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Abstract

Time-of-Fight (ToF) cameras utilize a combination of phase and amplitude information to

return real-time, three dimensional information of a scene in form of depth images. Such

cameras have a number of scientific and consumer oriented applications.
In this work, we formalize a mathematical framework that leads to unifying perspective

on tackling inverse problems that arise in the ToF imaging context. Starting from first prin-
ciples, we discuss the implications of time and frequency domain sensing of a scene. From

a linear systems perspective, this amounts to an operator sampling problem where the op-

erator depends on the physical parameters of a scene or the bio-sample being investigated.

Having presented some examples of inverse problems, we discuss detailed solutions that

benefit from scene based priors such sparsity and rank constraints.
Our theory is corroborated by experiments performed using ToF/Kinect cameras. Ap-

plications of this work include multi-bounce light decomposition, ultrafast imaging and flu-
orophore lifetime estimation.
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Preface

While time-resolved imaging was already being explored in the group, first formal steps

towards continuous wave time-of-flight (ToF) imaging were a consequence of the Time-of-

Flight Imaging. Algorithms, Sensors and Applications Seminar which was held from October 21 to

October 26 in 2012 at Dagstuhl.

Dr. Raskar was at the workshop. When he got back to Cambridge, he described the so

called mixed-pixel problem in ToF imaging. For a given scene of interest, the ToF cameras

provide an amplitude image (the usual photograph) and a depth image, that is, two images

for the same exposure. The depth image is unusual. It encodes the distance of the object

from the camera. Chapters 1 and 2 are dedicated to the ToF principle and how the ToF

cameras compute depth.

The ability to compute depth is a Single Bounce of Light Multiple Bounces of Light

speciality of the ToF cameras. That Region of Mixed Pixels

said, the ToF cameras are unable to

discern the right depth/distance when

multiple bounces of light combine at

the sensor. To give an example, con-

sider the setting when you photograph

an object through a window. This is

shown in the figure on the right. In-

deed, one part of the photograph is

due to the actual scene (or what you

would have captured without the window) and the other part of the photograph is due to

the reflections from the window pane. Ideally what one wants is a photograph of the scene

without the window being there but in many cases of interest, for example, photographs

taken through a aircraft, this situation is inevitable. Even the usual consumer camera will

not be able to undo the effect of the window pane (unless you buy a polarizing filter). This

example motivates the mixed-pixel problem, that is, multiple light bounces adding on the

image as if two or more images were superimposed.

4



At the time when the problem was described to me, it was clear that this was a non-

linear problem. Let me present an intuitive explanation. The ToF cameras measure depth

by computing the the amount of time it takes for light to reflect from an object, just like the

traditional SONAR'. That is to say, if the camera sends a signal p to the object, what comes

back is a delayed version of p. Mathematically, let the camera system send flashes of light

which we model by p (t) where the variable t denotes time. An object at some distance do

meters from the camera will reflect the light back after to = do/c where c = 3 x 108 m/s is

the speed of light. Since this phenomenon happens only after the light has travelled a round

trip, the camera records the reflected signal r (t) = p (t - 2to). Here we have assumed

a perfect reflection. Ideally, one should observe [op (t - 2to) where ro is the reflection

coefficient of the scene. In summary, this interaction is modeled as,

p(t) Object -+ r (t) = Lop (t - 2to) , with to =-,7Fo = 1.
C

This method of estimating depth or range is used across several disciplines of science and

engineering (such as SONAR, RADAR and OCT2). Some choices of the function p include

Dirac's Delta function (femtosecond photography), sinusoids, Gaussian function and linear

frequency modulated function (or chirps). Clearly, estimating to and hence do from p is

a non-linear problem. Consumer grade ToF cameras (such as the PMD and Microsoft

Kinect) use an astonishingly simple method to decode to from r (t) with the choice ofp(t) =

cos (wot).

Now if we consider the case when the camera records two reflections, one due to the

window and another due to the object, the reflected signal takes form of3 ,

r (t) = rip (t - 2ti) + r2P (t - 2t2 ) -

In this setting, given some form ofp, if one can magically recover the quantities {F1, IF2} and

'Sound Navigation and Ranging.
2Optical Coherence Tomography.
3Also, following the same arguments as above, it is some what reasonable to believe that for the general case

of K-bounces of light, one will end up observing, rK (t) = EK- 1kP (t - 2tk). In this case, the problem is
that of recovering the 2K quantities {Fk, tk-O=.
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{t1 , t2 }, then it is possible to completely characterize the scene! As will be shown later, this

model also mimics the physics of the fluorescence phenomenon. Using similar principles, we

will show that a variant of the same model can be used for fluorescence lifetime estimation.

This brings us back to the first ideas that were discussed in November 2012. The main

theme of the problem was the following: Let p (t) = ew' = cos (wt) + 3 sin (wt). Given

that for two bounces of light, the camera measures,

r (t) = Fiew(t-2t1) + 2ew(t-2t2)

= e~"t (Fie-31w + P2 e-32W), Ok = 2 tk,

m(w)

it is clear that for some fixed w = wo, by no means one can estimate {L'1, F2} and {ti, t2}.

This is simply because the quantities of interest, that is {l, F2} and {ti, t 2}, are a function

of w.

Hence if we at all seek to solve for {F1 , P2} and {ti, t2}, we need to measure m (w),

m (w) = Fie-361" + F2 e -32w.

The physical significance of this fact is that the ToF camera needs to probe the scene at

multiple frequencies w.

Adrian Dorrington4 and co-workers from University of Waikato made one of the first

attempts to solve this problem by using two frequency measurements. Their idea was simple.

Let fh (wo) be the measurement at w = wo. Then, the solution for the unknowns may be

obtained by solving for,

arg min (IM (1) -Fn (1) 12 + Im (2) - in (2)12)
{rl,r2,01,02}

Unfortunately, with only two measurements, the problem is under-determined and the cost

function is non-convex. Therefore it is safe to assume that this method may not always
4Dorrington, Adrian A., et al. "Separating true range measurements from multi-path and scattering in-

terference in commercial range cameras." IS&T/SPIE Electronic Imaging. International Society for Optics
and Photonics, 2011.
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guarantee a robust, unique solution.

For any one who has spent time with Thierry Blu and Martin Vetterli, it is clear that

given 2K samples of fi (w), at least in the noiseless setting, it is possible to compute all the

unknowns {IFk, tk } .

This is the classic spectral estimation problem5 . In fact, a more general version of the

problem that is linked with Fractional Fourier Transforms was dealt with in one my previous

work on sparse sampling6 . At first it might look impossible to solve for the unknowns in the

non-linear mixture linked with m, but thanks to the age old result of de Prony7 .

Assuming a modest background in complex anal-

ysis, let me denote a phasor by the complex num- z rew

ber z = re' which is nothing but a vector in polar r

co-ordinates. This vector has length r and is ori-

ented at an angle V. For the two bounce problem- Phasor
Domain

the simplest example of mixed-pixel problem-the

measurements m(w) amount to addition to two pha-

sors at some given frequency w = wo. If m (w) was known for all values of w, the question

we should be asking is: How can we recover phasors,

Pie-301w and F2 e32+2.

Concretely, in Fig. 0-1 we describe the geometry of the problem. Note that when W =

kwo for integer values of k and some fixed wo, that is to say,

m (kwo) = Fie341kwo + F 2 eJs2kwo,

the two phasors Pie-301w and P 2 e 3+2w rotate at proportional angles. This subtle fact can

be exploited as follows. Without loss of generality let wo = 1 and let,

mk = F1e3*1k + F2 e-4 ?2k

5Petre Stoica and Randolph L. Moses. "Introduction to Spectral Analysis." 1997.
6Ayush Bhandari and Pina Marziliano. "Sampling rd reconstruction of sparse signals in fractional Fourier

domain." 2010.
7Baron Gaspard Riche de Prony, "Essai 6xperimental et analytique: sur les lois de la dilatabilit6 de fluides

61astique et sur celles de la force expansive de la vapeur de lalkool,a diff6rentes temperatures." 1795.



m(w) = = re3~~1w + F2 &3~l~2w

//

= I

///

(

m(w) = LFe-30

F2

F'

Figure 0-1: Geometry of the mixed-pixel measurements m (w) = Fie-31W + F2 e-302w. For the two bounce case, each depth dk resulting

in the time delay tk parametrizes the angle of the phasor with /k = 2tk. The intensity of the pixel Fk parametrizes the length of the

phasor. The two phasors add to produce the measurements m(w) = Fe-34'. The inverse problem is to estimate {J1, F2} and {ti, t2}
given m.
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Since K = 2 for the case of two bounces of light, we will show that algebraically, it is

possible to find the unknowns or the phasors by using 2K = 4 measurements.

Let us start with 4 measurements stacked in a vector-matrix form,

MO 1 1 MO = F1 + F2

Ml 0041 002 rl M,= le71 + 2e-0

M2 e3201 e3201 P2 J 2 = ] 1e-201 + 2 32 k2

3 . 3301 3302 3 13301 23302.M3 e 1 e M32= frie~' + IF2 e)3

Setting u1 = e-71 and u2 = e32 allows one to write,

1 1 mo=F1 +F 2

m 1  u1 2  v1] m1 =Flu1 +F2 u2

m 3  Ul U2 M3= Fi1u + P2U2.

Now if we define a polynomial P (z) = (z - ui) (z - u2 ) = z 2 + piz + po, it is clear that,

U2+pi1U+po U2+piU2+pO

F1 P (u1) +F 2 P (U2) = 0
=0 =0

and,
U2+pU1+po U2+plU2+pO

P1 u1 P (ui) +F 2u 2 P (U2 ) =0.

=0 =0

Combining the two equations, we have,

PO (P1 + F2) + Pi (Fuii + F2u2 ) + (1iu? + F2ui) = 0

PO (F1u1 + F2u2) + Pi (Flu2 + P2 U2) + (Fiu + F2u3 ) - 0

or simply,

MO Ml PO -M2

M1 M2 PI ~M3

M r M
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This simple computation shows that it is possible to calculate po, p1 from the measurements,

{ mo mi m 2 m 3

Provided that m2mO $ mi, the matrix M is invertible and we have,

M2_
mi- mim3

Po = 2 -
Mi -MOM2

mOm 3 - m1m 2
and Pi 2Mi ~~MOM2

Having computed pi and P2, solving for, z2 + p1z + po = 0 gives Ui = e01 and u2 = e302.

With q and m known, F can be computed using least-squares problem,

1

e33 1

1

e302

e32 0~1

e3302

IF2

As has been established, a simple series of algebraic manipulations decouples the non-

linear estimation problem into a root-finding problem followed by a linear inverse problem.

This connection was known to me for a while and hence the extension to the case of K-

bounces was straightforward.

The idea that the delays #k can be decoupled from the non-linear mixture m has an

interesting link with systems identification theory. An overview of the idea is shown in Fig. 0-

2. For the case of K-bounces of light, we have,

K-1 
3km(w) = kO Fuwuk =

Given discrete measurements of form,

me = m (two) , f > 0 and i E Integers,
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its Z-transform is defined as,

M (Z Mt -t K-1 rk N (z)
M (z) = Zmez- = K1= N ,z

k=0 1 - UkZ1 D (z)
Z-transform

provided that the series converges. As can be seen, M (z) blows-up whenever z = Uk. Also,

since M (z) can be factored into a polynomial ratio, the roots of denominator, that is, D (z)

encode the locations of Uk.

In this way, by the end of the year 2012, we were convinced that there are some inter-

esting directions linked with mixed-pixel problem. That led to investigation of this topic.

While a lot of the work is still in progress, one of the common themes in this thesis is linked

with the idea of converting inverse problems into a rational polynomial estimation problem.

In this context, there are three major directions.

The first direction solves the mixed-pixel problem in closed-form and for the general

setting of K-bounces. Our theory is corroborated by experiments on the customized PMD

sensor as well as the Kinect Xbox One. The second direction deals with super-resolution

ToF imaging where the sparse deconvolution problem is converted to a frequency estimation

problem. Finally, the last theme of this work is linked with fluorescence lifetime estimation.

In this case, the lifetime parameter as well as the distance of the bio-sample from the wall

are encoded in the depth image in form of a rational polynomial.
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I

A Unifying Framework for Solving Inverse

Problems in Time-of-Flight Imaging

The main goal of this chapter is to introduce the reader to the most general form of image

formation model for Time-of-Flight (ToF) sensors. What do we mean by "the most general

form of image formation model" and what are the advantages of this unifying perspective

will be clear once we outline how the problem is dealt with in literature. While consumer

ToF sensors are studied in detail in the preceding chapters, here, we will only consider the

abstract, mathematical model for such sensors.
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1.1 Generalized Image Formation Model for ToF Sen-

sors

Almost all ToF sensors are active devices. The ToF assembly has an emitter (LASER or LED

source) which emits a signal that probes the scene. Let us call it the probingfunction . The

probing function can be a time-localised pulse or a continuous wave (such as a sinusoid).

The probing function p interacts with the scene prescribed by a response kernel h. This

interaction results in the reflected signal r. We model this process with a Fredholm integral

operator,

p F a r = h(t, z) p (z) dz (1.1)

where h is the continuously defined kernel and Q is some measurable set which defines

the domain of integration. We are mainly interested in L2-kernels that are measurable on

Q x , that is to say,

Ih (t, z)I 2dtdz < +oo (L2 -kernel).

An equivalent operator formulation that is representative of this setup takes form of,

r = 1H [P].-

For example, the operator that models our fluorescence lifetime estimation problem is given

in (6.3) and the corresponding kernel is given by (6.4),

h (t, z) = ho (t - z) where,

ho (t) = 6 t - -- * (p6 (t) + pe-C)/1t>O (t)) (1.2)
C
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The reflected signal r is then observed by the camera with response kernel '0 and measure-

ments at the sensor read,

m = (ro*)z

j J (t, z) r (z) dz e g [r] (1.3)

Qr]

which is another Fredholm integral with kernel b. The kernel V) can be used to model the

point spread function (PSF) of the camera or could also be a waveform which facilitates

demodulation. Concrete examples that follow later will make the context clear.

