pres-
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ence of terms, linear in k, Hph(1)(k, q) and the total Hamiltonian will be written as

a sum:

Hs-ph(k, q) = Hs-ph(o)(q) + HS-ph(l)(k, q), (4.22)

In what follows, we restrict ourselves to the first non-vanishing term in this expansion.

Phonons enter Hph(k, q) via the q Fourier component of displacement field, u(t, r).

In the second quantized language the displacement field is written as

tu(t, r) = S h eqO(aqte4'"q + e (4.23)
q4t

where index /- = L,T labels longitudinal and transverse modes of acoustic phonons,

and eq., is the corresponding polarization vector. The dispersion of phonons is as-

sumed in the form w. = vsIql, where vs is the sound velocity. The p is defined as a

mass density per layer, and S is the area. For simplicity we consider only in-plane

phonon modes.

Although we work in continuum limit, it is the lattice symmetry group and its

representations, which determines the properties of low energy (acoustic) phonons

and spinon excitations. Phonons are described using vector u(t, r), describing dis-

placement at a given point r due to deformation. As a uniform displacement of the

entire lattice, u(t, r) = uO, leaves system invariant, acoustic phonons can couple to

spinons only via spatial derivatives of u(r) [we ignore coupling to the time deriva-

tive, as it is suppressed by the ratio of sound and Fermi velocities]. Set of all spatial

derivatives, o9uj (r) or -iqiuj(q) in the Fourier space, transforms as a rank-two ten-

sor under lattice symmetry group. Representation of a lattice symmetry group on

a rank-two tensor can be split as a sum of irreducible representations. Symbolically

this is written as

El xE = ® Dj, (4.24)

where E1 is vector representation, and Dph are (possibly repeating) irreducible rep-

resentations. Acoustic phonon modes can be classified using irreducible components,

present in this decomposition.
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Rep. A, A 2  B' BI E1  E2  El E3  E 4

Basis 1 r tZ p'ZT T,y TXY g,y tz'TY xy,Y ZAry, I IYTX ItXTX, /t'Ty

T-inv - - - - + + + + -
C-inv - + + - - - + + -

Table 4.1: Explicit form of basis in terms of tensor products of Pauli matrices
for irreducible representations of C4,, contained within G",. Last two rows show
properties of basis elements under time-reversal and charge conjugation. Plus implies
invariance, whereas minus indicates a change of sign under the action of corresponding
symmetry.

Spinons have fermionic statistic, thus minimal coupling to phonons must involve

bilinears of 0 field. In contrary to phonons, continuous spinon fields '/ realize pro-

jective representation of the lattice symmetry group. Action of lattice symmetries on

0 in general includes the gauge transformation, and all identities between generators

are valid modulus gauge transformation [for example, see Eq. (4.20)]. Similar to a

single field 0, general spinon bilinear also realizes projective representation of lattice

symmetry group. However, there exists a subset of spinon bilinears which transform

under regular representation of symmetry group. For the case when the gauge group

is SU(2) these are bilinears which are singlets under SU(2). Whereas for abelian

gauge groups, like U(1) or Z2 , all bilinears realize regular representation, as gauge

component cancels.

Regular representation of the lattice symmetry group on (a subset of) spinon

bilinears can be split into irreducible representations Djt4,

Goto = GDj'O. (4.25)

We note, that invariant fermionic bilinears for 7rFo, sFE and 7rF* phases were iden-

tified in Refs. [5,6,23]. This corresponds to finding all trivial components contained

within decomposition (4.25).

The product of two irreducible representations, Dph x DJ tP contains a trivial

representation within itself if, and only if these representations coincide, DP h j

As the spinon-phonon interaction Hamiltonian has to be invariant under the action
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of the symmetry group, we can construct all symmetry allowed couplings by pairing

identical irreducible components between splittings (4.24) and (4.25). The presence

of additional symmetry operations, such as time-reversal or charge conjugation may

impose further restrictions on the obtained set.

4.3.2 Example: derivation for the wr-flux phase

We use the rF phase as an example for an illustration of the abstract procedure out-

lined above. For phonons, the underlying symmetry group is C4, (see Appendix C.1.2).

Using characters Table C.1, we find explicit form of the decomposition (4.24) for the

present case:

E, x E1 = A1 D A 2 E B1 E B2. (4.26)

A1 here and in what follows always denotes the trivial representation. All other repre-

sentations are also one-dimensional, thus the action of corresponding group elements

can be inferred from Table C.1 in the Appendix. In terms of components of two

vectors (q,, qy) and (u, uy), the basis functions of these representations are

A 1 :XX + uY, A 2 : - uYX, (4.27a)

B1 :UXX - uY, B2 : xy + Uyx, (4.27b)

where we introduced shorthand notation

uij =iuj. (4.28)

While introducing the ansatz for 7rF] phase in Section 4.2.2 we used unit cell

consisting of four lattice sites. This allowed us to write relations between continuous

fields and microscopic spinon operators in a simple form. However, the price to pay is

that spinons now transform under the symmetry group C4, which is larger than point

symmetry group of the square lattice. In addition to transformations from the point

group of the square C4v, group C4, includes lattice translations by unit vector in X^ and

y directions. The details about irreducible representations of group Cl, are worked out
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in Appendix C.1.2. It has eight one-dimensional irreducible representations labelled as

A 1,2, B1,2 and A/,2, B, 2 in Table C.3, and six two-dimensional representations denoted

as E1, E/, E2 ,...,5. To find the splitting of representation of C4, on spinon bilinears

into irreducible components we use natural basis: all spin singlet bilinears can be

enumerated using tensor products of Pauli matrices acting in sublattice and valley

space,

f Mo, M E 1, T , T, 1}. (4.29)

With the help of the characters Table C.3, the 16-dimensional representation G F is

reduced into direct sum of four one-dimensional and six two-dimensional representa-

tions as

GF = A, E A2 ( B' @ B ( E, @ E' ( E2 (4.30)

Using the explicit basis (4.29), we can find to what irreducible representation a

given matrix belongs. Identity matrix 1 corresponds to the trivial representation, A1 .

Next, one can check that both matrices p', TZ, and their product, pIZrZ, are invariant

(up to a sign) under the action of all generators of Cs, Eqs. (4.15)-(4.17). Therefore

the matrices M', TZ, and IptZTZ form the basis of one-dimensional representations A 2 ,

B' and B2 respectively. Matrices (-r, TY), (pZ Ty, PzTY), and (IL, py) constitute basis

of two-dimensional irreducible representations E1 , El and E2 respectively. Finally,

after some algebra, the remaining six matrices from (4.29) can be split into pairs

that realize the basis for representations E3,..., E5 as shown in the Table 4.1. The

last two rows in Table 4.1 display the symmetry of corresponding matrices under the

action of time reversal and charge conjugation operations.

Explicit decompositions, Eqs. (4.26) and (4.30) give us allowed couplings between

spinons and phonons. Only identical irreducible representations can be coupled be-

tween themselves. Comparing Eqs. (4.26) and (4.30) we see that only two first terms

in both direct sums coincide. Thus one may expect the allowed couplings to be

described by contraction between A 1 (A2 ) components in different sums. However,

according to Table 4.1, the bilinear IAl is odd under both time-reversal and charge
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Rep. A 2  B1  B'I A' El E3 E4 E
Basis -r TrZIZ A Z TV Ax, /,,ZTXY 1r, YZIUXY gY(x T Tiy) i,y (-r Ty)

T-inv - - - - + +

Table 4.2: Explicit form of basis for different irreducible representations of C,
contained within G. Action of the group generators coincides with Ref. [5]. Last
row summarizes the transformation of basis elements under time-reversal symmetry.

conjugation, and Of/Tz4 is odd under time reversal. As different components of ui, are

invariant under time-reversal and charge conjugation, we conclude that at the leading

order no couplings of spinons to phonons are allowed by symmetry, H( 0)(q) =0.

To find a non-zero coupling of spinons to phonons, we allow for the presence

of spinon momentum, k in the coupling Hamiltonian. This corresponds to the next

order in the expansion around the Dirac points. The spinon momentum, k, transforms

under the usual vector representation E1 [this can be inferred from the fact that Dirac

Hamiltonian, Eq. (4.12) is invariant] and is invariant under time reversal, but odd

under charge conjugation. The product E1 x G ir is reduced as

E1 x G" = A1 E A2 D B1 D B2 D A' ( A' E B'1 E B

E 2(E1 ED E E2 e E3ED E4 @ E). (4.31)

The first four irreducible representations, which are of interest for us [compare with

Eq. (4.26)], originate from the E1 component within Gg1 ,. Consequently, their basis

is analogous to Eq. (4.27). The first four irreducible representations A1 ... B2 from

Eq. (4.31) can be coupled to corresponding irreducible representations in Eq. (4.26).

For example, coupling representation A1 with basis kxTr + ky-r to A1 component with

basis uXX + UYY results in contribution

s- 7p1 (1) Ty) [kxr + kyTY], (4.32)Hs-ph~o - gA, (uXX+

with a phenomenological coupling constant gA 1 . Dependence on k, q will be sup-

pressed for brevity in what follows, Hs-ph(1) = H -ph(1)(k, q). Collecting all contri-

115



butions at this order, and rearranging phenomenological coupling constants (e.g.

1)4 g ) we get the most general form of the spinon-phonon interaction

Hamiltonian in the 7rF phase to be

st'-pho = g(1) (uxxkx-rx + UyykyTY) + g l(uxYkxT + uyxkyTY) + gil)(ukxr+U kT)

+ ( (uXzk Yr + uyykxTx). (4.33)

4.3.3 Results for the sFE, 7rF*, and OFO phases

After detailed derivation of spinon-phonon interaction for the wr-flux phase on a square

lattice, we present results for other algebraic spin liquid phases considered in this

work.

The staggered-flux phase on a square lattice is similar to the 7rFi phase, consid-

ered above. However, in contrary to the ir-flux phase, there is no charge conjugation

present among additional symmetries. As we shall shortly demonstrate, due to re-

duced symmetry, the number of allowed couplings is going to be larger. Splitting of

G,0 into irreducible components works as

Gs = A2 D B1 ( B' D A' ( 2E' D 2E3 D E4 ( E5. (4.34)

The basis of corresponding components in terms of tensor product of Pauli matrices

are listed in Table 4.2. One can notice, that all one-dimensional representation present

in the decomposition (4.34) are odd under time-reversal. Just like the case of the irFEl

phase, no couplings with phonons are allowed by symmetry at this order. To find

non-zero coupling we consider next order in k.

Explicit expression for Hp-h(1) (k) can be found using decomposition of the product

E x GM [where E' corresponds to spinon momentum2] into irreducible representa-

2Naively, the fact that k transforms under E' rather than El seems to contradict the expectation,
that as the staggered flux becomes exactly equal to ir, the sFu phase continuously evolves into the
rFE1 phase. In reality, there is no contradiction: the sFo phase at the value of flux of ir indeed turns

into the 7rFE] phase, however, realized with a different ansatz.
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Rep. A1 A2  E1  F F2  F3&F 4
Basis 1 T' T"" T TZLXY'z AXJIZ TXYXYZ

T-inv+ - - + - +

Table 4.3: Explicit form of basis for irreducible representations of C6"' contained
within G . Notations and action of group generators coincide with those used by
Hermele et al. [6].

tions,

El x G = 2(Al1) A2 ( B1 D B2 E El E El E E2 ( E3 D E4 E E5). (4.35)

The overall factor of two indicates that there are two distinct copies of each irreducible

representation in the decomposition. Four one dimensional irreducible representation

in the first line of Eq. (4.35) coincide with the decomposition of El x E1 into irre-

ducible representations. As all irreducible components are encountered twice in the

decomposition (4.35), we have eight different couplings between spinons and phonons.

The basis for the two copies one-dimensional representations A1 ... B2 in Eq. (4.35)

can be deduced using the fact that all these irreducible representations originate from

the tensor product El x E':

A1 : kxxr + krv,

B1 : kr' - kyry,

A 2 :kerT - k,," r

B2 : kTrv + kvT'.

The bases for the second copy of irreducible representations in Eq. (4.35) have the

same form as in Eq. (4.36), but with an extra Pauli matrix [tZ. Physically, this corre-

Rep. A 1 B1  A 2  B2  E1  E2  A1  B1  A 2  B2  E1  E2
Basis 1 ,z rz /z-ZT TX,Y zTpX,'Y PxTz pArz Ax P" +/IxT2XY YTx,'y
T-inv + - - + - + + + - - + +

Table 4.4: Irreducible representations of C6,, contained within G and their basis.
Each irreducible component occurs twice: first six representations in the Table are
diagonal in the valley space, whereas remaining six are their off-diagonal counterparts.
Adopted from Table III in Ref. [7].
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sponds to the fact that the anisotropy in Fermi velocity is not prohibited by symmetry

in the sFZi phase [5]. Time-reversal invariance does not reduce the number of allowed

couplings, as all combinations in Eq. (4.36) are invariant under T. The resulting

spinon-phonon interaction Hamiltonian, has eight terms, four of which coincide with

the case of the irFo phase, Eq. (4.33), while remaining four terms contain an extra

AZ and correspond to a phonon-induced valley anisotropy in a Fermi velocity.

The ir-flux phase on a kagome lattice has a symmetry group CV. Just like in the

case of square lattice, it is an extension of a conventional symmetry group of hexagon,

C6V, to the case of enlarged unit cell [6]. The point group of hexagon governs the

properties of phonons. The generators of C6, are rotations for an angle of ir/3, R,/ 3 ,

and reflection with respect to x-axis, Rx. Using character Table C.4, the tensor

product of two vector representations is decomposed as

El x El = A1 D A 2 D E2. (4-37)

On the other hand, using character table for the group C6, from Ref. [6], one can

reduce representation on fermion bilinears as

G rF = A1 E A2 E1 E F1 ( F2ED F3 E F4. (4.38)

Comparing Eqs. (4.37) and (4.38), we see that, in principle, couplings between cor-

responding A1 and A 2 components are possible. However, if we consider properties

of representations under time reversal, listed in Table 4.3, we see that basis of A 2 is

odd under time reversal and only coupling to density fluctuations remains:

frrF*z = gO)(ux2 + uzz)1 (4.39)

This coupling vanishes for transverse phonon modes, and we consider terms which

are next order in k. Higher order terms can be found from decomposing of E1 x G ,F
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into irreducible components,

El X G1 F* = A e A 2 E 2E E E2 2 2(F E F2 D F3  F4), (4.40)

and pairing those with irreducible representations contained within E1 x E1 , Eq. (4.37).

Only irreducible representations A 1, A 2 and E2 in Eq. (4.40) are of interest as the

same components are also present in decomposition (4.37). The basis for these repre-

sentations can be written in terms of basis of E1 , (k,, k,) and E1 component within

G * [r = (X, ry), see Table 4.3]:

A1 : k-r (4.41a)

A 2 : kx-r (4.41b)

E2 : (kxrY+ kyrx, kxTx - kYTY). (4.41c)

From here, we can read off the most general form of the spinon-phonon interaction

Hamiltonian to be

s-ph = g1 (uxx + uyy)(k - r) +g92(ux - uYx)(k x r)

+ gY (ux +uy,)(kiT" + kYrx) + (uxx - Uyy)(kxix - kyr )]. (4.42)

The uniform phase on a honeycomb lattice is also governed by the symmetry

group C6,. The notable difference compared to the cases considered above, is that

the honeycomb lattice is not Bravais and has a unit cell consisting of two atoms.

Derivation of spinon-phonon interaction is analogous to the case of graphene [7]. We

neglect the optical phonon modes related to the presence of two atoms in the unit

cell. Tensor product of two vector representations is given by Eq. (4.37). Whereas,

decomposition of G OFinto irreducible representations works as [7]:

G07 = 2(A1 D A 2 D B1 D B2 e E1 E E2), (4.43)

where two copies describe matrices diagonal and non-diagonal in valley space. Bases
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of different irreducible components are given in Table 4.4. Terms which are off-

diagonal in the valley space are not considered, as we do not allow for the intervalley

scattering due to phonons. At the zeroth order in k, in addition to the density

coupling, Eq. (4.39), there are terms which do not vanish for transverse phonon

modes,

ftOF= g= - y )T- - (uXY + uYX)T pZ (4.44)

Thus there is no need to consider next order in k. Note, that as basis of A 2 is odd

under time reversal, we omit otherwise possible term (aOuy - Oyux)Tz from Eq. (4.44).

4.3.4 Comparison between different phases

It is instructive to compare the above results for the spinon-phonon interaction in dif-

ferent realizations of Dirac spin liquid. In all derivations we considered Dirac fermions

describing low energy excitations. The Dirac dispersion arises as an approximation

of the band structure in vicinity of K points in the Brillouin zone. Consequently,

the interaction with acoustic phonons may be understood from the influence of lat-

tice deformations on the low energy band structure. The coupling of phonons to the

density of spinons is very easy to explain from this perspective. The local changes in

the volume of the lattice, described exactly by div u = uXX + uYY, correspond to the

density modulations of spinons, yielding the interaction Hamiltonian (4.39). In the

case of the OFo phase, remaining terms given by Eq. (4.44) are can be interpreted as

a relative shift of Ka points with respect to each other by lattice deformations. In

other words, strain is translated into a gauge field, which coupled with opposite sign

in different valleys - well known effect for the case of graphene [7,1711.

The presence of fluxes and non-trivial action of projective symmetry group pro-

hibits density coupling for irF[ and sFE phases. In the irF* phase, the density

coupling is the only allowed coupling at this order. To find a non-trivial couplings,

we considered next order expansion in vicinity of the Dirac points. These couplings

may be readily understood as a deformation of the band structure in vicinity of K

point, which, nevertheless leaves the position of the Dirac point within the Brillouin
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zone intact. This is exactly what we see in couplings (4.33) and (4.42), which can

be interpreted as the change in Fermi velocity, VF. Note, that the position of Dirac

points in the Brillouin zone is non-universal, and depends on the choice of the im-

plementation of the given phase. Therefore, it is natural, that the (physical) lattice

deformation does not have any impact on the (unphysical) position of the Dirac

points.

4.4 Sound attenuation

We continue with a discussion of observable consequences of spinon-phonon interac-

tion. Interaction of acoustic phonons with gapless spinons opens another channel for

decay of phonons. Thus, it is expected to contribute to the attenuation of ultrasound.

To get an estimate of the this effect, we perform a simple calculation in this Section.

As an example, we consider the algebraic spin liquid phase with staggered flux on a

square lattice. We comment on the differences for the 7rF* and OFo phases. We do

not consider the 7rFo phase, to avoid the complications related to the presence of an

SU(2) gauge field.

4.4.1 Framework

We start with establishing the framework and introducing the basic elements required

to calculate the ultrasound attenuation. These are the gauge field propagator and

the phonon self-energy.

The gauge field, strongly coupled to spinon emerges from a microscopic constraint

and fluctuations around mean field anzatz. On a microscopic level it originates from

constraint and is not dynamical. Non-trivial dynamics of the gauge field is generated

due to the coupling to fermions [172,173]. First, the Maxwell term will be generated

while integrating out high energy degrees of freedom. Another contribution, which

is singular compared to the Maxwell term, comes from the Dirac band touching and

can be written via vacuum polarization operator for massless Dirac fermions. Total

121



Figure 4-2: Double wavy line shows the gauge field propagator in the RPA approxi-
mation. Thin wavy line is the bare Maxwell propagator.

action of gauge field then becomes

Sa = (q-) )[(DM - a.() v(-) (4.45)

where we use covariant notations in Euclidean space, q = (iW, vFq). lpv(q') is the

polarization bubble of Dirac fermions (see Fig. 4-2), and (DM) -1 is the inverse Maxwell

propagator of the gauge field (we work in the Lorentz gauge, k -d= 0),

=D)-v(-4 - t j.v) ql(~ (4.46)

where HM(q) corresponds to the inverse propagator without tensor structure:

-. 2

II q)=q 2*(4.47)
e

The polarization bubble at zero temperature (projector tensor structure is again omit-

ted) is given by [174-176]:

N10) --., (4.48)

where we introduced the integer number of flavors of four-component Dirac fermions,

N, in our theory. The physical case corresponds to N = 2 coming from spin. Ac-

tion (4.45) translates into the total propagator for the gauge field, Fig. 4-2, given by

8 1
D(q) = 8 (4.49)

N -+8q2 (Ne2

In what follows we will need the polarization bubble at finite temperature, which may

be written as

Uy, = ALVUA + ByviB. (4.50)
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The tensors Al, and B1,

AlI = --__ S2 - ov) , (4.51)

B11 = Qi 6A -O , (4.52)

are orthogonal to each other and their sum reproduces the original zero-temperature

tensor structure, Eq. (4.46). Explicit expressions for IA', along with detailed calcu-

lations are available in the literature [176]. We need the asymptotic expression for
IIA in the limit T > vFqI > w:

A 2NT log 2 1 (.3
7r vF q

Sound attenuation, as, will be calculated from the self-energy of phonons, Ilph(w, q),

arising due to interactions with spinons. More precisely, a. is given by the imaginary

part of the retarded self-energy [47],

2
as= Im [l'(w, IqI)]w,=v.jqj (4.54)

with frequency and momentum related by the dispersion relation of the acoustic

phonons, w = v8Iql, where v, is the sound velocity.