Finally, like all digital instruments, the camera samples the measurement to yield discrete

measurements,

m [n] = MWI (t|,, n E Z, T > 0.

The imaging pipeline then associates itself with the following chain that maps the prob-

ing function p to measurements m,

p -4 -+ r = h(t, z)p (z) dz - -+ J (t, z) r (z) dz -+ m.

Scene response kernel Camera response kernel

1.2 Shift-Invariant Kernels

An important class of Fredholm kernels h and 0 that model the scene response and camera

response, respectively, is the class of shift-invariant kernels which assume form of,

ksi (t, z) = k (t - z). (1.4)

For the class of shift-invariant kernels, the interaction,

p - h5  -+r= h(t-z)p(z)dz4>(h*p)(t)

Convolution
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boils down to filtering or convolution in context of Linear Time Invariant systems. As a

result, the image formation model assumes a simple structure that takes form of,

m [n] = () * h * p) (t)|=.T.

For simplicity of exposition, we drop the subscript SI and assume kernels to be shift-invariant

unless pointed out explicitly.

1.2.1 Fourier Domain Description

Let us define the Fourier transform of a function by,

f^(w) = (f (t) , elJ).

Thanks to the shift-invariant formulation, due to convolution-multiplication property, the

measurements have a simple Fourier domain description,

= M~ (w) .

In context of Coded-ToF imaging we will consider probing functions that are assumed to

be sufficiently smooth and time-localized. For such functions, we characterize the spectrum

using,

CP, (W)| C I++ ,O> 0,E > ,M E Z+ (1.5)
1 + IWM++e

that is to say, the function p is bounded and m-times differentiable.

1.2.2 Connection with Sampling Theory for Shift-Invariant Spaces

In view of the sampling theory for shift-invariant subspaces [1, 2], the discrete measure-

ments of the ToF imaging pipeline can be modelled as,

m (nT) = (p (t) , (0 * h) (t - nT)) , pbEIR, (1.6)
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where we use the time-reverse operator f (-) = f (--) and (0 * h) is some pre-filter which

projects the probing function onto subspace of functions,

*h) (t - nT)}nEZ'

This is because,

(p (t), (*h) (t - nT)) = p(t) (0 * h) (t - nT)dt

= p(t) (4 * h) (T - t) dt

= (p * V* h)(r), T

= m (nT).

In what follows, we give a brief over view of inverse problems and how the image formation

model developed so far can be used to solve problems of practical interest.

1.3 Specification of Inverse Problems

ToF imaging can be accomplished via impulse modulation where p = 6 or amplitude mod-

ulation (AMCW-ToF) where p is some continuous function of time. We identify four exam-

ples of inverse problems. In the remainder of this work, we will focus on the details of these

problems.
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Region of
Mixed Pixels

Multiple Bounces
of Ught

Figure 1-1: Mixed pixel problem: Example of case where multiple bounce of light corrupt

the image and hence distort the depth information. Information below the -line is cor-

rupted with to multiple bounces of light.

1.3.1 Single Depth Imaging

This is the default mode of operation of AMCW-ToF cameras. The camera modulates a

cosine wave at some modulation frequency. The reflected signal then arrives at the sensor

which demodulates the signal using the lock-in principle. The details of this configuration

are below. This problem is related with the problem of "Tone Estimation" [3, 4].

o' Example 1: Depth Imaging via ToF Principles

AMCW-ToF

* Probing Function: p (t) = cos (cot).

" Scene Response: hsi (t, z) = p6 (t - z - d)

* Reflected Signal: r (t) = pcos (2ot - q) , #A 2od

* Measurements: m (t) = cos (cot + #)-

Inverse Problem: Estimate {d, p}.

0: modulation frequency.

0 E [0, 27r]

'#si (t, Z) = P (t - Z)
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1.3.2 Multiple Depth Imaging

When light undergoes multiple reflections, the depth data gets corrupted. This leads to

an inverse problem linked with recovery of information linked with the bounces of light.

The problem is illustrated in Fig. 1-1. Ideally, we hope to demix bounces of light so that

we can separate the reflections from the direct bounce of light (linked with the shortest

path). Exemplary solutions are presented in sections that follow. The experimental setup

for AMCW-ToF imaging is shown in Fig. 3-2 and the demixed light paths that are used to

recover the image are shown in Fig. 3-3. Similarly, 3D images linked with this problem are

shown in Fig. 2-2 and Fig. 5-2.

Mathematical configuration [5, 6] of this problem shows that the associated inverse prob-

lem can be re-cast as a non-linear least squares problem. More specifically, a parameter

estimation problem that is linked with spectral estimation [7]. The details of the probing

function, the reflected signal and the camera measurements are below. The choice and

characteristics of the probing function depend on the electronics and the scene response

function models the physics of the problem.

PP Example II: Multi-path Problem/Multiple Depth Estimation

Coded-ToF

* Probing Function: p (t) = ZlmI<M0 jm exp (jwomt) Ifi(w)I ( 1+|Il+1+e (from (1.5))

" Scene Response: h() (t, z) = EK- 1 P,6 (t - z -2d

* Reflected Signal: r (t) = ZK-j 1 PkP (t - z -2d)

* Measurements: m (t) = ZG- fpk(pk*p) (t-z- ) 4'si (t, z) (t - z)

Inverse Problem: Estimate {d,p-k.
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1.3.3 Fluorescence Lifetime Estimation

Another interesting inverse problem that is linked with ToF sensors deals with fluorescence

lifetime estimation [8]. When light interacts with a fluorescent object at some distance d

and with some lifetime T, the reflected light is composition of light bounces. This results

in a non-linear, mixed-pixel problem. The specifics of the probing function and problem

setup are described in Example Ill below.

op Example Ill: Fluorescence Lifetime Estimation

AMCW/Coded-ToF

* Probing Function: p (t) = EmI O exp (jwomt)

* Scene Response: hsi (t, z) = 6 (t - z - 2-) * (p6 (t - z) + pe-(t-z)/ it-z o (t - z))

" Reflected Signal: r (t) = (hs, * p) (t)

* Measurements: m (t) = T-1 mI<Mo pm 12 m exp (jwomt) Osi (t, z) = - (t - z).

with hm = h (mwo) and h (w) = (P + 'T e C

Inverse Problem: Estimate {d, ir} (or the distance of fluorescent sample and its lifetime).
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1.3.4 Transient Imaging

Next, we outline our final inverse problem: Transient Imaging. Given that the speed of

light is finite c = 3 x 108, can we image transient phenomenon? Indeed this is possible with

ToF imaging. Only recently, progress has been made using both impulse-ToF [9, 10] and

AMCW-ToF sensors [11]. While this work is concerned with AMCW-ToF imaging, our

generic imaging pipeline very accurately models the transient imaging configuration.

i Example IV: Time-Resolved Imaging of Transient Phenomenon

Impulse Imaging/Ultrafast ToF

" Probing Function: p (t) = 6 (t)

" Scene Response: hsl (t, z) = hD (t - z) + hl (t - z) + hs (t - z)

Direct Reflection Inter-reflections Subsurface

-- o Direct Reflection hD (t) = fD
6 (t - 2dD/c)

-- o Inter-reflections hi (t) = E~ ak6 (t - 2dk/c)

-- o Subsurface Scattering hs (t) = 6 (t - 2ds/c) * (ase-Ost i') (t))

* Reflected Signal: r (t) = hsl (t, 0)

* Measurements: m (t) = (r (z) , Os (t, z)), Camera PSF: 0sI (t, z) = Co exp 2 )

Inverse Problem: Estimate Transient Image Parameters {aD, dD, {ak, dk }K~f , as, ds7,s}

1.4 Summary

Our ToF imaging pipeline unifies inverse problems linked with ToF imaging. Instead of

dealing with inverse problems on case-by-cases basis, our pipeline encapsulates the essence

of both impulse as well as AMCW imaging modalities. Even more so, whenever the scene

response kernel has a shift-invariant structure, AMCW-ToF imaging amounts to com-

puting Fourier-modes of the scene response function. This insight leads to interesting and

efficient formulation of inverse problems where the scene response function is parametric

in nature. For example, multi-depth estimation problem amounts to parameter estimation

of K complex exponentials where K is the number of light bounces. In next chapters, we

discuss these problems in details.
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Inverse Problems in

Time-of-Flight Imaging
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2
Time-of-Flight Imaging

2.1 The Principle of Time-of-Flight

As the name suggests, in its most abstract form, the principle of Time-of-Flight deals with

the following idea: Consider an emitter that emits a signal. This signal interacts with its

physical environment and is received by the receiver. Having obtained time-resolved mea-

surements at the receiver, can we say anything about the environment from the nature of

measurements?

Nature is replete with evolved systems that rely on the Time-of-Flight or the ToF prin-

ciple. For example, bats [12, 13, 14] and dolphins use the ToF principle for echolocation.

This helps them navigate their environment and also serves the purpose of tracking and

hunting. The ToF principle is also used by visually impaired and blind human beings to

sense their environment [15]. This is known as acoustic wayfinding .
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Ole Romer Issac Newton

Figure 2-1: Early pioneers of optical time-of-flight principle. Image source: Wikimedia

Commons/CC-PD. (a) Galileo Galilei, portrait by Giusto Sustermans (b) Ole Romer, por-

trait by Jacob Coning (1700) (c) Isaac Newton, portrait by Godfrey Kneller (1689) (d) Hip-

polyte Fizeau.

Underlying both examples mentioned here, the common theme is that of using the ToF

principle with a co-located emitter and receiver.

Within the ToF context, acoustic signals have also been used for measuring depth of wells

by dropping stones and estimating the time-of-arrival of the echo. That said, humans have

explored the ToF principle beyond the purpose of self-navigation via acoustic wayfinding.

One of the main ideas here is to use ranging via ToF principle. While acoustic signals

work well for large-scale scenes, optical signals are definitely the natural way out for high

resolution sensing because of the wavelength of the electromagnetic waves.

This brings us to the topic of optical ranging-an idea that is at the heart of our discus-

sion in this thesis.

2.1.1 A Brief History of Optical ToF Principle

Earliest work on the optical ToF principle dates back to the experiments of Galileo Galilei

(cf. Fig. 2-1) who tried to measure the speed of light by ToF principle. Unfortunately, the

choice of distance in his experiment did not give a conclusive result. To this end, the first

break through came from the work of Danish astronomer Ole Romer [16, 17] who was

working at the Royal Observatory in Paris at the time. Romer's experiment had over come
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the distance limitation-a bottleneck in Galileo's setup-as it was based on arguments that

depended on distances at the scale of planetary separation. As is the case with most break

throughs, the idea was rejected. However, the idea was supported by contemporary sci-

entists such as Christiaan Huygens and Isaac Newton. Historically, French physicist, Hip-

polyte Fizeau [18] was the first to precisely measure the speed of light. To give an idea

about the time scale of science, Fizeau's success was reported nearly two hundred years af-

ter Romer's pioneering effort. At the turn of the century in early 1900's, more interesting

observations were made regarding the physical nature of light and its constituent proper-

ties. One of the most celebrated results is due to Albert Einstein who was recognised for

the discovery of the law of the photoelectric effect [19]. What followed this revolution was

a series of contributions towards electronic image acquisition and sensing. Electron tubes

were replaced by solid state devices. As of now, the optoelectronic landscape has bene-

fitted extensively from the development of CMOS' technology. When compared with its

predecessor-the Charged Couple Device (CCD)-CMOS is not only cheaper but also

allows for on-chip digital functionality.

2.1.2 ToF Sensing Meets 3D Imaging

3D or three dimensional imaging [20] refers to any imaging technique that can acquire 3D

information about the scene of interest. For example, in Fig. 2-2, we show some exam-

ples of 3D images acquired by a ToF camera. Unlike the conventional cameras that pro-

duce photographs, 3D imaging systems provide an intensity image together with a depth

image. While the photograph provides the spatial information of an object/scene in x-

y co-ordinates, the depth information provides information about the object along the z-

dimension. The art of contact-less 3D imaging mainly relies on electromagnetic radiation

based interaction of a probing signal with 3D object. Such measurements mainly fall into

three categories [20].

N Microwave Imaging The wavelength of operation is in range of 3-30 mm. Equiva-

lently, the frequency ranges from 10-100 MHz. This is well suited for large scale 3D

'Complementary Metal Oxide Semiconductor.
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Figure 2-2: Example of 3D image. (a) 3D image of a mannequin. (b)-(d) 3D image of a

mannequin behind a transparent sheet with different viewpoints.

shape inference.

Ol Lightwave Imaging The wavelength of operation is in range of 0.5-1 Am. Equiva-

lently, the frequency ranges from 300-600 THz. The wavelength being shorter, this

is well suited for depth measurements of objects where high lateral resolution is useful.

No Ultrasonic Imaging The wavelength of operation is in range of 0.1-1 mm. Equiv-

alently, the frequency ranges from 0.3-3 MHz. Due to the nature of such waves,

ultrasound based measurements (unlike lightwaves) tend to be sensitive to variations

in temperature and pressure.

In this work, we will consider measurements based on electromagnetic radiation. In partic-

ular, we will discuss lightwave based imaging. Broadly speaking, optical 3D imaging tech-

niques rely on three principles: Triangulation, Time-of-Flight and Interferometry.

A taxonomical overview of the methods is presented in Fig. 2-3. We will briefly discuss the

main principles before we start with our discussion on ToF imaging.
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Figure 2-3: Overview of 3D imaging techniques.

Triangulation is essentially a trigonometric approach where by the distance to an un-

known point is computed by measuring the respective angles to the point from the either

side of a triangle [21].

Time-of-Flight methods as the name suggests, uses echoes of light to measure the

distance. With speed of light fixed at c = 3 x 108 m/s, the object distance is computed by

using the relation,
2d

t = -,
C

where t is the Time-of-Flight and 2d is the round trip distance to the object. From an instru-

mental standpoint, the optical signal need not be coherent. In fact, for most known settings,

incoherent light is used for this modality of 3D imaging. ToF imaging [22] is accomplished

via continuous-wave signal modulation [23], impulse based methods and pseudo-random

sequence based modulation. In coming chapters, we will discuss ToF imaging in details.
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Tlme-of-Right Principle: Distance of object Is proportional to time traveled by light

ContinuousWe TF Pulsed/impulse Based ToF

Phase OC2
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Pixel

Light source

Pixel
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Distance

Time-of-Flight OC d
CT

0~

Distance

Figure 2-4: Continuous wave and impulse based ToF imaging for single depth estimation.

Interferometry uses ToF principle for depth imaging. The main difference being, the

waveforms are required to be coherent.

2.2 Depth Sensing with Time-of-Flight Principle

As seen in the previous subsection, ToF imaging can broadly be classified as amplitude

modulated continuous-wave (AMCW) ToF imaging and impulse based imaging. Before

characterizing the inverse problems linked with the topic, we will present a light overview

of the two methods. This will serve as a mathematical preliminary for the discussion.

2.2.1 Amplitude modulated continuous-wave (AMCW) ToF Imag-

mng

We show the experimental setup in Fig. 2-4(a). The ToF pixel emits a sinusoidal waveform,

p (t) = cos (Wot) ,

with modulation frequency wo (usually in MHz). Upon reflection from an object at depth d

meters from the pixel/camera, the emitted waveform p undergoes a reflection and assumes
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form of,

(t) = DC + a cos jO (t - d)

= DC + a cos (wot - #)

where DC denotes the constant bias component and,

W 2d
C

is the phase shift due to depth d. The ToF camera pixel is a lock-in sensor [24] that cross-

correlates the reflected waveform r with the reference waveform p to compute measure-

ments of form,

m(t)= P(T)r(t+T)dT

= -cos (wot + ) + DC.
2

The TOF camera pixel samples the measurements at least four times per period to discretize

measurements,

[k] k= ,...,3.

Ignoring the constant bias, it now remains to compute intensity and phase a and 0, respec-

tively from the measurements,

k=32

{a0 pt, opt} = arg min (m [k] - (cos (wot + )).
aO k=O

Thankfully, there is a computationally efficient way to estimate the parameters of the sinu-

soid [25]. Now since,

M [0] m [1] 1 +a cos (#) -a sin (4)
m [2] m [3] 2 -a cos (#) +a sin (#)
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Table 2.1: Comparison Between Impulse and AMCW Based ToF

AMCW Based Impulse Based

High signal-to-noise ratio. Direct computation of depth.

Advantages Relaxed peak light power requirements.

Eye safe (diffused illumination).

Distance ambiguity due to phase wrapping. High dynamic range.

Indirect computation of depth (but real time). Limited frames per second.

High bandwidth requirements

it turns out that,

aopt =/(m [3] - m [11)2 + (m [0] - m [2])2

<OOPt =tan .m[] M1
m [0] - m [2]

As a result, the camera is able to compute the depth and intensity for each pixel which yields

the 3D information about the scene.

The "Four Bucket Trick" is what makes the ToF sensors real time devices [23, 24, 25].

This method is used by almost all the AMCW-ToF cameras.

2.2.2 Impulse Based ToF Imaging

The experimental setup for impulse based ToF imaging is shown in Fig. 2-4(b). The ToF

pixel emits a time localized pulse. At the same time, a high precision clock for each pixel

is initiated which keeps track of the time it takes for the impulse to return back. As soon

as the pixel reports backscattered signal, the clock is reset and hence, the camera is able to

compute the time-of-flight.

To give the reader an idea about the scale of time precision it takes for this modality to

work, it must be noted that for the light to travel one meter, it takes,

2 2
t = x = X 10- ~ 6.667ns.

c 3
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a b C

Figure 2-5: Consumer and industrial grade ToF cameras. (a) PMD CamCube (photonics

mixer device) (b) Mesa (also known as the Swiss Ranger) (c) Microsoft Kinect (d) PMD Nano.

While the ToF computation is relatively simpler for this approach, the computational load

has to be compensated by the electronics in the hardware. Impulse based ToF systems

demand high precision clock for accurate timing of the returning signal. Also, physical

properties of the medium resulting in dispersion and attenuation smear the reflected signal

which results in timing uncertainty.

We compare and contrast the key differences between the two forms of ToF imaging modal-

ities in Table 2.1.

2.3 Industrial and Consumer ToF Cameras

As noted in the previous section, AMCW method has considerable advantages over the

impulse based ToF imagers. This has led to the rapid development of a number of consumer

and industrial grade ToF cameras. Almost all of them deploy the "4-Bucket Sampling

Trick" [24]. In figure Fig. 2-5 we show some of the ToF cameras. These cameras offer

competitive performances. The key deciding factors are,

" Maximum modulation frequency

" Wavelength of operation

- Resolution

" Frame rate

" Measurement accuracy

" Maximum range.
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Considering the above mentioned metrics, a comparison of various camera models is

presented in Fig. 2-6
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a Modulation Frequency Qn MHz)

Mesa SR4000 80
Folonic

60 80

PMD Nano 8 40

40 2
220

Canesta
40 40 60 80

60 20 20
80
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80 03D (IFM)80
PMD 19k0
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90

d Maximum Frame Rate (FPS)

Optrima NV
90

nic 90 6 Mesa SR4000

68 9

45 68

23 23 45

68 45 23 23

23 45 90

45

90 03D (IFM)

45 23

68 45

90 -

PMD Nano 68

90

b Wavelength (in nm)

Mesa SR4000
1500

Fotonic
1100 1500

PMD Nano

50 30 750

380
380 #- Canesta

750 380 750 1100 1500

1 380
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SoftKinetic 750 7

1100

1500 03D (IFM)
1500

PMD 19k3
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Optrima NV

Mesa SR4000
0.11 0.14

Panasonic 0.07 0.11

0. .7

0.035
0.035 Fotonic

0.07 0.035 0.07 0.11 0.14
0.11 0.035

0.14
PMD 19k3 0.07 0.07

0.10.11
0.14 SoftKinetic

0.14
PMD Nano

onic

SoftKinetic

C Resolution (pixels)

Mesa SR4000
Optrima NV 180 180

1 Fotonic

Panasonic 1 130

44 Canesta
88 130 180

180
PMD Nano 88

1 30 1 lo1o 03D (IFM)
180

SoftKinetic 18
PMD 19k3

f Maximum Range (in mts.)

Optrima NV

Mesa SR4000
7.5 10

Panasonic 0 7.5 5 7.

5 5 2.5 5
2.5

2.5 Fotonic
5 2.5 7.5 10

7.5 2.5 2.5
10

PMD 19k3 5
757.5

10 SoftKinetic
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PMD Nano

Figure 2-6: Comparison of various industrial and consumer ToF cameras. Comparison parameters (a) modulation frequency (b) wave-

length (c) resolution (d) frame rate (e) measurement accuracy () maximum range.
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3
Resolving Multi-path Interference in

Time-of-Flight Imaging

3.1 Overview of Results

Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-

modulated signals. For broad illumination or transparent objects, reflections from multiple

scene points can illuminate a given pixel, giving rise to an erroneous depth map. We report

here a sparsity regularized solution that separates K interfering components using multi-

ple modulation frequency measurements. The method maps ToF imaging to the general

framework of spectral estimation theory and has applications in improving depth profiles

and exploiting multiple scattering.
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3.2 Motivation

Optical ranging and surface profiling have widespread applications in image-guided surgery

[26], gesture recognition [27], remote sensing [28], shape measurement [29], and novel

phase imaging [30]. Generally, the characteristic wavelength of the probe determines the

resolution of the image, making time-of-flight (ToF) methods suitable for macroscopic scenes [24,

31, 22]. Although ToF sensors can be implemented with impulsive sources, commercial

ToF cameras rely on the continuous wave approach: the source intensity is modulated at

radio frequencies (~- lOs of MHz), and the sensor reconstructs the phase shift between the

reflected and emitted signals. Distance is calculated by scaling the phase by the modula-

tion frequency (Fig. 3-1 (a)). This method, amplitude modulated continuous wave (AMCW)

ToF, offers high SNR in real time.

However, AMCW ToF suffers from multipath interference (MPI) [32, 33, 34, 35, 36, 37,

38, 39, 40]. Consider, for example, the scenes in Figs. 3-1 (b,c). Light rays from multiple

reflectors scatter to the observation point. Each path acquires a different phase shift, and the

measurement consists of the sum of these components. The recovered phase, therefore, will

be incorrect. Such "mixed" pixels contain depth errors and arise whenever global lighting

effects exist. In some cases (Fig. 3-1 (d)), the measurement comprises a continuum of

scattering paths. This can be improved with structured light or mechanical scanning [41,

42], but these are limited by the source resolution. Computational optimization [43, 44]

schemes rely on radiometric assumptions and have limited applicability.

Here, we resolve MPI via sparse regularization of multiple modulation frequency mea-

surements. The formulation allows us to recast this problem into the general framework

of spectral estimation theory [45]. This contribution generalizes the two-component, dual-

frequency approach [34, 38, 39], beyond which the two-component optimization methods

fail. Thus, our method here has two significant benefits. First, we separate MPI from direct

illumination to produce improved depth maps. Second, we resolve MPI into its components,

so that we can characterize and exploit multiple scattering phenomena. The procedure has

two steps: (1) record a scene with multiple modulation frequencies and (2) reconstruct the

MPI components using a sparsity constraint.
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d~<p

C)

b)
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%A ref.

Figure 3-1: (a) ToF principle: the phase delay of an emitted AMCW wave proportionally

encodes the distance of the reflecting object. (b) Mirror-like and (c) semi-transparent reflec-

tions produce MPI at a given camera pixel and yields an incorrect phase. (c) A complicated

scene with severe MPI.

3.3 Problem Formulation

Consider first the single-component case. Mathematically, the camera emits the normalized

time-modulated intensity s(t)1 and detects a signal r(t):

s(t) = 1 + so cos (wt), t E R

r (t) = 1(1 + so cos (wt - #)).

(3.1a)

(3.1b)

Here, so and F E [0, 1] are the signal modulation depth and the reflection amplitude, re-

spectively, w is the modulation frequency, and # is the phase delay between the reference

waveform s (t) and the delayed version r (t). For a co-located source and detector, the dis-

tance to the object from the camera is given by the relation d = c#/2w, where c is the speed

' Here, we consider continuous wave imaging and hence the sinusoidal model, but the discussion is generally
applicable to any periodic function.
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of light.

Electronically, each pixel acts as a homodyne detector, measuring the cross-correlation

between the reflected signal and the reference. Denoting the complex conjugate of f E C

by f*, the cross-correlation of two functions f and g is

def 1
Cf,g (T) = lim - f* (t + -r) g (t) dt. (3.2)

T-+oc 2 T JT

Note that infinite limits are approximately valid when the integration window 2T is such

that T > w- 1 . A shorter time window produces residual errors, but this is easily avoidable

in practice. The pixel samples the cross-correlation at discrete times -q:

(1.3) 1
mW [q] lim - V (t, z) r (z) dz , QV, = [-TT]

T- oo 2T

2w

= Cs,,r (q) (= ' + 2 cos(WTq + $) (3.3)

where in view of 1.3, 0 (t, z) = 9 (t - z).

Using the "4 Bucket Sampling" technique [24], we calculate the estimated reflection

amplitude and the phase, F, q, using four samples Tq = 7rq/2w with q = 0, ... , 3:

F = (me [3] - mW [1])2 + (mW [0] - me [2) 2 /S2, 3.4a)
~ mW [3] -~ [2] [1]34a

tan = (3.4b)
MLO [0] - mw [2]

Therefore, we associate a complex value, z,, with a pixel measurement:

zU = fe35(W). (3.5)

Note that these results are formally equivalent to wavefront reconstruction via phase-shifting

digital holography [46]. Also, since we have,

fe3' (w) =- #w)2r
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the computed distance is unambiguous provided,

(W) E [0, 27r],

failing which the distance that is estimated will be,

d = - + 27k) , k E Z.

The problem of phase ambiguity can be solved using multiple frequency based estimation

[47, 36].

When multiple reflections contribute to a single measurement, the return signal com-

prises a sum. In phasor notation, for K components,

K-i
r (t) = Co+ K Z ke3(Wtk(W)), (3.6)

k=O

where Co is a constant, #k (w) = 2dkw/c, and {dk }- ' are K depths at which the corre-

sponding reflection takes place. The reflection amplitude of the k' surface is ]Pk. Each pixel

records
K2 K-1

mW [q] = Co + Lo ewr rke3 (3.7)
2 k=O

Importantly, for a given modulation frequency wo (ignoring a constant DC term), mK [rq] OC

expjwoTq, i.e., there is no variation with respect to individual depth components {Fk(w), #} 4}K-

[32], regardless of the sampling density. Equivalently, the camera measurement,

~~K-1
K) = (w)e0(w) = Z F(w)eek(w) (3.8)Z E~k=O r

is now a complex sum of K reflections, which cannot be separated without independent

measurements. Thus, at a given frequency, the measured phase, and hence the depth, is a

nonlinear mixture of all interefering components.

Our method separates these components by recording the scene with equi-spaced fre-
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quencies w = nwo (n E N) and acquiring a set of measurements z:

Z= O z ,z ,.., .~ (3.9)

The forward model can be written compactly in vector-matrix form as z = 4g + o-, where

( E CNxK is identified as a Vandermonde matrix,

0e3o(wo) e301(wo) ... e00K-1(wo)

e3~o(2wo) e341(2wo) ... e3OK-1( 2wo)

. . . ,(3.10)

Le300 (NwO) e301 (NwO) ... e3OK- 1(Nwo)

g = [FO, ... , FK- ]T E RKX1, and o- represents zero-mean Gaussian i.i.d. noise, which

controls the error Eo in our reconstruction algorithm. Our goal is to estimate the phases

0 = [#0, ... . OK- ]T E RKx1 and the reflection amplitude vector g.