Let us discuss the approximations to be used in the calculation of the sound

attenuation. For simplicity, we consider the clean case, i.e. we assume that the mean

free path of spinons, 1, is much larger than the ultrasound wavelength, q > 1. Also,

we assume that the sound velocity is much smaller than the Fermi velocity, vF > v,.

Under this condition, we immediately find that if w and q are the phonon energy

and the wave vector, vFq = (vF/V,)W>> w. Finally, in contrary to the case of spin

liquid with a Fermi surface [47], non-zero temperature is required to get non-vanishing

sound attenuation in a Dirac spin liquid. This is a consequence of the energy and

momentum conservation in the scattering process. Acoustic phonon cannot excite a

particle-hole pair of spinons since the maximum momentum change for such a pair
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with energy w, Ak = w/vF, is much smaller than phonon momentum, q = w/v 8 .

Therefore, we assume that the system is at a finite temperature T >> (VF/Vs)W > O-

As noted above, there is a gauge field strongly coupled to the spinons. In order

to have a control over its effects we artificially introduced the number of flavors, N,

being equal to two in the physical case. Since gauge field propagator, Eq. (4.49),

is proportional to 1/N, effects of gauge field are suppressed for large N. We will

perform calculations of sound attenuation to the leading order within 1/N expansion,

commenting on the higher order terms.

4.4.2 Sound attenuation in the sFLI phase

Having the basic ingredient for the calculation of sound attenuation at our disposal,

we consider a, for longitudinal phonons in the sFE phase. As shown in Section 4.3.2,

there is no allowed coupling at the leading order in k. All possible couplings at the

next order are given by Eq. (4.33). For simplicity, we consider only first term in

Eq. (4.33) [see Eq. (4.32)]. Combining Eqs. (4.23) and (4.32), corresponding spinon-

phonon interaction vertex reads:

MM(q) = q M-~ (1), (4.55a)

(4 = k + ky, (4.55b)

where 4 = (4, d,) is the unit vector pointing along q. In what follows, coupling

constants with tilde are defined as:

1 = g. (4.56)

To leading order in 1/N, the polarization operator of phonons due to interaction

with spinons is given by the sum of two diagrams in Fig. 4-3 with the spinon-phonon

interaction vertex from Eq. (4.55). Indeed, the first diagram in Fig. 4-3 has one

fermionic bubble and is proportional to N. An extra fermionic bubble in the diagram

Fig. 4-3 (b) is compensated by factor of 1/N from the gauge field propagator. We
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(a)-- - (b)

Figure 4-3: Contribution of spinons to the longitudinal sound attenuation. The bare
contribution from spinons is given by the diagram (a). Diagram (b) accounts for the
screening due to fluctuations of the gauge field. Black dots represent spinon-phonon
interaction vertex, specified in the main text.

have for the first contribution, Fig. 4-3 (a):

as = [1)]2q 2 Im R(1)(w q) (4.57)
vs

The imaginary part of the bubble diagram with spinons is calculated in the Ap-

pendix C.2 and behaves as Im HR(1)(w, q) oc NwT 3 /(4Fq) at the leading order. One

can show that the contribution from the diagrams with an extra gauge field prop-

agator, Fig. 4-3 (b), has the same order of magnitude as Fig. 4-3 (a). Thus, using

dispersion relation of acoustic phonons, we get the following estimate for the sound

attenuation:

a, oc N[4()] 2 W . (4.58)
s F

(1)The value of the coupling constant, gl , may be estimated from the sensitivity of the

velocity of Dirac spinons to the changes of the lattice constant, a:

9(1) OVF ( .9

1 a -VF-g1 u ~ BF P. (4.59)

Using this estimate, we obtain for the sound attenuation:

(T )2(0a, ~ N -) as), (4.60)

where as() defined as

a(O) q kT qT (461)
15ions MionusF
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The Debye frequency has been estimated as WD OC Vs/a, and kT = T/vF is a wave

vector of spinons with the energy equal to the temperature. The a., introduced

above, gives the estimate for the sound attenuation coefficient in the case of spinon

Fermi surface if one substitute the Fermi momentum for the kT, kT -+ kF. We see that

in a Dirac spin liquid, contribution of spinons to the sound attenuation is suppressed

compared to the Fermi surface case by two factors. The first factor, T/IPF < 1 is

generic for any Dirac spin liquid and originates from the vanishing density of states

at zero temperature in the Dirac spectrum. The second factor (T/wD)2 , which is

also expected to be smaller than one, arises due to peculiar form of spinon-phonon

coupling.

Finally, we comment on the next order in 1/N terms, contributing to the sound

attenuation. There is a much larger number of diagrams at the order 0(1). The

most obvious are the vertex corrections, where gauge field dresses the interaction

vertex of spinons with phonons or gauge field itself. Note, that if the spinon-phonon

interaction vertex corresponded to some conserved current, it would be protected from

logarithmic corrections [1731. However, there is no such protection here and in general

we expect logarithmic corrections to arise at the order 0(1). There is also another

type of contribution 0(1), which is more unusual. Indeed, in order to maintain the

gauge invariance, k in Eq. (4.55) has to be extended to include the gauge field as

well. This leads to the vertex where a phonon can generate a quanta of the gauge

field in addition to the particle-hole pair of spinons. Similar type of vertex has been

considered in Ref. [42].

4.4.3 Sound attenuation in rF* and OFo phases

As we have shown above, the peculiar form of the coupling between phonons and

spinons in the sFo phase leads to the suppression of the sound attenuation coefficient

by additional small factors. One may expect, that since in the 7rF* and OFo phases

longitudinal phonons couple to the density of spinons, the sound attenuation will be

parametrically larger than for the sFo phase. Below, we are going to demonstrate

that these naive expectations do not hold. Due to the presence of the gauge field, the
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density coupling gets screened and does not contribute to the sound attenuation at

leading order in 1/N.

Using explicit form of the coupling, Eq. (4.39), we write corresponding spinon-

phonon interaction as:

Mk0 (q) =- . (4.62)

The identity matrix corresponds to the spinon density, thus justifying the use of

the term "density couping". The self-energy of phonons, required to find the sound

attenuation, can be expressed via time component of electron polarization bubble

1100. In addition, one have to account for the effect of gauge field, including the

scalar potential (unlike the case of spinons with Fermi surface, scalar potential of the

gauge field is not screened by Dirac fermions). These two contributions to Hph are

shown in Fig. 4-3, where now black dots correspond to the interaction vertex (4.62).

Accounting for the both diagrams in Fig. 4-3, we get:

11ph() 0) 2 2 [100 () -+ f0p(-*)D (4.63)

where propagator and self-energy are taken on a phonon mass shell, w = v.,IqI. Using

the finite-temperature expression for the polarization operator, Eq. (4.50), we find

that only HA contributes in the present case. Two terms in the sum in Eq. (4.63)

partially cancel each other and we arrive at:

Hph(q) = 0q 2q2 IIM q) - Hqol (4.64)

Since (g) is more important than the Maxwell term, at the leading order we can

neglect the latter term in the denominator, and get Hph(') oc _llM(q). Note, that

this term is of order of 0(1), compared to the naive expectation lph(Q) ~- O(N).

Moreover, this term does not contribute to the imaginary part of the self-energy:

Maxwell propagator originates from high-energy modes, whereas we are interested in

the decay of phonons into low-energy Dirac-like spinons. Omitting the leading order

127



term, and including next order contribution, we get the result

q2 2

~2 A (4.65)

which is proportional to 1/N. Qualitatively, cancellation of two leading terms can be

understood as an effect of screening due to gauge field.

Now that we have shown that the contribution of the density coupling to the sound

attenuation is proportional to 1/N and thus negligible, we consider other terms in

the coupling Hamiltonian, contributing at the order O(N). For the TrF phase, these

terms, listed in Eq. (4.42), are first order in k. Thus, the sound attenuation is expected

to be of the same order as the results for the sFE phase, listed in Eq. (4.60).

However, for the OFo phase there are couplings allowed without an extra k, see

Eq. (4.44). Contribution from these couplings is expected to be of order of as [see

Eq. (4.61)]. We note that contribution of gauge field vanishes in the present case.

Indeed, it couples with an opposite sign in different valleys [note the presence of the

extra pZ matrix in Eq. (4.44)], thus diagram in Fig. 4-3 (b) is identically zero.

4.5 Discussion and outlook

We presented the general procedure for the derivation of the coupling between spinons

and acoustic phonons in the Dirac spin liquid. Our procedure is based on the sym-

metry arguments. Although general fermionic bilinear transforms under projective

representation of the lattice symmetry group, spin singlet bilinears realize conven-

tional (i.e., not projective) representation of the microscopic symmetry group. We

found the decomposition of this representations into irreducible for ir-flux and stag-

gered flux phases on a square lattice, as well as for 7r-flux phase on kagome lattice

and a Dirac spin liquid phase on a honeycomb lattice. By pairing corresponding irre-

ducible representations with those for acoustic phonons, we were able to identify all

symmetry allowed couplings. Note, that such decomposition can have other applica-

tions. For instance, it can be used to derive symmetry allowed couplings to optical
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phonons or some other excitations.