To recover these quantities, first note the similarity between 4P and an oversampled N x L

discrete Fourier transform (DFT) matrix %F, with elements 'J! = exp(jnl/L). If L > K,

the discretization of T is small enough to assume that the columns of cP are contained in

. We can also define a vector g' E RLx1, whose elements are zero except for K reflection

amplitudes {f Ti7K- 1 , such that z = 'g'. We use the (K-)sparsity of g' to regularize the

problem:

liz - xg'|| < Eo such that I|g'|I, 0 = K, (3.11)
Data-Fidelity Sparsity

where the ip-norm as |xi f | 1nP. The case of p -+ 0 is used to define ljg'|L0
as the number of nonzero elements of g'. Eq. 3.11 demands a least-squares solution to the

data-fidelity problem liz - Ig'1| up to some error tolerance Eo, with the constraint that

we accommodate up to K nonzero values of g'.

The sparsity of g' arises from two underlying assumptions. First, we do not consider

the case of volumetric scattering, which would preclude discrete reflections and require a

different parametrization (e.g., through the diffusion coefficient). Second, we ignore the con-
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Figure 3-2: Left: experimental setup. Two transparencies block the left side of the cam-

era (for a three-component measurement), and one transparency blocks the right (two-

component measurement). Right: measured amplitude and depth at W = 3wO. Dashed

line indicates edge of second transparency.

tributions of inter-reflections between scattering layers, as their amplitudes fall off quickly.

They could be incorporated, into our formulation, with the result of changing the sparsity

of g' from K to K', where K' - K is the number of inter-reflections considered.

We solve Eq. 3.11 via orthogonal matching pursuit (OMP), which is an iterative algo-

rithm that searches for the best-fit projections (in the least-squares sense) of the coefficients

onto an over-complete dictionary. We input xF and measurements z into the algorithm. The

outputs are the set of reflection coefficients Fk and their positions in g'. With the position

of each ]k reconstructed, the corresponding phases qk are recovered through the elements

of XI: Ok = (jn)- 1 log(xFnll ) = 1k/L, where 1k is the location of 1Fk in g'.
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3.4 Experimental Verification

We verify this theory with the experimental setup shown in Fig. 3-2. A PMD 19k-2 160 x 120

sensor array is controlled by a Stratix III FPGA. Analog pixel values are converted to 16-bit

unsigned values by an ADC during the pixel readout process. Eight 100 mW Sony SLD

1239JL-54 laser diodes illuminate the scene. The lasers are placed symmetrically around

the detector for a coaxial configuration. The base frequency modulation is fo = wo/(27r) =

0.7937 MHz, and the integration time is 47 ms. The scene consists of three layers. Farthest,

at 8.1 m, is an opaque wall with gray-scale text ("MIT") printed on it. Closest, at 0.3 m is a

semi-transparent sheet. Between the two layers is another semi-transparent sheet that covers

only the left half of the field of view. Therefore, the left-hand side records three bounces and

the right only two. All three layers are within the depth of field of the camera to avoid mixed

pixels from blurring.

Depth and amplitude maps acquired at a specific frequency are shown in Fig. 3-2.

Due to MPI, the measured depths do not correspond to any physical layer in the scene. All

depth and amplitude information from the three scene layers is mixed nonlinearly into a set

of composite measurements (pixels) and cannot be recovered.

We repeat the acquisition 77 times, with modulation frequencies spaced 0.7937 MHz

apart and input these data into the OMP algorithm with K = 3. The reconstruction,

shown in Fig. 3-3, shows each depth correctly recovered. The closest depth map (Fig. 3-

3 (a), first transparency) is constant. The second map (Fig. 3-3 (b)) contains two depths: the

second transparency on the LHS and the wall on the RHS. The third depth map contains

the wall depth on the LHS (Fig. 3-3 (c)). The third-bounce amplitude (Fig. 3-3 (f)) is zero

where there are only two layers (RHS). The depth here is therefore undefined, though we

set the distance to be 10 m to avoid random fluctuations. Further, the text is recovered

properly in the amplitude maps corresponding to the correct depths (Figs. 3-3 (e,f)). Note

that accurate depths are recovered even in the presence of strong specularity (Fig. 3-3 (e)).

A phase histogram is shown in Fig. 3-4. The histogram from the single frequency mea-

surement in Fig. 3-1 varies from 0.6 to 1.8 rad. Recovered phases are centered around the

ground truth values. The third-phase variance is wider because OMP computes the first
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Figure 3-3: Reconstructed amplitudes and depths via sparse regularization. Dashed lines

indicate edge of second transparency.

two components, leaving little residual energy, so that several columns in XI can minimize

the least-squares error.
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Figure 3-4: Phase histogram for reconstructed and measured depth maps. Reconstructed

phases cluster around the correct depths, whereas the measured depth map has a wide

variance across the entire range.

In principle, the technique can be extended to any number of bounces, provided enough

modulation frequencies are used (though a first-principles derivation is beyond the scope of

this contribution). In practice, however, the reflected amplitudes decrease with increasing

component number, so that higher-order components diminish in importance. Further-

more, OMP need not assume a number of components that is the same as that of the phys-

ical implementation. If the assumed number is greater than the physical number, OMP

will reconstruct all the physical components, with higher-order ones having an amplitude

on order of the system noise. Conversely, if the assumed number is less than the physical

number, OMP will recover the strongest reflections.

Therefore, the method is a generalization of global/direct illumination separation and

can decompose different elements of global lighting. This is useful not only for improved

depth accuracy, but also imaging in the presence of multiple scatterers such as diffuse layers,

sediment, turbulence, and turbid media, as well as in places where third-component scatter-

ing must be extracted [48]. Furthermore, because it is based on phase measurements, this

technique can be mapped to multiple scattering in holography [49] by substituting optical

frequency for the modulation frequency.
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3.5 Concluding Remarks

In conclusion, we implemented a multi-frequency approach for decomposing multiple depths

for a ToF camera. The result is general and holds for any number of bounces, and it can be

extended to non-harmonic signals [33]. Future work includes calculating bounds on mea-

surements and resolution. The method can be incorporated with structured illumination

and pixel correlations and for edge detection, and refocusing. The result holds promise for

mitigating and exploiting multipath for a wide variety of scenes.
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Sparse Linear Operator Identification for

Time-of-Flight Imaging

4.1 Overview of Results

We consider the problem of Sparse Linear Operator identification which is also linked with

the topic of Sparse Deconvolution. In its abstract form, the problem can be stated as follows:

Given a well behaved probing function, is it possible to identify a Sparse Linear Operator

from its response to the function? We present a constructive solution to this problem. Fur-

thermore, our approach is devoid of any sparsity inducing penalty term and explores the

idea of parametric modeling. Consequently, our algorithm is non-iterative by design and

circumvents tuning of any regularization parameter. Our approach is computationally effi-

cient when compared the fo/fl-norm regularized counterparts.
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Our work addresses a problem of industrial significance: decomposition of mixed-pixels

in Time-of-Flight/Range imaging. In this case, each pixel records range measurements

from multiple contributing depths and the goal is to isolate each depth. Practical experi-

ments corroborate our theoretical set-up and establish the efficiency of our approach, that

is, speed-up in processing with lesser mean squared error. We also derive Cram6r-Rao

Bounds for performance characterization.

4.2 Introduction and Motivation

4.2.1 From Sampling Functions to Sensing Operators

Since Shannon's introduction of the topic, sampling theory has been at the heart of sig-

nal processing [50]. The field was revitalized by advancements in wavelet/approximation

theory, and sampling spaces were extended to a much broader class of finite-energy sub-

spaces: the Shift-Invariant Space [51, 2], its extensions [52, 1] and non-subspace models

(cf. [53, 54, 55]). In crux, most of the approximation theoretic ideas in literature master

the art of approximation of functions from their equidistant or uniform samples.

Recent studies have raised an interesting question: What is the analog of sampling theory

for operators? In simple terms, the key idea is to identify an operator from its response to

a probing function or the identifier. In order to formulate the problem, some assumptions

are made on the nature of operator. Common examples include smoothness/bandlimited

and sparsity priors [56].

Within the framework of bandlimited hypothesis, Pfander discussed "Sampling of Op-

erators" in [57]. This result inherits the non-local flavor that is central to Shannon's sam-

pling theorem-localized reconstruction requires knowledge of all the samples. Krahmer

and Pfander then take up the task of localized approximation in [58].

Departing from the bandlimited hypothesis [57], only recently, Heckel and B6lcskei dis-

cuss the problem of identification of Sparse Linear Operators (SLO) in [59, 60]. This work con-

siders identification of SLO. We begin the discussion with the problem of identifying sparse

operators in context of a practical application, that is, mixed-pixel problem in Time-of-
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Flight (or ToF) imaging.

4.2.2 Motivation: Mixed-Pixel Problem in ToF Imaging

Time-of-Flight (ToF) Imaging from first principles

Time-of-flight (ToF) imaging is a recent imaging industry development [23] which offers

an effective alternative to triangulation and stereo vision based methods for acquiring depth

maps. This modality has found a breadth of applications in several areas such as non line-

of-sight (NLOS) imaging [48], gesture recognition [27] and computer graphics [31, 61], to

name a few. A number of ToF camera manufacturers including Microsoft (Kinect), Mesa,

SoftKinetic and PMD provide competitive performance. To an entry level reader, we refer

to the book [22] or the survey article [24]. In this area, the mixed-pixel problem (MPP)

is critical to ToF cameras. There has been a surge of research to solve this problem [22, 62,

35, 63, 32, 33, 34, 36, 37]. We introduce the problem starting from first principles.

Extracting Single Depth: For a fixed frequency w, the ToF camera probes the scene

with illuminant p (t) = DC + a cos (wt)-an Amplitude Modulated Continuous Wave

(AMCW) where the DC term ensures that optical function p > 0. For simplicity, we will

ignore the DC term. After reflection from an object at depth d meters from the camera, the

probing function assumes form of,

r (t) = /3cos (w (t - 2d/c)) =cos (wt - ) (4.1)

Reflected Signal

where c = 3 x 108 m/s is the speed of light and ,3 is the reflection coefficient. The relative

delay (or phase 0#, = 2) with respect to the reference signal encodes the depth information

of the scene. Fig. 4-1. (a) explains the physical setup.

Let (p, r)I = p (t) r* (t) dt denote the standard L2 inner-product between functions

p, r E L2 where r* (t) is the complex-conjugate of r (t). Following this, cross-correlation

between functions p and r is defined as, C,, (T) = (p (t + T) , r (t)) _ The ToF lock-in

pixel [24] then decodes the depth information using the Four Bucket Principle which is
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as follows. Starting with,

Cp (-r) 1
m (T) = liM Cp,r = -a cos (wr + ) (4.2)A-oo 2A 2

each lock-in pixel computes four discrete measurements, m [k] = m (k7w/2w), k = 0,... , 3.

Let mk,l = m[k] - m[l]. The reflection coefficient / and the corresponding phase q are

estimated by using, # = (m2,1 + mg,2 ) 1/ 2 /a and 4 = arctan (m3 ,1 /mO, 2 ).

This methodology makes ToF camera a real-time sensing device because the depth es-

timation is computationally efficient. However, this is a fragile result which only holds for a

strong assumption. If two or more depths correspond to the same lock-in pixel, the mea-

surements are corrupted. For example, a transparent sheet between the scene and the cam-

era will disrupt the hypothesis much in the same way a photograph gets corrupted during

imaging through a reflective surface. Fig. 4-1. (b) shows an exemplary setting which results

in corrupted measurements. Assuming negligible inter-reflections, in case of K-depths the

reflected function is modeled as, r (t) = EK-I /k coS (wt - 0k,w) and the measurements

take form of,

(4.2) p"(T)K-1
MK () K- 2 ak COs (wT + Yk,w) (4.3)A-+00 k=

This is the mixed-pixel problem (MPP) in context of ToF imaging as it is impossible to

decode the K-depths from mK (T) (cf. Fig. 4-1 and Fig. 4-3). This problem has received

a lot of attention in the recent past [62, 35, 63, 32, 33, 34, 36, 37] due to difficulty of ex-

tracting Ok,w = 24w from mK (T). An inspection of (4.3) reveals an interesting operator

identification problem. Let '*' denote convolution operation. Notice that,

EK-1 (4.'1) K-1

k=O A cos (wt - Ok,w) = cos (wt) * k= 0 (t - 2dk/c).

Indeed this problem is associated with a sparse linear operator as,

EK-1 k(mK : P ~4 P * .k ( & ), p = cos().

Sparse Linear Operator
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However, this is a special case that uses AMCW [36, 34] with p = cos (-). One need not

restrict to the class of cosine probing functions.

4.2.3 Contributions and Organization of this chapter

The MPP has been considered in number of papers (cf.[62, 35, 63, 32, 33, 34, 36, 37]

and references there in). Existing approaches can resolve up to two components and use

AMCW/sinusoidal model. There is no mathematical framework that can explain solutions

in a general setting. In Section 4.3.1, we establish a concrete link between mixed pixel

problem (MPP) and the sparse linear operator identification (SLO) problem. In Section

4.3.3, we outline a closed-form solution to recover the SLO without using any sparsity

regularized technique. In Section 4.4.1, we discuss experimental results. We resolve multiple

components of mixed-pixels acquired using a ToF camera.

lo Novelty: Our approach to identify the sparse linear operator is devoid of any sparsity

inducing penalty term. We solve the problem using parameter estimation method

for which we derive Cram'r-Rao Bounds. The method is easily implementable (cf.

Section 4.4).

l Computational Efficiency: Our solution is closed-form/non-iterative by design.

It avoids the computation of regularization parameter which is central to optimization

based methods. The complexity of implementation is discussed in Section 4.3.4.

l Practicability: The approach is verified on practical experiments linked with ToF

imaging. We report speed-up over OMP and LASSO as well as lesser mean squared

errors (cf. Fig. 4-2, 4-3).

4.3 The Sparse Operator Identification Problem

We define the Fourier Transform of p as ^(w) = F [p] = (p, ei"t). Let BQ be the set of

bandlimited functions, BQ = {p : IP1IL, < oo, P (w) = 0, IwI > Q}. In this chapter, we will

consider bandlimited probing functions, that is p E BQ.
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Figure 4-1: (a) The ToF camera emits a reference signal. Time delay of arrival from direct

reflection encodes the depth di. (b) Demonstration of mixed-pixel problem (MPP): two or

more paths contribute to the pixel. The inter-reflections between sheets are assumed to be

negligible.

4.3.1 Link with the Mixed-Pixel Problem in ToF Imaging

Let s = p E BQ. The link between (4.5) and the mixed pixel problem can be established by
(4.2)

developing mK (r) lim Cs,r (T)/2A or,

mK (T) = (p (t + T) , r (t))tER

= p( +r K-1 APt-2dk d
=p~t+T)L /kP t- dt

k=O C

OkJP(z)P z - (r)+ dz

(a2) EK- 1d _T- t 2dk
CP* k' K 3 ( - tk), k ~ (4.4)

2K Sparse Linear Operator

where (al) is due to t + T '-+ z and (a2) is due to 2dk/c '

linear operator.
def

Sparse Linear Operator Let p E BQ, p (t) = p (-t) and

Linear Operator of 2K parameters as:

-tk. Next, we define the sparse

CPP = (p * P). We define a Sparse

OK [p] : p -4 Cp* K-1 -0 tk). (4.5)

Parameters {13 k, tk I- 1 completely characterize the operator (9K-
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From a signals and system perspective, the input/probing function and the output are related

as follows:

P -E0KkEIC Akp~ C'P - k) , P' p (P *P

Consequently, we conclude that mK (7) = 9 K [P] (T).

Inverse Problem: Given mK (T) , T E R, how can we characterize the 2K-Sparse Linear

Operator, or OK in (4.5), with {Ok, tk1,-o?

Remark: We use (4.4) for notational simplicity and to introduce the problem. It is notewor-

thy to mention that more generally, the measurements can be written as inner-products

in sense of distributions,

mK (T) = Co+Cpp ( t +T) , wo (t) 6 (H (e--"o0)), wo = 2,

where H (z) , z E C is a proxy polynomial to be defined in (4.14). This formalism is backward

compatible with (4.4) and its special case (4.3). The equivalence is obtained by invoking the

function composition property of Dirac distributions (cf. pg. 184 [64]) which states:

(f, (f2)) = >k Ckfl (tk)>

with tk = {t : f2 (t) = 0} , and ck-' = 09tf2 (tk)I. In our case, Ck's are identically equal to

wo 1 and #k = / (tk). With K distinct roots, other choices of H are possible.

The identification problem in (4.5) is central to the mixed pixel problem. For the case of

K depths, we have,

r (t) = 1+ K-1 2dk
deO ) + (t - . (4.6)

4.3.2 Related Work

In general, (4.5) is a multi-path/sparse deconvolution problem which has been a topic of

several papers starting [65]. Almost all papers use a sparsity inducing penalty term [66,

67]. From a modern perspective, Santosa and Symes [68] introduced the notion of f 2 / 1-
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optimization of cost-function to solve the problem (P 1),

P1 JA (x) = l|Tx - m|le + Ajlx|e1 (4.7)

where T is a convolution/Toeplitz matrix. The first row/column of T is the auto-correlation

of the probing signal and m are the measurements. Our problem can be cast as variant of P1

and solved using optimization methods such as Orthogonal Matching Pursuit (OMP) and

LASSO [56, 69]. For instance, in [33], we used LASSO and OMP However, the technique

is computationally intensive which is inherent to the sparsity induced optimization recipe.

The problem scales with the number of pixels, size of the probing function and the sparsity

level. Depth-sensing with compressive sensing methods was used in [70]. Within super-

resolution framework, this problem was recently discussed in [71]. The solution is based on

optimization.

With the bandlimited hypotheses, our work comes close to the topic of sparse sampling

[53, 54, 55] with marked differences. The fact that we can design the function p, and hence

Cp,, (t) is a huge degree of freedom which is not the case in sampling theory. In fact, not

being able to design p is a restriction in context of sampling theory. All the more, we are not

sampling a stream of Dirac impulses. We are interested in system identification (4.3.1). A similar

idea was pursued in [72], however, the solution was based on f, penalty term.

4.3.3 Sparse Linear Operator Identification without Sparse Reg-

ularization: Forward Model and Solution to Inverse Prob-

lem

Consider a probing function p E Br which is T-periodic. In practice, this periodization is

a standard trick. It goes by the name of cyclic prefixing in OFDM related literature [73].

We use an M-sequence for our practical set up (4.15). Consequently, p is defined as,

p (t) = E lm me)?"30, wo = 27r/T (4.8)
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where 1m = (p, e""ot) are the Fourier series coefficients of p (t). Let Om = PimJ. It is not

difficult to show that CP (t) = (t),

CP,, (W "= EI me'""" . (4.9)

In this setting, we will show that it is possible to reframe problem P1 in (4.7) as a parameter

estimation problem. Observe that the response of the Sparse Linear Operator to the probing

function is modeled by,

OK [P] (t P'P * EkEK t '~ k)

K-T

cP,,w(t-tk)=0(t-tk)

(49) K 1ke mkMt
-
2 .. MI 1:k= I o /ke0  eL~o. (4.10)

bm(t)

Also, bm (t) is parameterized by the vector t = [to, ... ,tK- IT. On discretization, the above

assumes a compact form of,

0 [p] (n) (4=O) VIDFTD Vto = y, (4.11)

or simply, VIDFTDgb = y with n = 0,..., N - 1 and where,

- = [i3o, ... , K-T, 3 E RKx 1 is the coefficient vector.

- VtE C(2Q+1)x(K) is a t-parameterized Vandermonde matrix with elements, [Vt]m,k -

exp (3mwotk), m = -Q, .. .,+Q.

- D E C( 2n+l)x( 2
Q+l) is the diagonal matrix D = diag (p), with T = [q5n, ... , q+n] =

- VIDFT E C(Nx1)x(2f+1) is the usual inverse DFT/Vandermonde matrix with matrix

elements, VIDFT = [ejonmjn,m'
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We then define b = Vt/3. Next, we will outline the solution of the inverse problem of re-

trieving parameters 3 and t from y.

Solving the Inverse Problem: Retrieving 3 and t

In practice, we have pixel-wise measurements, mK (T) = OK [P] (T) (4.4). Given p, D is

fixed by design. Let the discrete measurement vector be defined as,

y=m= [mK (0), . - -, MK (N - 1)]T ,

and let A+ be the pseudo-inverse of matrix A. Under the conditions that N > 2Q + 1

and Q > K [74], we have,

b = D1V+DFTY, b E RNx (4.12)

Having computed b, it remains to estimate parameters t and 3 from,

K-1
b = Vt/ * bm = ZK=OkIe-3eMk. (4.13)

k=O

This is the classic line spectrum estimation/Prony's problem [7, 75, 76, 77, 74]. Starting

with a polynomial, Stoica1997H (z) , z E C, of form,

H (z) = mK-1 hmz- m = 1 1  (1 - e-jWotkZ), (4.14)
M=0 k=0

it is not difficult to show that h * b = 0 '# Zk = e-wotk, that is, the roots of H (z) encode the

locations {e-oOtk} K-1 [7, 75, 76, 77, 74, 78, 53]. Since h is in the null-space of Toeplitz

matrix T constructed from b, the singular value decomposition of T leads to h which in

turn results in H (z). From the roots of H (z), that is Zk = e-wotk, we are able to compute

tk = -3 arg (zk) Iwo and hence Vt [78]. Given Vt and b, we finally compute 3 = V+b.

This solves the problem.
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4.3.4 Note on Enforcing Sparsity and Computational Complexity

As opposed to ?o or fi penalty based methods, sparsity manifests as a rank-constraint on

Hankel/Topelitz matrix used for solving (4.13). This is an in-built feature of algorithms such

as Matrix Pencils [76] or [75], which solve (4.13). Note that io/e1 based methods start with

a dictionary/matrix [T]m,n = Cp (m - n) in (4.7). Hence they are limited in resolution of

shifts tk upto the grid of T. Our method uses (4.13). In noiseless setting, it is not limited

by resolution and tk's can be arbitrarily close upto machine precision in simulation. This is

a limitation for problem setup in (4.7). On the other hand, we must remark that (4.12) must

be stabilized in noisy setting. We use Matrix Pencils [76] for the case of noise and [75] for

model mismatch.

While the computational complexity of OMP [79] with TNxN (4.7) and for K-sparse

signal scales as, 2KN2+2K2N+4KN+K3, our method uses (2K + 1) 20 2Ig(2K+1) log (2K + 1)

for diagonal matrix multiplication (pointwise multiplication) and N log N for DFTF in (4.12).

What remains is due to Matrix Pencils [76] which is known to be efficient in implemention.

4.4 From Theory to Practice

4.4.1 Design of Practical Experiments with ToF camera

We demonstrate the efficiency of our method on two practical experiments. To set up the

experiment, we first calibrate the probing function to obtain Cp. For this purpose, we use

cyclic-prefixing of a code based on M-sequence which is prescribed by,

Mseq = 0101110110001111100110100100001. (4.15)

We omit the details of conversion of Meq into p (t) and eventually Cp,, (t). In Fig. 4-2. (b),

we plot Cp (t) with its Fourier Series approximation in ( ) as well as the Fourier Series

coefficients, m in the inset. For this case Q = 29, N = 59. Each camera pixel measures a

mixture of light paths from 3 objects (K = 3): a glass unicorn at depth z = 0, a plexiglass

sheet at depth z = 2.00 meters and a wall at depth z = 3.875 meters. To resolve the mixed

pixels (MPP), we use the SLO formulation in Section 4.3. Starting with measurements
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y E R4 "xl in Fig. 4-2. (b), we estimate 3 and t. Unfortunately, it is hard to obtain the

ground truth for 3 however, the ground truth for t = [2.0139 2. 1553 2.2813]T ps or

picoseconds. When we solve the problem using (P1) in (4.7) using OMP, we obtain tOMP =

[2.020 2.156 2. 257]T ps. For our case, we first obtain b (4.12) and then use Matrix-

Pencils [76] for our problem. Our estimate is reported as i = [2.014 2. 159 2.2289]T

ps. The estimates are plotted in Fig. 4-2. (c). We denote the Mean Squared Error or MSE

between vectors x and y by MSE (x, y). Our estimation is better than OMP in MSE sense.

For our experiments, MSE(tt) = 5.5 x 10- while, for OMP, MSE(ttoMp) = 4.7 x 10-2.

Our solution is non-iterative. For the same computing resources on Matlab, our solution

offers an average speed-up of 16.7x compared to OMP. This is tested across a patch of

31 x 31 = 961 mixed-pixels. The computational time is reported in Fig. 4-2. (d). In

Fig. 4-2. (a), we compare the result of using Matrix-Pencils [76] and Cadzow's algorithm

[75] and plot MSE (in dB) versus Signal-to-Noise Ratio (SN R) for SN R range of -10 to 38

(dB) for different values of oversampling factor 7 such that N = 277K + 1. We consider

q = 1, . .. , 5. Oversampling results in improvement of results. For experiments, we used

K = 3 with uniformly distributed t E [0, 1] and the results are an average over 5000

trials/SNR value. In another experiment, we consider the case of K = 2, Q = 28, N = 57.

A diffusive sheet covers a placard reading: "Time Of Flight," which is 2 meters away. The

camera measurements are shown in Fig. 4-3. (a). Indeed it is impossible to read anything.

However, since each measurement corresponds to a mixed-pixel, we can use the sparse

operator identification method to decouple the measurements. Consequently, in Fig. 4-

3. (b), we show the strong reflection from the translucent sheet, that is {1o, to}. Since we have

estimated {1,1, ti }, it is possible to read through the translucent/diffusive sheet as shown in

Fig. 4-3. (c). In Fig. 4-3. (d), we show the measurements y and estimates 3, t.

4.4.2 Cramer-Rao Lower Bounds (CRB): Overview of Results

With zero-mean, Gaussian noise assumption on e, and covariance matrix E = F [eeT] =

or we model N noisy measurements (4.11) as, y, = OK [p] (n) + en - y =m + e. The

parameter vector of interest is 6 = [to, ... , TIK-1 i, ... , 1K-] T. Within this framework,

the CRB of an unbiased estimator of the parameter vector 6 holds such that, V(0) <; J- 1 (0)
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N = 2K +1. We compare Matrix Pencil Method [76] with Cadzow's algorithm [75] for the case of K = 3. The parameters are chosen

from a uniform distribution. For each SNR value, we average the result over 5000 realizations. (b) Starting with M-sequence in (4.15)

we obtain the calibrated function Cp in -- and its Q = 29-term Fourier Series approximation, <b E BQ in - -. The inset shows the

Fourier Series coefficients (4.9). (c) Mixed-Pixel Problem for K = 3 mixing paths. The measurements y are marked in --. Ground truth

and estimates using OMP in (4.7) and our method are also marked. (d) We report the computation time involved with using LASSO,
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Figure 4-3: (a) Measurements (-) of a scene where a translucent/diffusing sheet {0o, to}

hides a placard {1,3 1 ti}. The mixed-pixels correspond to the case of K = 2. Using our

method, the mixed-pixels in (a) are decomposed into the diffusing sheet in (b) and the plac-

ard that reads, "Time of Flight" in (c). (d) We show measurements y for one of the pixel of

120 x 120 image. These measurements are decomposed into shifted and amplitude scaled

versions of CPP = # marked in - - - - . Depths oc {to, t1} are marked with -+.

whereJ is the Fisher Information Matrix and V is the variance operator. Following the CRB

simplification for Gaussian distribution (cf. Appendix 3C [80]), we have,J (6) = -2yTy.