In a continuum limit all considered spin liquid phases have similar low energy Dirac

excitations, and hardly can be distinguished. Nevertheless, the allowed interactions

with phonons have different form. For the Dirac spin liquid phase on a honeycomb

lattice the coupling to acoustic phonons is similar to the case of graphene. The only

difference is that the coupling to the density of spinons, naively expected to be the

largest, is screened by the gauge field (this is true for all Dirac spin liquid phases).

As a result, for spin liquid phases on a square and kagome lattices considered in this

work, the leading couplings contains an extra small parameter (T/wD)2 , compared to

U(1) Dirac spin liquid on honeycomb lattice. Qualitatively, in these phases, the lattice

deformations with small wave vectors couple to the changes or anisotropies in Fermi

velocity. Whereas in the case of zero-flux phase on honeycomb lattice such lattice

deformations shift the position of Dirac points, acting similarly to the gauge field.

The difference between couplings arises naturally from the fact that they are

controlled by the representation of the corresponding symmetry group, acting on a

lattice level. Thus the interaction of spinons with phonons retains some information

about microscopic structure of the phase. It would be instructive to check if one

can distinguish between different projective realizations of the same symmetry group

by looking at couplings to spinons. The simplest example' of such two phases are

two Z2 spin liquid phases on a square lattice (Z2A0013 and Z2Azz13 in notations of

Refs. [22,177]). This, however, requires generalization of the present approach to the

case of Z2 spin liquid phases, which is an interesting open question. Another open

question is to understand the effect of projective realization of spin SU(2) symmetry,

which has been proposed recently [178].

In order to understand the perspectives of spinon-phonon interaction as a probe

of fermionic spinons, we carried out a simple calculations within 1/N expansion.

Assuming that our results can be extrapolated to the physical case N = 2, we see

that the in a generic Dirac spin liquid exemplified by the zero flux phase in the

honeycomb lattice, sound attenuation is suppressed due to vanishing density of states
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at zero temperature and as oc qT/(mi.OfVFVs)- On the other hand, the peculiar form

of spinon-phonon coupling in the wr-flux and staggered flux phases contributes an

additional suppression of the form (T/wD)2 . Nevertheless, the effect from phonons is

still potentially observable, as the sound attenuation due to phonon-phonon scattering

(caused by non-liearities) behaves as a ~ T4 for T < WD [179].

We note that our calculations should be viewed as a simple estimate due to the

nature of approximations used. Currently, to the best of our knowledge there is no

experimental data available on the sound attenuation in Dirac spin liquids. Provided

such data becomes available, more extensive theoretical work is required, in order to

construct a realistic description. In particular, for the prospective spin liquid phase

on a kagome lattice [28,291, the clean limit, assuming mean free path I >> q-1 does

not apply. Also, the estimate for VF suggests that VF - v, rather than VF >> Vs

as was assumed. Another question, which can be relevant for a spin liquid on a

kagome lattice is the effect of transition from U(1) to Z2 spin liquid and its possible

manifestation in the ultrasound attenuation.
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Appendix A

Variational Monte Carlo

The Variational Monte Carlo (VMC) method allows to efficiently evaluate expectation

values of observables in a given many body wave function within small error bars [24,

180]. This works as follows: Let |0) be the wave function and let 0 be the observable

we want to evaluate. Let {Ia)} be an "Ising" basis of the Hilbert space; i.e., la) is a

product of local basis states. We can write

(V)1IO) = Z1(a)1 2 (ab) (A.1)

with 1/,(a)12 = I(a1I0)1 2/(0104'). Since Z. 1b(a)1 2 = 1, |b(a)1 2 is a probability distri-

bution on the Ising configurations {a}. Such a distribution can be generated by a

Metropolis algorithm with acceptance probability

p(a -+ a') = min{ Oa) 2,' 1}. (A.2)

Note that, in (A.2), O(a) does not need to be normalized. The sequence {a} generated

by a random walk with probability (A.2) can be used to efficiently calculate the

expectation value,

(I10 (aIOkb (A.3)

{a} (a[?P) 
(A.3)
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In this paper, we use ~ 200 Monte Carlo runs to estimate the error of Eq. (A.3) by

its variance over the runs. The length of a run is - 200 steps, and the observables

are measured after each step. The measurements are precessed by an equilibration

skip of ~ 400 steps. Each Monte Carlo step consists of 4 x N ~ 600 local moves,

accepted with probability (A.2). We use a lattice of N = L x L sites, with a linear

size L = 12 in our calculations. The error bars on the variational energies shown in

Figs. 2-4 and 2-6 are smaller than the symbol sizes.

Local and global constraints (projections) on the wave function 14) can be easily

implemented in the VMC scheme. The Gutzwiller projection, 17P) = PG 140), for

example, can be taken into account by restricting the Ising configurations a to the

singly occupied subspace (nr = 1). Similarly, projection of a spin wave function to

S -** = 0 leads to a global restriction on the configurations a. Here, it is important

to have an algorithm that generates all states a in the constrained subspace with

uniform probability.

To apply VMC to a particular wave function, we first need an expression for

V)(a) oc (a14). Next, an efficient algorithm is needed to calculate the Metropolis

acceptance probabilities (A.2) for local moves in the constrained subspace. Similarly,

for each observable of interest, one has to find an efficient way to calculate the ratio

of overlaps in (A.3).

A.1 Fermionic wave functions

The first class of wave functions that we are considering in this paper are Gutzwiller-

projected ground states of quadratic Hamiltonians, HMF, for three flavors of fermions

fa. A similar study of wave functions with two flavors of fermions has been pioneered

by Gros [24] for spin S = 1/2 models.

In our calculation of fermionic quantum spin liquid and fermionic ordered wave

functions, we use the local basis of time-reversal invariant states, 1a) E {ix), ly), Iz)},

Eq. (2.8). The Ising configurations a are restricted to singly occupied states on a

lattice of N = L x L sites. Furthermore, we restrict the configurations to states with
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N = N. and N2 kept fixed (that is, the wave functions are projected to fixed total

flavor numbers; see below).

Let ra E ZL x ZL be the lattice positions of flavor a E {x, y, z} in the Ising

configuration a. The U(1) state and the triplet (x-y paired) quantum spin liquid

states in (2.28) can be written as a product of two determinants,

(a?) = det[erI'k ] det[A(rT - rr)], (A.4)

where j and I are the indices for the determinants. k are the occupied momentum

states of f, spinons inside the Fermi sea, Ek, < p2. For the U(1) state, A(r) is a

Slater matrix [24],

A(r) = eik'', (A.5)
kEBZ,

with momenta k going over filled states in the first Brillouin zone (BZ). For the triplet

quantum spin liquid states (s-wave, d + id), we have

A(r) = ak eik-, (A.6)
kEBZ

where ak = vk/Uk = Ak/(E + |k) is the ratio of BCS coherence factors for the

pairing of f. and fu fermions.

For the quantum spin liquid states with equal-flavor pairing (f-wave, p + ip), the

wave function is a product of three Pfaffians [181,182],

(a|) = JJ Pf[Aa(rj - r')], (A.7)
a

with

Aa(r) = ak sin(k - r), (A.8)
kEBZ

where ai = Va/ua are the ratio of coherence factors for each paired fermion flavor.

In the case of the ordered states (2.30), the fermions are unpaired, but the flavors

hybridize through terms fjafb, etc. For a lattice of N sites, the corresponding wave
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function is a single Slater determinant of size N x N,

(akb) = det[Al(rja)]. (A.9)

Here, 1 = 1... N, and A,(rj) are the lowest eigenvectors of the mean-field matrix Hib

with Hord = Eij,ab ft-Hfbj. [For the three-sublattice ordered states we consider in

this paper, the eigenvectors can be labeled by 1 = (n, k), where n is a band index and

k lies in the reduced Brillouin zone.]

Our calculations are done on a finite lattice with N = L x L sites. In order to

avoid singularities or degeneracies in (A.4)-(A.9), we use quadratic trial Hamiltonians

(2.28) and (2.30) with periodic in one and antiperiodic boundary conditions in the

other lattice direction for the spinons faj. The f-wave state, however, has lines of

nodes in the gap function A, (at momenta {ko}) that cannot be avoided by choosing

periodic-antiperiodic boundary conditions. A singularity lag0 a oo occurs on these

lines, and (A.8) is ill defined. To cure the divergencies, we replace aa0 by a large but

finite quantity, namely, 20 x maxko{ IlaI1. The sign is chosen to be consistent with

the sign of aa as k -+ ko. We have verified that the relevant correlators do not depend

on the precise factor in the regularization and that the wave function (correlators)

correctly reproduces the U(1) state when ilaai < 1.

We use the usual tricks for an efficient evaluation of the Metropolis acceptance

probability (A.2) and the expectation values (A.3) in fermionic wave functions: The

inverse of the matrices in (A.4), (A.7), and (A.9) is stored and updated during the

Monte Carlo random walk [180]. This allows for efficient evaluation of determinants

and Pfaffians with rows and/or columns replaced or removed [24, 182]. To update

the inverse of an antisymmetric matrix with a row and column replaced, we use the

Sherman-Morrison algorithm twice, followed by antisymmetrization of the matrix.

This procedure greatly improves the numerical stability of the update. The "pfapack"

package by Wimmer [183] is used for efficient evaluation of Pfaffians.
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Flavor-number nonconservation

An important technical difficulty with fermionic RVB wave functions for spin S = 1

is that typical microscopic models such as (2.37), when written in terms of fermion

operators, do not conserve the number of each fermion flavor separately. This issue

is also present if we wish to represent the spin operator by more than three fermion

flavors. We have Na = N - >jJS.i and [HKD, N] = 0, in general. Unlike in the

case of spin-1/2, conservation of Sot = Ej Sz, does not imply conservations of flavor

number. Note, however, that Na is conserved in the SU(3) model (2.6) or in the

KD-model (2.37) at K = 1, where this issue does not arise. Writing (2.37) with

fermions, the terms not commuting with Na are

(K - 1) E flf bif1fbj, (A.10)
ab

which vanish for K = 1. In general, there is therefore no justification for using varia-

tional wave functions that are particle-number eigenstates. For such wave functions,

the Ising configurations a in (A.2) must visit all possible total flavor numbers, with

Ea Na = N kept fixed. In a brute force implementation, the determinants and Pfaf-

fians in (A.4) and (A.7) may need to change sizes during a Monte Carlo run, which

implies a high computational overhead. Such a simulation has recently been done in

the case of spin-one chains [184].