For simplicity we consider K = 1, then,

r _ -000'(1 - to) ... Oo#' (N - to)
(1 - to) - #(N-to)

Since the anti-diagonal ofJ (0) is zero, the variance V(6) > o.2 diag (0/2N 2Sm, NS1 ) with

Sm = Zm m22. Set SNR = .2 /3~, we obtain the spread in estimation of to and /0 as

follows:
Ato >1 A,301-T I7and -> 1T 2Irt/SmN -SNR I/SI| VS1 N -SNR
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Derivation of Cramer-Rao Bounds for Sparse Estimation

Let e, be the zero-mean, Gaussian noise element with covariance matrix E = [eeT] =

2 1. Given measurements,

yn = Z kCp,( - tk)+en,
kEIK

O(P](n)

where CPP (t) A # (t) is the probing function, we seek to establish the Cram6r-Rao Bound

on the variance of parameter vector,

0 = (YO,..tK 1, - - K -

Within the Cramer-Rao framework, the CRB for an unbiased estimator 0 of the parameter

vector 6 holds such that,

J(6)

where J is the Fisher Information Matrix. Moreover, for the Gaussian distribution case, the

element wise Fisher Information matrix has a simpler expression which takes form of,

[J(6)], = -Tr {'- (6) F()1 (6) ) + [r(6)] (6) [O, 0 )' 
l~ 2 a0k a61 a8k I a,

where Tr{ -} is the trace operator. Since ar(O) = 0, our problem is simplified and boils down

to computing,

[&y(O) i _ ~y (O) 1 ~ Fy (O) iT['y(6)1
[J () =( )[ T ) =T -.

k a 8k a& a 6 02 gk . 8l.
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In vector-matrix notation, we have,

J(6) = 1 2 T,
a-

-No#' (1 - to)

-Oo#' (2 - to)

-#0#'(N -to)

(Fisher Information Matrix)

4 (1 -to)
k(2 - to)

#(N -to)

. q ' (1 - tK-1)

. 0 

' (2- tK-1)

- (N-tK-1)

Nx2K

For K = 1,

-0' (1 - to)
-#o#' (2 - to)

-#oo' (N - to)

# (1 -to)
# (2 - to)

# (N- to)

and consequently,

T T [ /0o#' (1 - to)
0 (1 -to)

N-1

02 E
n=O

#(2-to)

j#' (n - to)12

N-1

- E o' (n - to) # (n - to)
n=o

Given the choice of probing function,

C,P(t) A(t) =

- (N-to) I
-3 0 0' (1 - to)

-o' (2 - to)

-#oq# (N - to)
N-1

- Z o#' (n - to) # (n - to)
n=O

N-1io)1

n2E |# (n-
n=O I

# (1 - to)
q(2 - to)

#(N-to)

(4.16)

m=+M

E #me'n''"
M=-M
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- K-10 (2~- tK-1)

-- K-1#' (N --tK-1

.. - - #o# (N - to)



we will now show that,

m 2qm
ImI(M

N E I#mI 2 1
|m|<M

* Derivation of [TTT] 0,0
m=+M m=+M

Since, Ot# (t) = E jmwoome3"wot and Ot(t)1t_ _ = E 3mwome~nw(n--to),
m=-M m=-M

it readily follows,

N-1 m=+M l=+M

=mS0 m (n-to) -l1e lwo(n-to)
n=0 m=-M l=-M

* Derivation of

N-1
32n(m-1)

S- L
n=0

=Nbm- ,qL==N,qEZ

=Nwo 5 m 2 |I m| 2 .

[T T Tr] = [rT T] 1,0 = 0.

Note that, [T T T]0
= [T-T] 10. This follows from (4.4.2). It remains to show,

N-i N-1 m=+M

5: 0 n - t0) (n - t0  = 1 ImWo menwo(n-to) 5 0 w(n-to)

n=0 n=O m=-M |l(M

N-1

~mwo-tO(q+M) E 3 n(l+m)

ImI'<M 11<M n=O
=N6m+l,qL=N,qEZ

=wo 5 'm
|m|<M

= Jwo( E mq, + ( m2 = 0
\-M<m<0 0<m(M

where the last step is due to the fact that q is a real function and its Fourier Series
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coefficients have the property, 1bn 1 = 10-1-rn1

- Derivation of [- T T] =N E
ImIM

I|m12

This is fairly simple to establish.

b1(n-to) 2 =

N-1

1:0(n - to) #* (n - to)
n=O

= 1 E 0me.. ywo(n-to)

n=O ImI M |I|<M

*e-3wO(n-to)

Om Z* S(me3L to(l-m) E5
ImIM IlI<M n=O

=Nbmn ,qL=N,qGZ

=N E |Om|2

Following the above simplifications, we are not set to bound the variance of the estimator.

The inverse of the 2 x 2, diagonal matrix is given by,

( TTT)-1 -

NW2#0 I
IMI<M

m21M 2

( N
E I$M12

ImI<M

where Sm = 1
/EIM|<M

m 2 |iM12. Finally, we have,

-1 = CRLB () =
a2 S.

/2

Let us define peak-signal-to-noise ratio by PSNR - 9. As a result, the uncertainty in time

and amplitude is given by,

Ato
L

1 m

2ir N

1

V-P SN R
(for time),
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and,
_ 0 1

;>o - (for amplitude).100 N -%PSNR

These results are in consensus with the bounds in [53].

4.5 Conclusions

As a follow-up on the recent investigations regarding identification of operators from its

response to a probing function [57, 58, 59, 60], we discuss a non-iterative method for the

problem of sparse linear operator identification [60]. Our method is devoid of any spar-

sity inducing penalty term. Our work finds application in context of resolving mixed pixels

in Time-of-Flight imaging for which our theoretical set corroborates with practical exper-

iments. We report a speed up in computation time over previously used methods. Our

method leads to lesser mean squared error.
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Multi-bounce Decomposition of Light with

Microsoft Kinect Xbox One

5.1 Problem Statement

Multipath interference (MPI) is one of the major sources of both depth and amplitude mea-

surement errors in Time-of-Flight (ToF) cameras. This problem has seen a lot of attention

recently. In this work, we discuss the MPI problem within the framework spectral estima-

tion theory and multi-frequency measurements. As compared to previous approaches that

consider up to two interfering paths, our model considers the general case of K-interfering

paths. In the theoretical setting, we show that for the case of K-interfering paths of light,

2K + 1 frequency measurements suffice to recover the depth and amplitude values cor-

responding to each of the K optical paths. What singles out our method is the that our
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Figure 5-1: (a) The ToF camera emits a reference signal. Time delay of arrival from di-

rect reflection encodes the depth d. (b) Specular or mirror like and, (c) semi-transparent

reflections cause multiple light paths to mix at the sensor which leads to multipath interfer-

ence or the mixed-pixel problem (MPP). (d) Case of continuous multipath reflections. (e)

Time-of-flight imaging system pipeline for solving inverse problems.

algorithm is non-iterative in implementation. This leads to a closed-form solution which is

computationally attractive. Also, for the first time, we demonstrate the effectiveness of our

model on an off-the-shelf Microsoft Kinect for the X-Box one.

5.2 Introduction

Amplitude modulated continuous wave (AMCW) Time-of-flight (ToF) imaging cameras

[22] measure at each pixel both amplitude and optical travel time (depth), thus capturing

three dimensional scene information. Fig. 5-2(e) and 5-2(f) show an example of such intensity

and depth images as produced by a ToF camera.

These cameras work on the principle of emitting a coded light signal (generally a sine

wave) by amplitude modulating a light source and measuring the time delay between the

transmission and the reflection arriving back from the scene (Fig. 5-1(a)), similar in principle

to LIDAR.

With recent advances in solid state sensor design and on-chip computational capabil-

ities, the last decade has seen a tremendous growth in 3D sensor design with a number

of consumer grade ToF sensors are available in the market. Microsoft (Kinect), SoftKi-

netic, PMD and Mesa among others provide robust solutions for 3D imaging. Availability

of ToF cameras has catalyzed research effort in context of 3D sensing with applications

in human-computer-interaction (HCI) [27], computer graphics [31] and computational
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imaging [11, 81, 82]. In fact, in a recent paper we demonstrated the application of ToF

cameras in Fluorescence Lifetime Estimation [5].

5.2.1 Multipath Interference in ToF Cameras

All of the existing ToF cameras work under the hypothesis that each given pixel observes one

optical path. Another way to state this, the assumption is that the scene is only illuminated

directly with no inter reflections (known in the optic and geophysics domains as the Born

approximation). This however is not the case in many practical cases of interest such as inter

reflections in the scene due to multiple objects or corners, in the presence of transparencies

such as windows, or sub surface scattering. Some of these cases are presented in Fig. 5-1.

When multiple optical paths combine at a given pixel, the depth measurements are

corrupted. This is known as the multipath interference problem or the mixed pixel

problem (MPI). This is one of the major sources of errors in ToF sensors [5, 83, 6, 33,

34, 84, 39, 62, 36, 38, 63]. To that end, almost all existing solutions consider up to two

interfering paths of light [34, 84, 39]. The case of K-interfering paths was first discussed

in [5] and later in [83]. Both of these papers rely on a sparsity formulation which leads to

computationally intensive and iterative algorithms.

5.2.2 Contribution and Organization of this Chapter

In this work, we report a model for the case of K-path interference for which the solution is

non-iterative in implementation which makes it computationally attractive when compared

to the sparsity based, iterative schemes discussed in [5, 83].

In Section 5.3, we provide a general description of the ToF image formation model.

Within our inverse-problem framework, we set-up the mathematical model for the multi-

path interference problem. As will be seen, our reformulation of this problem shows that the

MPI is intrinsically linked with parametric spectral estimation theory [55, 45]. We leverage

on previous ideas [6, 55] to solve this problem in closed-form. In Section 5.4, we discuss

some first results linked with MPI cancellation in Microsoft Kinect One. Finally, we con-

clude with some future directions.
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5.3 ToF Image Formation Model

The ToF imaging pipeline is shown in Fig. 5-1(e). Pixelwise image formation model for ToF

cameras can be disseminated into 3 steps.

1. Probe the Scene: ToF cameras are active sensors. The ToF camera probes the

scene with some T-periodic function of form p (t) = p (t + T) , t E R, T > 0. For

example, p (t) = 1 + cos (wot) , wo = 27r/T.

2. Scene Interaction Next, the probing function p interacts with the scene h and this

interaction results in the reflected signal,

r (t) = p (z) h (t, z) dz (Reflected Signal), (5.1)

Fredholm Integral

where h is the continuously defined kernel or the scene response.

3. Cross-Correlation Let p (t) dep (t) and let * denote the convolution operation,

that is, (f * g) (t) = f f(z)g(t - z)dz. For some sampling step A, the ToF lock-in

sensor filters the reflected signal r with fi and then descritizes it. Quantitatively, we

have,

m (t) I = (p* r) (t) with k E Z,A > 0. (5.2)

Remark: Note that for a special class of scene response functions/kernels, namely, Shift-

invariant kernels, which satisfy the property, hs (t, z) = h (t - z), the measurements (5.2)

assume form of,

m (t) =( p * h) (t) = (C,, * h) (t) , (5.3)

where Cf,g (t) = (T * g) (t) is the cross-correlation of complex functions f, g E C and

where f* is the complex conjugate of f.

5.3.1 Modelling Single Depth

Within the context of our imaging model, we first show how to recover amplitude and depth

from discrete measurements m. Most ToF cameras including the Kinect One probe the
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scene with,

p (t)=1+ po os (wt) and 0 < po <.

At some depth d, the probing function undergoes a reflection. The total time-of-flight is,

td = 2d/c where c = 3 x 108. The reflected signal is modelled as,

r (t) = F (s (t - td)) where 0 < F < 1.

An equivalent conclusion can be reached by setting, h (t, z) = ['6 (t - z - td), where we

use Dirac's Delta function, that is 6, to model the time-delay or the time spent by the probing

function p as it arrives at the ToF sensor. In this case, a simple computation [5, 22] shows

that,

mW (t) = F (1 + cos (w (t + td)))

and it remains to estimate {r, d} from measurements m in (5.2). The ToF camera uses

sampling step A = wr/2w, k = 0 ... 3 to estimate,

S= p-- 2 /(mw (3A) - m" (A)) 2 + (m" (0) - m (2A)) 2  and,

= tanI-1 (m (3A)-M (A)) (5.4)
2w \mx(O)-mo(2A)

Note that for any given modulation frequency w, and estimated parameters {F, d}, we can

associate a complex number/phasor,

Z, = f exp (3 (2L) /c) A f exp (3Wtd), Z, E C. (5.5)

An attentive reader must have noticed that that Z,, happens to be the Fourier Transform

of [H (t - td). Indeed, in view of the ToF pipeline in Fig. 5-1(e), single-depth estimation

problem is linked with the estimation of scene response function, h (t) = H' (t - td), which

is a parametric function with 2 unknowns, reflection coefficient F and depth d which is

encoded in variable td. This is one instantiation where h or the scene response function

is parametric. Another interesting parametric choice of h discussed in [8] is linked with
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Fluorescence-lifetime imaging microscopy (FLIM) where,

h (t) = 6 (t - td) * (17 (t) + p exp (-t/T)) , t > 0. (5.6)

We now revert our attention to the case of multipath interference.

5.3.2 Multipath Interference Problem

Consider the case discussed in Fig. 5-l(b-c). When multiple bounces of light or optical paths

arrive at the sensor, the depth measurements are corrupted [6, 5, 32, 39]. As shown in [6],

the system response function is modelled as,

EK-1 2dk) jK-1

hK (t) = kO (t - 2 = k EFk (t - tk). (5.7)

Let us denote the Fourier Transform of h(t) by hK (w) with,

Fourier 'K-1 -t
hK (t) er) hK (W) = ]Fke-Jk (5.8)

Indeed, for the multipath case, the Fourier domain representation of the system response

function in (5.7) is a sum of K-complex exponential functions. Without loss of generality, if

we assume, p (t) = poe3wt, then,

mW (t) = Coe t'h* (w) where Co = p0/2. (5.9)

Note that the multipath component h* (w) appears in the measured signal and is purely an

argument of modulation frequency, w. For w wo, the ToF camera uses (5.4) to record the

measurement, Z,,o = * (w0). Now since, Z, = IZ0 I and = ZZ,,, or equivalently,

K-1 ~. Z K-1

rw= 5 LkeI3e and = = ] F ke30tk), (5.10)

the camera is unable to resolve the interference corrupted measurements in (5.10).
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5.3.3 Closed Form Solution for Retrieving {'k, dk} -O

We start with measurements m,, (t). Since the multipath component is independent of

t, we will only consider measurements in w. Let us define the vector of measurements,

m = [in0 , min, ... , iMN-1 T where (.)T is the matrix-transpose operation.