The problem is actually absent for the quantum spin liquid states with a spinon

Fermi surface. In this case, the wave function is an Nz eigenstate. N, and Ny do

fluctuate in a paired state; nevertheless, N, = Ny and all expectation values of (A.10)

vanish in this class of wave functions. The difficulty is only present for equal-flavor

paired quantum spin liquid states (f-wave and p + ip) and for the ordered states

(2.30). In these cases, the expectation value of (A.10) does not vanish (before or

after Gutzwiller projection). The flavor numbers Na fluctuate independently of each

other in these wave functions.

To resolve this issue, we can use the standard argument [24] that relates grand-

canonical and microcanonical RVB wave functions: The paired mean-field states are
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strongly peaked at some average flavor number No = (Ny, 9,', N 0). This peak in

flavor number may shift position to No after Gutzwiller projection, but it should still

be present. Furthermore, the variance is expected to vanish in the thermodynamic

limit, ((Na - NaO) 2 )/N 2 - 1/N. Therefore, it is justified to work with microcanonical

wave functions that are obtained by projecting the grand-canonical wave function,

IV), to fixed total flavor numbers,

INo) = P(No)|0). (A.11)

VMC calculation of expectation values of particle-number conserving operators

within a microcanonical wave function is straightforward. However, off-diagonal op-

erators such as (A.10) require some care [185]. As an example, let us consider the

operator

Rxy = fJiffvf~j. (A.12)

Its expectation value in the grand-canonical wave function can be approximated as

(OlRxylo) ~ (No+ IRxv INo) ,(A. 13)
.1(NO|N) )(No|INo)

with No' = (Nx 2, No -F 2, NO), and No is the average particle number in hb). In

VMC, the right-hand side of Eq. (A.13) cannot be calculated directly with the correct

normalization. However, it is possible to calculate

(NoIRvI No) and (NoIRyI N-) (A.14)
(NolNo) (NO|No)

within a single Monte Carlo run. Since the last average satisfies (No IRxvIN&~)/(No No) ~

(NoIRINO)/(NoINo) 1, the normalization factor can be calculated from the ratio

of the two correlators in (A.14),

_ (NoINo) (NoIRvI N6-)
XY -(NOJ|Ng) (Ng|Rxy|No) '(A.15)
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Finally, the correctly normalized expectation value (A. 13) is evaluated as

(,0 1RxylO) ~ \/'Jix (No .xy O (A.16)
(NOINo)

It is clear that for a given wave function, gxy, (A.15), does not depend on the off-

diagonal operator Rxy (for example, Rxy on different sites must give the same gxy).

This provides a nontrivial check of our code and we found that the renormalization

factors gab are indeed identical on different sites within error bars.

Of course, a particle-number projection IN) is only a faithful representation of |b)

if the flavor number N is sufficiently close to the average value No in the Gutzwiller

projected wave function. Using N as a variational parameter (here with the restric-

tion Nx = Ny) guarantees that the state |No) oc 1b) is among the variational wave

functions. For the equal-flavor paired singlet wave functions, we found that the agree-

ment between our optimal correlators and the ones calculated in the corresponding

grand-canonical wave functions is very good.

For spin S = 1/2 systems, the investigation of (doped) RVB wave functions in

the grand-canonical ensemble was pioneered by Yokohama and Shiba in Ref. [186].

These authors introduced a particle-hole transformation ci -+ c that allows one to

do fixed-particle VMC simulations. However, this trick does not easily generalize to

spin-one. For spin-half RVB wave functions, the agreement between microcanonical

and grand-canonical approaches was found to be very good. Note, however, that

particle number renormalization by the Gutzwiller projector in grand-canonical wave

functions leads to subtle effects that need to be taken into account if one wishes to

apply the Gutzwiller approximation [187-189].

A.2 Huse-Elser wave functions

This appendix contains details regarding the implementation of trial wave functions

of Huse-Elser type, generalized to the spin S = 1 case. Similar to the case of spin

S = 1/2 [70], our construction starts from an uncorrelated product-state wave func-
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tion. Quantum correlations are introduced by applying Jastrow factors to the simple

product state. The resulting wave function has two sets of variational parameters:

parameters controlling the product-state, and Jastrow parameters responsible for the

quantum correlations.

For the Huse-Elser wave functions, we use the local basis of S, eigenstates, i.e.,

the states 10), 11), and Ii) with S, = 0, 1, and -1, respectively. The corresponding

basis of Ising configurations is denoted by Ia) = 11101011.. .). As before, the singly

occupied subspace corresponds to physical spin states. Furthermore, we project the

wave functions to Slot = 0 by restricting to Ising states with N1 = N1. However, here

we allow the total flavor numbers to fluctuate within this subspace.

In Ref. [551 the optimal three-sublattice product states for the bilinear-biquadratic

model (2.37) were calculated. It was found that the ordering patterns in this model

are well captured by the antiferromagnetic and nematic states given in Eqs. (2.35)

and (2.36). In the basis of S, eigenstates, the wave function on A, B, and C sublattices

is given by

sin?7IA) = cos 710) + i (11) +I)),

21-ri21ri(A. 
17)

JB), IC) = co f|) 2 s (e |1) + e |I))M

where q is a variational parameter. n = 1 corresponds to the antiferromagnetic, and

n = i to the nematic product state. Using the Ising basis, the corresponding wave

function may be written as

$p,) = e Ia), (A.18)
a

where the sum goes over Ising states in the S. basis. The one-body operator H1 ac-

counts for different weights of 10), 11), and I i), as well as for site-dependent phase fac-

tors in the product-state wave function. For the particular case specified in Eq. (A.17),

it can be written in terms of S, operators as

N 2ri .tan
H1 = Z{y (ec - &jEB)Szj + 1 0g(tn)S2. (A.19)

V3 Z
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The Kronecker symbols 6 jEB and 6 jEc are nonzero only for sites j belonging to the

B or C sublattice, respectively.

The advantage of the rather complicated form (A.18) for writing a simple product

state is that quantum correlations can be built in easily by adding extra terms to H1.

We define

kb) = ZeHIo), (A.20)
a

where

fI = f + I2 + I3 +., (A.21)

and H2, H3 , ... denote many-body Jastrow factors. The correlated wave function

(A.20) is easy to use in VMC, as long as H is diagonal in the Ising basis 1a). In this

paper, we only consider two-body correlation terms,

H 2 = - E{3(SziSzj) + Y(SZSzj) 2 }. (A.22)
0i1j)

In principle, in Eq. (A.22), the sum can go over farther-neighbor lattice sites, and the

variational parameters # and -y may depend on the distance between sites. However,

inclusion of farther-neighbor correlations are expected to have a small effect on the

ground state energy [70]. Because of this, and also, in order to have a number of

variational parameters that is similar to the number of parameters used for the spin

liquid wave functions, we consider only nearest-neighbor Jastrow factors here.

The VMC algorithm can now be applied to Huse-Elser wave functions as outlined

in Appendix A. The wave function is given by

(aIP) = e ft(), (A.23)

where H(a) = (aHIa). The Metropolis acceptance probability (A.2) and the ex-

pectation values (A.3) are straightforward to calculate. In contrast to the case of

fermionic wave functions, no determinants or Pfaffians need to be evaluated or up-

dated for this.
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In contrast to similar wave functions for spin S = 1/2, an important subtlety

arises here in the generation of the random walk. For S = 1/2 and Slot = 0, the

configurations a are restricted to states with an equal number of up and down spins.

Therefore, the only admissible local Monte Carlo move is an exchange of two opposite

spins. For S = 1, due to presence of the nematic state 10) with S, = 0, more local

moves are possible. The Hilbert space for S = 1 and Stot = 0 can be written as a direct

sum of orthogonal subspaces ("Ni-sectors") with a fixed number N = 0 ... N/2 of sites

in configuration 11). The dimension of each N1 -sector is D(N) = (N) (N 1Ni). There

exist two types of local moves in a random walk through the Ising configurations:

those leaving N1 intact and those changing N1 and moving to a different N-sector.

The algorithm generating the random walk has to be unbiased with respect to moves

between different sectors such that each N-sector is visited with probability p(N1 ) =

D(N1)/ EN/ D(n). We have checked that such a distribution is accurately generated

by the following procedure. We pick two sites at random and, depending on the states

found on the sites, perform the following move:

(i) 10)11) or 10)11): exchange the states.

(ii) 11)11): exchange states or change to jO)10), each with probabilities 1/2.

(iii) 0)10): change state to 11)11).

(iv) 1)11) or 1I) I): pick two different sites that are occupied by unequal flavors and

exchange them.

In (iv), when the configurations 11)11) or I) I) are encountered, it is important to find

two flavors to exchange, thus not changing the N-sector. For example, if our algo-

rithm rejected this case, and retried with another pair of sites, the random walk would

be biased with respect to the distribution p(N1), resulting in a higher probability for

visiting sectors with smaller N1.
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A.3 Symmetries of bilinear-biquadratic and SU(3)-

models

In this appendix, we elaborate on the symmetry properties of the bilinear-biquadratic

model (2.37) and of the SU(3) ring-exchange model (2.6) investigated in this paper.

Let us first discuss the SU(3) symmetry of these models. Writing the Heisenberg

exchange operator for spin S = 1, Eq. (2.5), in terms of the operators f= (fX, fy, fz),
we have

Pij = t - $5 + (Si - $5) 2 _1

= flifbifjjfaj= f 1-(f-f))f3. (A.24)

ab

In this notation it is clear that Pij is invariant under a global transformation f '

Af where A is a general 3 x 3 unitary matrix. However, as discussed previously,

the transformation fa i-+ e'Ofa with the same phase for all flavors does not change

the corresponding spin state. Therefore, the relevant spin symmetry is SU(3) =

U(3)/U(1), and we can take A E SU(3). Similar to the operators fa that create these

states, the spin states ja) transform in the fundamental representation of the SU(3)

symmetry, by matrix multiplication with A. To find the action of the symmetry on

spin operators, let us define

Q = faAabfb, (A.25)
ab

where A = (Aab), IL = 1... 8, are the Gell-Mann matrices, generators of SU(3). Using

[Os, fa] = ZAaf, (A.26)
b

it is clear that

Af= ei (C)f = e fe (A.27)
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for A = exp{i E. aA,} and Q = E, amQ. Therefore, the spin operators

S= -if x f (A.28)

transform as

S (A.29)

under an SU(3) symmetry transformation.