Problem Statement: Given a vector of measurements m for N modulation frequencies,

extract {Ik, dk} -=.

This is a classic inverse problem in line spectrum estimation [45] and is a special case of

the solution discussed in context of Fractional Fourier transforms [55]. To solve this inverse

problem, we begin with N measurements, mn = E_-1 4Ung, n <; N with Uk = exp (Jtk).

Let us define a Laurent polynomial such that its roots are Uk,

Q (Z) = ~jK 1 UZ- -) =- K qz-f, z e Z. (5.11)
f=O f=

Factorized Polynomial

We leverage from an interesting factorization property of complex-exponentials which is

qe * me = meQ (Uk) = 0,

K K-1 K

qe * me = Z=qnmn = Zk=0 Fuky Zn=O - = 0.

m1 Q(uk)=O

This is because Q (z) 1 = 0 (see (5.11)). Hence the sequence qf that filters measurements

me to zeros also encodes the information of uk in form of the roots of the polynomial Q. In

vector-matrix, this is equivalent to,

MK .. M' q0 00

i '- =Mq = 0,

[2K--- ] [.1 KqLJ 0

Toeplitz Matrix M(K+1)x(K+1) qK+1 K+1

where M is identified as the convolution/Toeplitz matrix and vector q E Null (M) is a vector

in the null-space of rank-deficit matrix M with rank = K. We need at least N = 2K + 1

measurements to construct M and hence, 2K + 1 modulated frequencies in m, to recover
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K optically interfering paths. Once we compute q, we factorize it to compute the roots {Uk}

in (5.11). This, in turn leads to,

ch = (23) c log (Uk) where c = 3 x 108.

Let us define a Vandermonde matrix UNXK with matrix elements,

[U,, = U , k=0,...,K-1, n=0,...,N-1.

To compute {F}k, we solve the system of equations ur = m = F = U+m where U+ is

pseudo-inverse of U.

5.3.4 Remarks and Discussion

- Improvement over previous work. To begin with, our work generalizes the re-

sults in [39, 84] in that our theoretical results are applicable to general setting of K-

interfering paths. For example, setting K = 2 leads to N = 5 frequency measure-

ments which is the result discussed in [84]. Also, unlike [84] that requires measure-

ments both in frequency and phase, our formulation does not require phase sampling.

The idea of using multiple modulation frequencies to resolve multiple interfering paths

(K > 2) in context of TOF was first presented in [5] however, the choice greedy

algorithm for sparse optimization makes the solution inefficient. In this work, we show

that it is possible to retrieve {fk, dk}Ki-1 from m, by using a closed-form solution.

- Reconstruction Guarantee. In absence of model mismatch and noise, we show

that N = 2K+1 frequency measurements are necessary for de-mixing K-interfering

paths. To the best of our knowledge, this result has not been reported in literature (in

context of ToF imaging). Also, for our setting, Cramer-Rao bounds [45] may be used

to provide reconstruction guarantees.

" Implementation Details. As is well known, the Vandermonde matrix U+ is highly

unstable in presence of noise and oversampling is an efficient counter-measure. Many
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variants have been proposed in literature to alleviate this problem. For implementa-

tion purposes, we use Matrix Pencils [76] to solve to problem.

5.4 Results

For experiments we use a single, off the shelf, Microsoft "Kinect One" ToF camera with

modified firmware that allows custom modulation frequencies. The Kinect is at a distance

of about 1.5 meters from a scene comprising of a mannequin on a table with a wall in the

background. We further place a transparent acrylic sheet about 15 cm in front of the camera.

The acrylic reflects part of the emitted infrared light directly back to the camera, resulting

in mixed measurements (also known as multipath effect). We proceed with recording of the

amplitude/phase measurements of the Kinect at varying modulation frequencies starting

from 50 MHz.

The experimental setup is shown in Fig. 5-2(j). In this example, we set K = 2. The

amplitude and phase measurements at 52 MHz are shown in Fig. 5-2(a) and Fig. 5-2(b),

respectively. We use 20 measurements from 52 - 72 MHz for our processing. The out

put of our algorithm provides 2K images, in form of amplitude and phase pair. For the

experiment in Fig. 5-2(j), our goal is to decompose the mixture of images into 2 components

corresponding to two optical paths, one due to the acrylic sheet and another due to the

what remains in the background. Fig. 5-2(c)-(d) shows the amplitude/depth (in meters) pair

corresponding to the contribution due to acrylic sheet. As can be seen in Fig. 5-2(c), we

observe a specular reflection due to the reflective acrylic sheet. In Fig. 5-2(e)-(f), we show

the remaining contribution due to all other optical paths. The depth of the table is estimate

to be 1.67 meters. The amplitude image in Fig. 5-2(e) is devoid of any multipath effects due

to the acrylic sheet.

To demonstrate the effectivity of our algorithm, we show the 3-dimensional or 3D re-

construction in Fig. 5-2(g),(h),(i). We show the 3D amplitude/depth map of measurements

at 52 MHz and 55MHz in Fig. 5-2(g) and Fig. 5-2(h), respectively. Clearly, the measure-

ments are distorted. We are able to decompose the corrupted images in Fig. 5-2(g),(h). Our

processed 3D image is shown in Fig. 5-2(i).
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Figure 5-2: Images (a) and (b) show one of the input amplitude and phase images while (g)

and (h) show the embedding of the intensity image onto the depth data. The scene, depicted

in (j) is constructed from a mannequin on a table with a transparency between the camera

and the scene. As can be seen, there is a strong flashback from the transparency as well

as corruption of the depth image due to multi bounce. (c) and (d) show the intensity and

depth reconstruction of the transparency while (e) and (f) show that of the scene. (i) Shows the

embedding of the intensity image onto the depth reconstruction. Not only have the intensity

and depth information been recovered correctly for both the scene and transparency, we

have also recovered both amplitude and depth information that was completely occluded

by the flashback (highlighted).
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5.5 Conclusion

Our theoretical development is general in that it considers the general case of K-optical

paths and is computationally efficient in that the algorithm is non-iterative (compared to

the recent work). Our first results demonstrate the practicability of our modelling with the

ease of computation.
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Fluorescence Lifetime Estimation via

Coded Time-of-Flight Cameras

We present a novel, single-shot, calibration-free, framework within which Time-of-Flight/depth

cameras can be used to estimate lifetimes of fluorescent samples. Our technique relaxes the

high time resolution or the multi-frequency measurement requirements in conventional sys-

tems.

6.1 Overview of Problem Statement and Contributions

Fluorescence lifetime imaging (FLI) is a well-known problem with the notable example of

Fluorescence lifetime imaging microscopy (FLIM). FLI methods rely on either time domain

(or pulsed) processing (Fig. 6-1 .c ) or frequency domain processing which is a phase based
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method (Fig. 6-1 .d). Each method has its advantages and disadvantages.

This work combines the merits of time and frequency based processing. We describe a

technique for FLI which is cost-effective in that it is based on consumer grade Time-of-

Flight (ToF) cameras. ToF cameras can not match up with the time resolution of de-facto

equipment used for time-domain FLIM. Also, multiple frequency measurements require

sweeping of frequencies over a given bandwidth. To overcome these limitations, we pre-

scribe a time coded illumination based technique which results in single-shot, multi-

frequency capture. Also, our technique is reference free. No prior information of the

depth of sample with respect to the camera is assumed.

6.2 Inverse Problem Framework for FLI-Time-of-Flight

Imaging

A Time-of-flight (ToF) camera, such as the Microsoft Kinect, is a low-cost, real-time in-

strument that acquires the three-dimensional scene structure by encoding simultaneously

the intensity and depth information of a scene. Such cameras have been very successful in

consumer applications.

We provide a general model of ToF sensing using the Fredholm formulation. First, gen-

eralizing conventional ToF cameras, which use (approximately) sinusoidal illumination, we

illuminate a scene with a time-periodic probing signal p (t) = p (t + T) (T E R+, t E R).

This signal interacts with a scene, described by a response kernel h (t, z), and generates a

return signal y (t), which is then cross-correlated with the illumination to yield measure-

ments m (t). Defining p = p (-t) and letting CyP (t) = (y * 3) (t) be the cross-correlation

of two functions, we have

Fredholm Integral

p y(t)= p(z) h (t, z) dz * * y m (t) (ToF Pipeline).
Scene Sensor Measurements

Interaction of the scene and probing function
(6.1)
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For a shift-invariant operators, Q E R, h(t, z) -+ h(t - z), so that m(t) = Cyp (t) = (p *

p* h) (t). This assumption is not restrictive, as it applies to many systems, including FLI and

depth imaging. For example, for conventional depth sensing, p(t) = 1 +cos(wot), and h(t -

z) = po(t-2d/c-z), where po is the reflection coefficient, c is the speed of light, and d is the

distance to the scene. For multiple depths {dk I~ , h (t, z) = O pk6 (t - 2d4/c - z)

[5, 61].

6.3 Forward Model for FLI using ToF Sensors

For scenes containing fluorescent samples, the system kernel becomes more complex, as

fluorescence emmission decays exponentially for impulsive excitation. To describe this sys-

tem, we apply Eq. 6.1 to a scene containing fluorescent pixels (xf, yf) and non-fluorescent

background (Xi, Yb). For the latter pixel type, the kernel is just the standard delta-function

depth kernel above. We can describe this using operator notation by defining the time

delay operator Td [q] = # (t - 2d/c). Defining I as the identity operator and denoting

P o Q = P (Q [-]) for composition, we have

(6.1)
m(Xb,,b) (t) = (Tdo p) [p] (Td p ) [/], Cp = #. (6.2)

Note here that we can write the depth kernel as

h (t, z) = (Td o p1) [6 (t - z)] 4 p6 (t - 2d/c - z).

To model fluorescence (Fig. 6-l a), we recognize that the associated kernel is hf (t - z) =

p exp (t - z)/r - (t-z),o (t - z), which we associate with a well-defined Green's function

G(t, z) = h1 (t - z). Therefore, we may model this interaction with a linear, constant-

coefficient, first order operator L, = at + 1/r acting on the illumination function p(t) to

yield the fluorescence output u(t). We have

u(t) = fTL-1 [p -1to] ' j G (t, z) p (z) dz
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Figure 6-1: (a) Setup for fluorescence lifetime estimation using ToF cameras. Pixels at (Xb, Yb) measure depth by using time-of-flight

principle in accordance with (6.2). Pixels (xf, yf) correspond to fluorescent sample. Impinging light signal p undergoes two transforma-
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Figure 6-2: Overview of forward model for coded FLIM imaging.

with,

G (t, z) = p exp (- (t - z) /r) It, (t - z).

In the context of Eq. (6.1), the combined effect of scaling/delay from the depth and fluo-

rescence decay leads to,

y = Td o (p + PL,-l) [p] = N[p]. (6.3)

In Fig. 6-1(b) we show the schematic for the forward model. Simulated signal and measure-

ments are shown in Fig. 6-2. With h (t, z) = hs (t - z), the system response is identified

as,

hs, (t) = 6 t - * (p6 (t) + pe-(t)/Tlto (t)) (6.4)

The measurement becomes m (t) = W [q], = Cp. Our model is backward compatible

with the FLIM setup [85] in that time domain FLIM uses p(t) = 6(t) (Fig. 6-1.c). Its

frequency domain counterpart in Fig. 6-ld uses p(t) = sin(wt), and calibration is used for

d.
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6.4 Coded Illumination for FLI

Continuous-wave ToF cameras cannot attain the time resolution of standard pulse-based

methods. To overcome this, we engineer the T-periodic signal, p(t), within the window of

length T. Because p is periodic, it is expressible as a Fourier Series,

p (t) = T- lm|,MOPm exp (jwomt),

where pm are the Fourier Series coefficients, with wOT = 21r, and MO is the bandwidth. We

thus write,

Cp, (t) = # (t) = T- 1 Elm,<MO m exp (jwomt),

with Vm, 'km = p3p''*- It is well-known that for a given budget of Mo, a Maximal Length

Sequence (M-sequence) provides the best spectral response for #. Because complex expo-

nentials are eigenfunctions of time-invariant operators such as W, the ToF measurements

for FLI are given by m = W [q], which simplifies to,

m (t ) = T -' m<o m e mt, .

where
1 -3 O -

hm = P + 1/T 2jwon) e- ( ")m (Fourier Transform of W).

For discrete camera measurements, we have, in vector-matrix notation, m = Vw where

m E RN is the measurement vector, V E CNx2Mo+1 is the inverse DFT matrix and w E

C2Mo+1 is the vector such that w = D4h and D E C2Mo+1x2Mo+1 is a diagonal matrix

with entries qk. Given measurements m and known qk, our task is to estimate parameters

T and d. We first estimate h using i = D/ .V+m where V+ is the pseudo-inverse. From

Eq. (6.5), we note that

Zh (wom) = - (p (woM) + Pd (woM)),
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Figure 6-3: (a) Measurements for a quantum dot with T = 32 ns acquired by a ToF camera

that uses a time code q# (in the inset). (b) Fourier Transform of #$ and its band-limited approx-

imation via Fourier Series consisting of M0 = 51 components.(c) We estimate lifetime and

depth from measurements using Lb = ZDl2V~m e - (<p (mwo) + 'Pd (mwo)). Curves

in show measurements and the expected phase function is marked with--.

where ',pr (w) = tan~ (+.2T)is nonlinear in lifetime (T), and (Pd (w) = 2dw/c is

linear depth (d). Experimentally, we optically filter out the contribution due to p, so that

with p = 0, we are left to minimize the least-squares cost functionJ J(w) that leads to the

depth and lifetime estimates d and i, respectively, as (d, i) = arg mind,, J (w), where

J(w) = |Ih+ wi + tan-1 (wT)| j. Being able to extract d without its prior knowledge

makes our approach calibration free.