Rather than explicitly writing down all eight generators of the SU(3) symmetry,

Eq. (A.25), in spin language using the Gell-Mann basis, let us mention an equivalent

set of generators. This set consists of the three spin rotation generators Sa and the

five independent quadrupolar operators Qab = (SaSb + SbSa)/2 - 2/3 6 ab [64].

The ring-exchange model, Eq. (2.6), is written in terms of Heisenberg exchange

operators Pi. Therefore, it has the large SU(3) symmetry discussed above for all

values of parameter a. The bilinear-biquadratic model, Eq. (2.37), enjoys the SU(3)

symmetry only at the special point K = 1 and D = 0 in parameter space (where it

is equivalent to the ring-exchange model at a = 0). Moving away from this special

point, for general K but keeping D = 0, the symmetry is reduced to SO(3) spin

rotation symmetry, generated by S. Finally, for D = 0, this symmetry is further

reduced to U(1) spin rotation about the z axis.

When we move away from the SU(3) symmetric point along the line K = 1 and

D # 0, the symmetry is reduced to SU(2) on that line. Clearly, the spin rotation

symmetry is reduced to Sz as D 4 0. To find the remaining unbroken generators, we

need to determine the SU(3) generators that commute with the biquadratic term Sj.

These generators are S.Sy + SyS, and S. - S'. Hence, {S, Sz, + SyS:, S. - S }

are the three generators of an SU(2) symmetry of the model (2.37) on the line K = 1.

Let us briefly discuss the symmetry reasons behind the degeneracy of the corre-

lated AFM and the nematic states, (2.35) and (2.36), on the line K = 1. In terms of

spinon operators, the relevant symmetry generator is written as

s - s2= fxf f - f tfy. (A.30)
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From (A.27), we see that x and y states simply acquire an opposite phase under

this transformation: f, i-+ e"Pfx, fv e-'fy. It is easy to check that the magnetic

state (2.35) is mapped to the spin-nematic state (2.36) for <p = 7r/2, i.e., when

fx -+ if, and f, '-4 -ify. Furthermore, it is clear that the hopping term in (2.30)

and the Jastrow factors in (2.31) are invariant under this transformation. Hence, the

correlated ordered states are exactly mapped into each other by this transformation.
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Appendix B

Calculation of RG flow of Kondo

coupling

B.1 Calculation of diagrams for #-function

In this Appendix we present calculation of diagrams in Fig. 3-3 with fermion prop-

agator, Eq. (3.9a), containing self-energy due to gauge field. Detailed calculation of

these diagrams without gauge field can be found, for example, in Refs. [86,87].

First we consider diagram in Fig. 3-3 (a), describing second order correction to

the dimensionless coupling g = vJK. We will be interested only in the logarithmically

divergent part of the diagram. Using zero temperature Matsubara diagram technique

and implying summation over repeated indices we can write for the correction to

impurity interaction vertex:

f,(al) _. ) dk dw1
aft = -(a, - y)(oap3 O )p ) - (X)) k F(-iwi)G(k, iw + iwi). (B.1)

Symmetric counterpart of diagram (a) with flipped direction of the propagation of

the pseudofermions (not shown in Fig. 3-3) gives us,

(+)- )2 1 dk dw )
Ja#2) = j (a~, - ams)(ao x)] ( F) F(iwi) G(kc, iw + iw1 ). (B.2)
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After integrating over w, and changing integration variable from k to = - [, we

have similar expressions for both diagrams:

2 (K 2 (-F2oa- oy + 3 6api5)v d. 9 /2 , (B.3)
4 iW(1+ ) -

We perform integration over (, retaining only logarithmical part. Collecting results

for both diagrams and going to real frequency domain, we get:

4a 2 I(1 (l -Y) log D /2 (B.4)

We expand logarithm in e to the leading order and collect both terms into single

logarithm again:

logD D ____D

log =WI~j + D log - log - = log (B.5)

where , is small, K oc 0(1/N),

K= . (B.6)
2N1+1

Finally, we have

Sa = -g log D raY, (B.7)
1w11 -KWKfr 6

where bare vertex FPg6y is defined in Eq. (3.9c), and we retained only logarithmically

divergent terms. Alternatively, we could expand in Greens function in 1/N already

in Eqs. (B.1)-(B.2), reproducing the same result.

Calculations of vertex and Z-factor renormalization, described correspondingly by

diagrams (b) and (c) in Fig. 3-3 are very similar. Indeed, in order to get impurity

pseudofermions Z-factor, Zimp, we have to differentiate self-energy over w, what may

be thought of as an introduction of additional vertex with zero incoming frequency.

Therefore, below we present only details on the calculation for the derivative of self-

energy and list the result for the vertex renormalization.
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Correction to the impurity self-energy described by diagram Fig. 3-3 (c) is written

as

EiMP(iW) = -6N -) 2
4 f

dk 1 dw 1 dk2 dQ 2

(2R) 3 (27)3

x G(ki, iwi)G(k2, iw 1 + iQ2)F(iw + i 2 ),

where we omitted spin indices of external pseudofermions and associated 6-function.

Renormalization of Zimp is given by the derivative of self-energy,

Z1= 1 - MP(W)"imp (iw) ' (B.9)

so that to the first order in the self-energy,

6zm -aimP(jW)Zi "(iw) (B.10)

Integrating over (2 in Eq. (B.8), we have

SZimp = 6N ( ) 2
a Ia(iw) J

dk1 Ak 2

(2x)4 'ki,k 2 ,iW, (B.11)

(B.12)I d2& G(ki, iwi)G(k2, iw 1 - iW)9(-4&2 ).

To simplify further calculations, we expand in e and 1/N.

expanded to the leading order in E becomes:

E(iw) = -iw

Self-energy, Eq. (3.13),

+ log .
2N 1IWI/

(B.13)

Inserting this into fermion Greens function, Eq. (3.9a), and expanding in 1/N we get:

G(ki, iwi) = G(k1 , iwi) - 1 iwi
2N

log - [d(ki, iw1 )] 2 ,Wi
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k1 ,k2,i" =

(B.14)



where G(ki, iwi) is defined as:

1
G(ki, iwi) = iw1 + . (B.15)

Finally, expansion of the product of Greens function in 2 ki,k 2 ,iw, Eq. (B.12), gives us:

'ki,k 2 ,iW 0(-2)(ki, iwi)G(k2, iwi - iw) 1 - I iwi log W G(ki, iwi)

1.W
i(wi - W) log G O(k 2 , iwi - i . (B.16)

2N W) -]

After integration over wi, zeroth order term in (B.16) yields

(O) - 0((k1)0(-Ek 2 ) (B.17)
ki,k 2 ,iw (1 + -)ki ~ 1k 2 1 -(1 + 1)W(

This is inserted into Eq. (B. 11). After integration over momenta extra factors (1 + N)

drop out and we reproduce the answer for the case without gauge field, 6Z()=

-3Ng 2/8 log(D/wl).

Frequency integration for terms proportional to 1/N in Eq. (B.16) results into

cumbersome expression. However, after integrations over k, and k2 and extracting

log-divergent part we obtain JZi'1 = 3= Ng2 /8log(wo/wl), where r, is defined in

Eq. (B.6). Combining 6Z(O) and 6Z 1),, we have for impurity pseudofermions Z-

factor:
3 D_

Zimp = 1 + Zimp = 1 - 3Ng 2 log _D . (B.18)

Correction to the impurity interaction vertex, diagram Fig. 3-3 (b) is calculated

in a similar way. Resulting contribution to the interaction vertex is

p(b) - N92 log D -Y6. (B.19)
- 8 IwI __ iK,._ IF 19)

Finally, renormalized coupling is

9R = S, (B.20)zimp
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q,

v(k)

k +q,w +Q k) W

Figure B-1: Part of diagram with vertex corrections that makes the diagram vanish.

where Zimp is given by Eq. (B.18), and 6g can be read from Eqs. (B.7) and (B.19):

- (-g + -g2) log D (B.21)
9 8 |W|1-0

Using that wo oc D, we obtain the 0-function:

NO=d log g K) 2+N g3(.2
J log D 2

where ellipses denote the subleading terms 0(1/N 3 ) obtained in Ref. [97,98] and

listed in the main text. Note, that Eq. (B.22) is exact to the order 1/N3: corrections

to subleading terms from to the gauge field are of order 0(1/N4 ) and thus can be

ignored.

B.2 Vertex corrections

In this Appendix we demonstrate that a subset of vertex corrections where gauge field

propagator is connected to internal fermion Greens function vanish. Two examples of

such diagrams are shown in Fig. 3-4 (a). It suffices to consider a part present in all

diagrams, consisting of two Greens functions and a single gauge field vertex, Fig. B-1.

Using notations adopted in Fig. B-1, we can write for the integral over momentum k

dk, dky v,(k)G(k, iw)G(k + qe., iw + iQ), (B.23)

where we assumed that q has only x-component, q 1| ex and used fact that gauge

field is transverse. Note that integration over k does not involve any other functions
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due to the fact that interaction with impurity is local. It is integration over ky in

Eq. (B.23) that makes the expression to be zero. Indeed, prefactor vy(k) is odd under

inversion of ky, whereas both Greens functions do not change under ky -+ -ky. Since

this part is present in all diagrams in Fig. 3-4 (b), all these diagrams vanish.

150



Appendix C

Spinon-phonon interactions

C.1 Elements of representation theory for relevant

groups

This Appendix provides background on the representation theory, and gives more

details for the symmetry groups used in the main text. It starts with a summary of

the basic facts from the representation theory of finite groups, which are extensively

used throughout the paper. The reader interested in more details or derivations

of particular statements is referred to Refs. [190,191]. Next, the symmetry group of

square and its extension, relevant for the irFO and sFfl phases, is considered. Finally,

the basic facts about the symmetry group of hexagon and the symmetry group of the

7rFx phase are discussed.

C.1.1 Basic facts from representation theory

We consider a point group g, which contains hg elements. Notion of conjugacy classes

will be of great importance for us in what follows. Conjugacy class is defined as a

complete set of mutually conjugate group elements, where two group elements g, and

g2 are defined to be conjugate if there exists another group element g3, such that

91 = 931 o g2o g3. In other words, if g belongs to a given conjugacy class, Ci, then for
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any group element

V gj E , g 1 o g o g. E C,, (C.1)

still is an element from the conjugacy class Ci. Let us assume, that the group g has

ng conjugacy classes, denoted as C1 , C2, ... Cno. Each class contains Nk elements, and,

since each group element belongs to only one conjugacy class, we have Zn, Nk = hg.

The identity element, which is necessary present in any group is a conjugacy class

itself, C1 = E = {1} and N1 = 1. For an abelian group, any element belongs to a

separate conjugacy class, so that ng = hg, and N1,...,n, = 1.

In what follows, our main interest will be in classifying representations of a given

group. Representation of the group can be thought of as a mappings from the group

elements to operators acting on some linear space, g -+ Rg which respects the group

multiplication, Rg, - R2 = Rg g2. If operators from a given representations cannot

be represented as a direct sum of two operators acting on a smaller subspaces, this

representation is called irreducible. According to this definition, any representation

D can be expressed as a direct sum of irreducible representations,

D = a 01 D a2D 0 ... D ang D(ng), (C.2)

where non-negative integers ai describe how many times a given irreducible repre-

sentation is encountered in the decomposition. If D() is not contained within D,

corresponding ai is zero, ai = 0. In this way the problem of classifying all representa-

tions of a given group is reduced to a classification of all irreducible representations.

The number of different irreducible representations for the group 9 coincides with

the number of its conjugacy classes, ng. Each irreducible representation, DCW is

specified by the value of its character for different conjugacy classes, defined as

x(i (Ck)= tr Rg,,, where gc, E Ck. (C.3)

According to the definition of the conjugacy class (C.1), the value of X() (Ck) does not

depend on the choice of a particular element gC, from the Ck. Operators which act
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on a linear space can be expressed as matrices, and trace in Eq. (C.3) is understood

in this sense.

Value of character for the conjugacy class which consists identity E = {1} is

special, since it gives us the dimension of the corresponding irreducible representation.

To classify all irreducible representations of a given group, it is good to know not only

the number of different irreducible representations, but their dimensions as well. In

such situation the following relation between the number of elements in the group,

hg and the dimensions of all irreducible representations contained within the group,

tj = X(i)(E) turns out to be particularly useful:

Nc

= . (C.4)
i=1

Typically only a few sets of integers {i, ... , Nv } satisfy this relation, and one can

usually identify the correct set of dimensions by involving other considerations.

Character table is a compact way of describing all irreducible representations of

a given group. It is a square ng x ng table, where columns correspond to different

conjugacy classes, and rows are labeled by different irreducible representations. The

entry at an intersection of i-th row and j-th column is given by the value of the

character for the i-th representation of the group elements from the j-th conjugacy

class.

Using the characters table of a given group, one can easily find multiplicities a in

the decomposition of a representation D into irreducible representations, Eq. (C.2).

Provided, characters of the representation D, X(Ck), are known, we can find a as

ng

ai= + Nx ()*(Ck)x(Ck), (C.5)
k=1

where hg is the number of elements in g, and Nk is the number of elements in the

corresponding conjugacy class.

If representation D is obtained as the tensor product of two representations, let

us say, E and F, D = E x F, the characters of D, X(Ck) = XExF(Ck), can be obtained
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as a product of characters for representations E and F,

x ExF(Ck) = XE(Ck)XF(Ck). (C.6)

After this, one can easily apply formula (C.5) to find the decomposition of the E x F

into irreducible representations.

C.1.2 Group of square lattice and its representations

Here we illustrate how the facts summarized above may be used to classify represen-

tations of the point symmetry group of square, C4, and its extension, CL,.

Point group of square C4, and its representations

We start with reviewing properties and representations of the point symmetry group

of square, C4,. This is the group of all symmetry operations, which leave square

invariant. It can be generated by rotations for 7r/2 around the center of the square,

R7,/ 2 and a reflection of x-axis, Rx [1901. In total the group C4, has hc4s = 8 elements.

In addition to rotations for angles multiple of 7r/2, these include reflections around x

and y-axes, as well as 7,,,, standing for reflections relative to the planes containing

vectors S y, R. ,, = Rx,ZIR/ 2 .

These elements can be split into total of nc4 , = 5 conjugacy classes. There are two

conjugacy classes consisting of only one group element: trivial E = {1}, and C2 con-

sisting of rotation for 7r, C2 = {1R}. Each of the remaining three classes consists of two

elements: C4 = {Rr/2, Z3,r/2}, Cx, = {RZ, Ry}, and Cu, = {R, R,}. Correspond-

ingly, group C4, has five irreducible representations. Using Eq. (C.4) we find that four

of irreducible representations are one-dimensional and one is a two-dimensional. Char-

acters of these irreducible representations are listed in Table C.1. One-dimensional

representations are fully specified by their list of characters. Whereas two dimensional

representation E1 corresponds to a transformation of a vector. If we denote the basis
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Re p. E C2  C4  C., a,
A1  1 1 1 1 1
A 2  1 1 1 -1 -1

B1  1 1 -1 1 -1
B2  1 1 -1 -1 1
E1 2 -2 0 0 0

Table C.1: Irreducible representations of C4, and their characters.

of E1 as (X^, Y), action of the group generators becomes

R,,/2 : X- y, y - -I (C.7a)

RX : X -+ -X, Y -. (C.7b)

Using Table C.1 we can easily find decomposition of the Kronecker product of

El x E1 into irreducible representations. [190] Only two non-zero characters of E1 x

El are XE1xE1(E) = XE1XE1 (C2 ) = 4. Now, using Eq. (C.5) we can find that first

four representations in Table C.1 are contained once within E1 x E1 : corresponding

multiplicities are all equal to one, ai = 1/8 - (4 + 4) = 1. Whereas for E1 , we find

corresponding a to be zero. This may be summarized as

El x E1 = A, e A 2 E B1 E B2. (C.8)

Although formula (C.5) gives us information about representations contained within

El x E1 , it does not give explicit expression for basis of these irreducible represen-

tations. In the present case the explicit form of the basis may be easily guessed

from physical arguments. Basis of each E1 in the product can be written as a two

components of a vector, with the action of generators specified in Eq. (C.7). Having

components of two vectors (q,, qy) and (ux, uny), one can easily guess that the quantity,

invariant under all symmetries is the scalar product. Thus, q -u = qxux + qyuy is a

basis of A 1 component, contained in Eq. (C.8). Basis for A 2 is also easy to guess, as

it has to change sign under any reflections. Thus, it is given by the vector product,

q x u = qxuy - qyux. Finally, one can check that remaining combinations qxux - qyuy
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and quy + qux realize the basis for B1 and B2 irreducible representations. This leads

us to the Eq. (4.27) in the main text, which summarizes the above results.

Group C4, and its representations

From the group C4, we move to the group C4, = GE/G2t, which is the factor group

of the space group of square lattice GE over the group of translations for two unit cell

vectors G2 t. In other words, group C4, is defined as group C4, with added translation

operations t, and ta2 - In order to specify this group we will use Seitz operators {Rjt}

defined as

{Rjt} -r = R -r + t. (C.9)

The group

Gt = {{10}, {a 1}, {11a2}, {11a1 + a2}} (C.10)

is the subgroup of C, and it contains hG, = 4 elements. The group C4, has hC4 =

hGt ' h4, = 32 elements. It has ncg = 14 conjugacy classes, which are listed in

Table C.2.

Representations of C4 can be worked out using the fact that it has a subgroup Gt.

Consequently we can easily obtain five irreducible representations, one-dimensional

A 1,2 and B1,2 along with two-dimensional El, from corresponding irreducible repre-

sentations of C4,. For this we simply assume the action of translations to be trivial.

Assuming that translation result in multiplying basis elements by minus one, we find

additional four one-dimensional irreducible representations, denoted as A' and B'

to emphasize that these are an extension of corresponding representations from C4,.

Analogous extension of E1 is denoted as E'. Remaining four two-dimensional ir-

reducible representations can be found explicitly using SU(4) generators given by

{ [p, T2, pr} as a basis. Action of translations for representations E2 ... E5 can be

written as

T,,o :that-F , -+-Y, (C. 11)

so that TxTy = -1. However, the transformation of basis under rotation and reflection
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Conj. class E Ct Ctt C2  C2t C2tt C4
NC 1 2 1 1 2 1 4
Members {11ai,2} {1ja3} {1Z.j} {R-|ai,2} {RIRIa3} {1'20, aa}
Conj. class C4  CXY Czytj CYt2 Czytt CUV CUot
Nc 4 2 2 2 2 4 4

Members {Z '1 2 Ja, 2} { ,| { { a {R.,ya} {7sO , a3} {1Zjai, 2}7r/2 21 Jx~y[j fRy Ia2} {1ZyIailfxyjj uvji2

Table C.2: Labeling of conjugacy classes of group C4,. Below each label, number of group elements, Nc, belonging to a given
conjugacy class, as well as explicit form of these elements in Seitz notations are given. Vector a3 is a short-hand notation for
the sum of lattice vectors, a3 = a1 + a2.

c-fl



Rep. E Ct Ctt C2 C2t C2tt C4 C4t Cxy Cxyt, CXYt 2 CXYtt CU, CU~t
A 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1
A 2  1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

B1  1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1

B2  1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1

A'1 1-1 1 1 -1 1 1 -1 1 -1 -1 1 1 -1

A'2 1 -11 1 -1 1 1 -1 -1 1 1 -1 -1 1

BI 1-1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1

BG 1 -1 1 1 -1 1 -11 -1 1 1 -1 1 -1

E1  2 22 -2-2 -2 00 0 0 0 0 0 0

El 2 -2 2-2 2-2 00 0 0 0 0 0 0

E2  2 0 -2 2 0 -2 0 0 -2 0 0 2 0 0

E3  2 0 -2 2 0 -2 0 0 2 0 0 -2 0 0

E4  2 0 -2 -2 0 2 0 0 0 2 -2 0 0 0

E5 2 0-2-2 0 2 0 0 0 -2 2 0 0 0

Table C.3: Irreducible representations of Clv and their characters.
eight representations are one-dimensional,
dimensional.

The first
the remaining six representations are two-

are realized differently for each of these representations. For representations E2 and

Eswe have

(C.12a)

(C. 12b)

with the minus (plus) sign corresponding to E2 (E3). For E4 (E5 ) we get:

JZR/ 2 C-+F, y-++X,

(C. 13a)

(C.13b)

The character table may be easily calculated from here, and it is summarized in

Table C.3.

From characters we determine the decomposition of different representations of

Cv on fermion bilinears into irreducible representations. Indeed, basis in the space of

all possible fermion bilinears that are singlets in spin sector can be constructed using
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SU(4) generators {pIt, -r, IpZT}. Therefore this problem is equivalent to reducing ad-

joint representation of C4 on sixteen 4 x 4 matrices {1, A', T, A1}. Representation

is fully specified by the action of generators. For the cases of the irFo phase these

are given by Eqs. (4.13)-(4.19). Whereas for the sFE phase, the reader is referred to

Ref. [5]. (Note, that there IZ, is defined as a reflection with respect to the edge of

square, whereas in our conventions reflection plane goes through the center of plaque-

tte. Therefore R1 from Ref. [5] coincides with TxR in our notations.) Calculating

characters and applying Eq. (C.5), we find

G'F1 = A, E A2 D B' E B2' E (DEl (DE2 E E3@ E4 E E5, (C.14)

for the 7rFE] phase, where basis in terms of products of Pauli matrices for each irre-

ducible componentis listed in Table 4.1 in the main text. We also obtained the same

expressions for bases of different representations using the notations from Ref. 23.

Analogously, for the rFE phase we have:

G, =A2 E DB1 e B' E A' E 2E1 e 2E3G E4 E E5 , (C.15)

with details on the basis listed in Table 4.2. From here we immediately recover result

of Refs. [5,23] that no invariant fermion bilinear terms exist in rFE and sFi phases.

Indeed, GsF does not contain trivial representation A1. Whereas, even though G rF

contains A1 , as one can see from Table 4.1 it is not invariant under time reversal, T,
nor under charge conjugation, C.

C.1.3 Group of honeycomb and kagome lattices

Since an extensive details for kagome and honeycomb lattices are available in the

literature [6,7], we only briefly summarize the basic facts for the symmetry group of

the hexagon C6, and its extension for the ?rF* phase. More details for the honeycomb

lattice can be found in Ref. [71.
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Point group of hexagon

For kagome and honeycomb lattices the relevant point group is that of a hexagon,

denoted as C6,. It has hc, = 12 elements and can be generated by the rotation

R,/ 3 and the reflection of y-axis, Ry. It has six different conjugacy classes and six

irreducible representations, of which four are one-dimensional, and remaining are two-

dimensional. Using characters of C6, shown in Table C.4, we can write product of

El x El as

El x El = A 1 ) A 2 G E2. (C.16)

C6, for kagome lattice

Anzats for the algebraic spin liquid on Kagome lattice has a larger unit cell than

the case without any fluxes. Thus, to classify fermionic bilinears, we again have to

consider enlarged group, C6,, which is the C6, with added translations for primitive

lattice vectors a, and a 2.

The group C6, (or, G,2 in notations of Ref. [6]) has been studied extensively

and its conjugacy classes along with characters are listed in Tables III and IV in

Ref. [6]. Using this information, we may find the decomposition of the representation

on bilinears as in Eq. (4.38) with bases of corresponding irreducible components listed

in Table 4.3.

In the next order, we have to decompose the E1 x G into irreducible represen-

tations. This leads us to Eq. (4.40) in the main text, where components A 1, A 2 and

E2, which are of interest for us originate from the tensor product of E1 with another

Rep E C2  C3  C6  Ca Ca'
A1  1 1 1 1 1 1
A 2  1 1 1 1 -1 -1
B2  1 -1 1 -1 1 -1
B1  1 -1 1 -1 -1 1
E1  2 -2 -1 1 0 0
E2 2 2 -1 -1 0 0

Table C.4: Irreducible representations of the group C6, and their characters.
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E1 , contained within Eq. (4.38). This readily allows us to find the basis for these

representations.

C.2 Calculation of the polarization operator

In this appendix we calculate the imaginary part of the polarization bubble. We work

using assumptions, specified in the main text. In particular we restrict ourselves to

the clean limit qi > 1 and assume the temperature to the the largest energy scale in

the problem, T > vFq > w. Note, that we use explicit value of N = 2 corresponding

to spin. Since the polarization operator is proportional to N, one can easily restore

the answer for the general case.

We write the polarization operator, 11(0, corresponding to the interaction vertex

j 1() (q) as

Im -I(iwn, q) = 2TImJ(dk) t + iWn)Mdq(4)G(iom)],

(C.17)

where (dk) = dk.dk,/(27r) 2 is the short-hand notation for the momentum integration

measure. The interaction vertex k () as well as the Greens function are matrices

in spinor space, and tracing in (C.17) goes over matrix indices. After analytical

continuation, the imaginary part of the the matsubara sum of two Greens functions

is written as,

Im 17[Gk+q(iwm + iWn)]ap[Gk(iwm)],s =

1 z anh - +w Im[G A

27rT d t T tanh 2T I[G)q(Z + w)]afi Im[G'(z)],j. (C.18)

where we restored internal indices. G 'A(z) stands for retarded (advanced) Greens

function for real frequencies,

G RA z + VFTr k
Gi'^(z, k) = (z + iO) 2 V (C. 19)
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In what follows, we will need the expression for the trace of numerators of two

Greens functions with corresponding interaction vertices in Eq. (C.17). For the case

of density coupling, defined in Eq (4.62), we have M1 )(4) = 1, and the trace is

evaluated as:

T(0)(z,w, k, q) = tr[ - (z + W + VFT - (k + q)) - 1 ' (z + VFT 'k)]

4[(z + w)z + (VFk) 2 + V2kq cos 0], (C.20)

with 0 being the angle between vectors k and q. Note that there is an additional

factor of two in (C.20) from accounting for the (trivial) valley structure, whereas

the factor of two originating from spin degrees of freedom is included in (C.17). For

the case of spinon-phonon coupling, arising in the next order of expansion in k, the

k1') ( ) is given by Eq. (4.55b) and the trace results in a cumbersome expression for

T( (z, W, k, q), which will be not listed here. Using expression for the imaginary part

of Green's functions, we have:

Im HR(i)(W, q) = 7r Im (dk) dz tanh tanh ZW T) (z, w1 k, q)1

6(z + VFk)E(W+ VFk - VFk) +( - VFk)(W - VFk + VFk

VFk - W vFk +W

6(z + VFk)6(W - VFk - VFk) 6(Z -VFk)6(W +VFk + (
k - w~)] (A+wI)

We drop last two terms in the square brackets since they correspond to interband

transitions, and for w < vFq they are not important. Also, we expand the difference

between hyperbolic tangents, thus getting the derivative of the Fermi distribution

function, denoted as n'(

Im 1 1R(i)(w, q) = 27rw (dk) dz n'(z)T(2) (z, w, k, q) 4k

+ V1 k - VF S(z - Fk)E(W - VFk + vF
X [5(z + vFk)6(w - w + VFkw ]. (C.22)

Using 6-functions, we may get rid of the integration over z. Integral over angle

162



between vectors k and q, denoted as 9, can be done using the following expression:

d9 6(kw - vFlk + q + vFk)F(9) = 20(2k - q) vk sw F(0:), (C.23)
j ~VO kq Isin 00|

where

COS = i U. (C.24)
c 0  2vkq vFq 2k

This is valid in the limit when vFq > w. Note, that we included an extra factor 2 to

account for two possible values of 00 (and 9 ), assuming that the F(00) is the same

for both solutions. The integration over 9 in Eq. (C.22) yields:

___ fo T(z)(-vFk,wO, k, q)Ie= -
ImHR(i)(w, q) = w ]q/ dk n'F(-vFk) k l0s0if

4-7rvoq q/2 kj sin O -I

T() (vFk, w, k, q) e=e+ 1
+n'F(vFk) k~i9j J. (C.25)F kj sin 0+|

We notice, that expression in the square brackets in Eq. (C.25) does not vanish

if we put w to zero within it for the case of density coupling [when T(z, k, 9) is given

by Eq. (C.20)]. In this case, accounting for the fact that n'F(vFk) for the vanishing

chemical potential is an even function, we have:

Im HR(O)(, q) = ' Idkn'(vFk) /k 2 -(q/2) 2  T log 2. (C.26)
7rvFq / VqJsqJ /2 wsvF q

When calculating the integral we used the fact that the main contribution to the

integral comes from vFk ~ T, thus we may neglect by q in the square root. This

answer reproduces the results, available in the literature [174-176,192,193]. Recalling

that this polarization operator is proportional to N, which was assumed to be N = 2

for this calculation, we reproduce the imaginary part of the result listed in the main

text, Eq. (4.53).

The calculation for the case of the next order coupling, Mkll)(4), requires more

care. The answer depends on the direction of the phonon momentum, q. We define

the # to be an angle of q relative to the x-axis, so that 4 = (cos q, sin #). Lengthy,
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but straightforward calculation gives for the polarization operator in this case

ImlR(l)(w, q) = w sin4 20 f dk n'F(VFk) k 9 3 )WT 3 sin420.
7rq Jq/2 k - (q/2) 2  27r v3 q

(C.27)

Noteworthy, the answer is invariant under rotations of 7r/2, as one may expect for

our case. The angular dependence of (C.27) is very anisotropic, in particular, when

q points along x or y-axes, the result vanish, indicating that the answer will be of

higher order in w.
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