6.5 Experimental Verification

The experimental setup is depicted in Fig. 6-1 .a. The fluorescent pixels consist of a glass

slide that contains CdSe-CdS quantum dot material (T = 32 ns) obtained by dissolving it in

hexane. The ToF camera is a PMD 19K-2 lock-in sensor with custom FPGA programming

to define and precompute p and hence . The normalized measurements corresponding to

the quantum dot sample are shown in Fig. 6-3a. The data are acquired with sampling rate

T = 78.12 ps. We also plot the function # in the inset. For data processing, we set M0 = 31

(see Fig. 6-3b). From data samples m, we compute

Zh = lDIVim e - ('p (mwo) + 'P (mwo) = w i = 2Mr/T.

J~w =11~ wd+tan' T)11 .Beig bl t etrat wthutitsprorknwldg
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Figure 6-4: Histogram of estimated lifetimes.

The phase measurements are shown in Fig. 6-3c. Note that measurements corresponding

to m > 50 are noisy. Having obtained Zh, we use a nonlinear fitting algorithm using the

least absolute residual criterion. A histogram of estimated lifetimes is plotted in Fig. 6-4.

The expected lifetime for our computation is 31.89 x 10-9 sec.

In summary, we have implemented a calibration-free, single-shot FLI system using a

ToF camera. The method combines a low-cost implementation with a generalized model

of ToF sensing. Future work includes extending the technique for FLIM systems for, e.g.,

FRET analysis, multi-exponential decays, and diffusive quenching.
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7
Conclusion

In this work we formalize the ToF imaging model which unifies continuous wave and impulse

based ToF solutions. Within this framework, we tackle inverse problems linked with ToF

imaging. Unlike conventional cameras, the ToF cameras encode both amplitude and depth.

The main theme of this work is that the association of depth/phase with range is just a

specific case of modeling. In a general setting, more interesting phenomenon can be encoded

in the phase component of the ToF cameras.

The first direction attempts to solve the multi-path problem for the general case of K

light paths. For this purpose a closed-form solution is presented. The solution is linked with

the spectral estimation problem. In noiseless setting, 2K modulated frequency measure-

ments suffice to recover the parameters of the multi-path scene response function.

The second line of attack deals with super-resolution ToF imaging. It is shown that

coded ToF cameras facilitate multi-frequency measurements. Furthermore, we leverage
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from the fact that the broadband code has a finite Fourier series. This leads to a parametric

solution to the sparse deconvolution problem.

Finally, we investigate the problem of fluorescence lifetime estimation using ToF cam-

eras. In this context, we show that by using a broadband code, it is possible to recover both

the distance of the sample from the camera as well as its lifetime. Hence our solution leads

to a calibration-free, single-shot FLI system.

99



Bibliography

[1] A. Bhandari and A. I. Zayed. Shift-invariant and sampling spaces associated with the

fractional Fourier domain. IEEE Trans. Signal Proc., 60(4):1627-1637, 2012.

[2] M. Unser. Sampling-50 years after Shannon. Proc. IEEE, 88(4):569-587, 2000.

[3] David C. Rife and Robert R. Boorstyn. Single tone parameter estimation from

discrete-time observations. IEEE Transactions on Information Theory, 20(5):591-598,

1974.

[4] Steve Tretter. Estimating the frequency of a noisy sinusoid by linear regression (cor-

resp.). Information Theory, IEEE Transactions on, 31(6):832-835, 1985.

[5] A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and

R. Raskar. Resolving multipath interference in time-of-flight imaging via modulation

frequency diversity and sparse regularization. Optics Letters, 39(7), 2014.

[6] Ayush Bhandari, Achuta Kadambi, and Ramesh Raskar. Sparse linear operator iden-

tification without sparse regularization? Applications to mixed pixel problem in time-

of-flight / range imaging. In Proc. IEEE Int. Conf Acoust., Speech, and Signal Proc., pages

365-369, 2014.

[7] P Stoica and R.L. Moses. Introduction to spectral analysis, volume 89. Prentice Hall Upper

Saddle River, NJ, 1997.

100



[8] Ayush Bhandari, Christopher Barsi, Refael Whyte, Achuta Kadambi, Anshuman J
Das, Adrian Dorrington, and Ramesh Raskar. Coded time-of-flight imaging for cal-

ibration free fluorescence lifetime estimation. In Imaging Systems and Applications, pages

IW2C-5. Optical Society of America, 2014.

[9] Andreas Velten, Di Wu, Adrian Jarabo, Belen Masia, Christopher Barsi, Chinmaya

Joshi, Everett Lawson, Moungi Bawendi, Diego Gutierrez, and Ramesh Raskar.

Femto-photography: Capturing and visualizing the propagation of light. ACM Trans-

actions on Graphics (TOG), 32(4):44, 2013.

[10] Di Wu, Andreas Velten, Matthew O?Toole, Belen Masia, Amit Agrawal, Qonghai

Dai, and Ramesh Raskar. Decomposing global light transport using time of flight

imaging. InternationalJournal of Computer Vision, 107(2):123-138, 2014.

[11] Felix Heide, Matthias B. Hullin,James Gregson, and Wolfgang Heidrich. Low-budget

transient imaging using photonic mixer devices. ACM Trans. Graph. (Proc. SIGGRAPH

2013), 32(4):45:1-45:10, 2013.

[12] James A Simmons and Roger A Stein. Acoustic imaging in bat sonar: echolocation

signals and the evolution of echolocation.Journal of Comparative Physiology, 135(l):61-84,

1980.

[13] Bj6rn M Siemers and Hans-Ulrich Schnitzler. Echolocation signals reflect niche dif-

ferentiation in five sympatric congeneric bat species. Nature, 429(6992):657-661, 2004.

[14] LasseJakobsen,John M Ratcliffe, and Annemarie Surlykke. Convergent acoustic field

of view in echolocating bats. Nature, 2012.

[15] Lawrence D Rosenblum, Michael S Gordon, and LuisJarquin. Echolocating distance

by moving and stationary listeners. Ecological Psychology, 12(3):181-206, 2000.

[16] M. Romer and I. Bernard Cohen. Roemer and the first determination of the velocity

of light (1676). Isis, pages 327-379, 1940.

101



[17] Patricia Daukantas. Ole Romer and the speed of light. Optics and Photonics News,

20(7):42-47, 2009.

[18] Thomas Hockey, Katherine Bracher, Marvin Bolt, Virginia Trimble, RichardJarrell,

JoAnn Palmeri,Jordan D March6, Thomas Williams, and FJamil Ragep. Biographical

encyclopedia of astronomers. Springer, 2007.

[19] The Nobel Prize in physics 1921. http: //www . nobelprize. org/nobelprizes/

physics/laureates/1921/.

[20] Bernd Jihne, Horst Haussecker, and Peter Geissler. Handbook of computer vision and

applications, volume 1. Academic Press, 1999.

[21] Richard I Hartley and Peter Sturm. Triangulation. Computer vision and image understand-

ing, 68(2):146-157, 1997.

[22] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud. Time-of-flight cameras:

principles, methods and applications. Springer, 2013.

[23] Robert Lange and Peter Seitz. Solid-state time-of-flight range camera. IEEE Journal

of Quantum Electronics, 37(3):390-397, 2001.

[24] Sergi Foix, Guillem Alenya, and Carme Torras. Lock-in time-of-flight (ToF) cameras:

a survey. IEEE Sensors Journal, 11 (9):1917-1926, 2011.

[25] Robert Lange. 3D time-of-flight distance measurement with custom solid-state image sensors in

CMOS/CCD-technology. PhD thesis, University of Siegen, 2006.

[26] D. M. Cash, T K. Sinha, W C. Chapman, H. Terawaki, B. M. Dawant, R. L. Gal-

loway, and M. I. Miga. Incorporation of a laser range scanner into image-guided

liver surgery: surface acquisition, reigsration, and tracking. Med. Phys., 30:1671-1682,

2003.

[27] P Breuer, C. Eckes, and S. Mifller. Hand gesture recognition with a novel IR time-

of-flight range camera-a pilot study. In Comp. Vis./Comp. Graphics Collab. Tech., pages

247-260. Springer, 2007.

102



[28] M. C. Amann, T Boch, R. Myllyla, M. Rioux, and M. Lescure. Laser ranging: a

critical review of usual techniques for distance measurement. Opt. Eng., 40:10-19,

2001.

[29] Y Cui, S. Schoun, D. Chan, S. Thrun, and C. Theobalt. 3d shape scanning with a

time-of-flight camera. In Proc. Computer Vsion and Pattern Recognition, 2010.

[30] J. C. Halimeh and M. Wegener. Time-of-flight imaging of invisibility cloaks. Opt.

Express, 20:63-74, 2012.

[31] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-Flight sensors in computer graph-

ics. In Proc. Eurographics, pages 119-134, 2009.

[32] A. Bhandari, A. Kadambi, R. Whyte, L. Streeter, C. Barsi, A. Dorrington, and

R. Raskar. Multifrequency time of flight in the context of transient renderings. In

ACM SIGGRAPH 2013 Posters, number 46, pages 46:1-46:1. ACM, 2013.

[33] Achuta Kadambi, Refael Whyte, Ayush Bhandari, Lee Streeter, Christopher Barsi,

Adrian Dorrington, and Ramesh Raskar. Customizing time of flight modulation codes

to resolve mixed pixels. In ACM SIGGRAPH 2013 Posters, number 29, pages 29:1-29:1.

ACM, 2013.

[34] J. P Godbaz, A. A. Dorrington, and M. J. Cree. Understanding and ameliorating

mixed pixels and multipath interference in amcw lidar. In TOF Range-Imaging Cameras,

pages 91-116. Springer, 2013.

[35] M. Frank, M. Plaue, H. Rapp, U. K6the, B.Jahne, and F. A. Hamprecht. Theoretical

and experimental error analysis of continuous-wave Time-of-Flight range cameras.

Proc. SPIE Conf on Vis. Commun. and Image Proc., 48(1):013602-013602, 2009.

[36] A. P Jongenelen, D. G. Bailey, A. D. Payne, A. A. Dorrington, and D. A. Carnegie.

Analysis of errors in tof range imaging with dual-frequency modulation. IEEE Trans.

on Instrumentation and Measurement, 60(5):1861-1868, 2011.

103



[37] D. Droeschel, D. Holz, and S. Behnke. Multi-frequency phase unwrapping for time-

of-flight cameras. In IEEE/RSJ Intl. Conf on Intell. Robots and Systems, pages 1463-1469,

2010.

[38] A.A. Dorrington, J.P Godbaz, M.j. Cree, A.D. Payne, and L.V Streeter. Separating

true range measurements from multi-path and scattering interference in commercial

range cameras. In IS&T/SPIE Electronic Imaging, pages 786404-786404, 2011.

[39] J.P Godbaz, M.j. Cree, and A.A. Dorrington. Closed-form inverses for the mixed

pixel/multipath interference problem in amcw lidar. In IS&T/SPIE Electronic Imaging,

pages 829618-829618, 2012.

[40] John P Godbaz, MichaelJ Cree, and Adrian A Dorrington. Understanding and ame-

liorating non-linear phase and amplitude responses in amcw lidar. Remote Sensing,

4(l):21-42, 2011.

[41] S. Y Chen, Y F Li, andJ. W Zhang. Vision processing for realtime 3d data acquisition

based on coded structured light. IEEE Trans. Image Proc., 17:167-176, 2008.

[42] Active Sensor Plnanning for Multiview Vision Tasks. Chen, S. Y. Springer, 2008.

[43] S. Fuchs. Multipath interference compensation in time-of-flight camera images. In

Proc. Computer Vision and Pattern Recognition, 2010.

[44] D. Jimenez, D. Pizarro, M. Mazo, and S. Palazuelos. Modelling and correction of

multipath interference in time of flight cameras. In Proc. Computer Vision and Pattern

Recognition, 2012.

[45] P Stoica and R. L. Moses. Introduction to Spectral Analysis. Prentice Hall, 1997.

[46] T Yamaguchi, I.and Zhang. Phase shifting digital holography. Opt. Lett., 22:1268,

1997.

[47] Adrian PPJongenelen, Dale A Carnegie, Andrew D Payne, and Adrian A Dorrington.

Maximizing precision over extended unambiguous range for TOF range imaging sys-

104



tems. In IEEE Intl. Conf on Instrumentation and Measurement Technology Conference (I2MTC),

pages 1575-1580. IEEE, 2010.

[48] A. Velten, T. Willwacher, 0. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar.

Recovering three-dimensional shape around a corner using ultrafast time-of-flight

imaging. Nature Communications, 3:745, 2012.

[49] J.J. Barton. Removing multiple scattering and twin images from holographic images.

Phys. Rev. Lett., 67:3106-3109, 1991.

[50] Aj. Jerri. The Shannon sampling theorem-its various extensions and applications: A

tutorial review. Proc. IEEE, 65(11):1565-1596, Nov. 1977.

[51] C. D. Boor, R. A. Devore, and A. Ron. Approximation from shift-invariant subspaces

of L 2 (Rd). Trans. Amer Math. Soc., 341(2):787-806, 1994.

[52] Y M. Lu and M. N. Do. A theory for sampling signals from a union of subspaces.

IEEE Trans. Signal Proc., 56(6):2334-2345, 2008.

[53] T Blu, P-L. Dragotti, M. Vetterli, P Marziliano, and L. Coulot. Sparse sampling of

signal innovations. IEEE Signal Proc. Mag., 25(2):31-40, March 2008.

[54] M. Vetterli, P Marziliano, and T Blu. Sampling signals with finite rate of innovation.

IEEE Trans. Signal Proc., 50(6):1417-1428, 2002.

[55] A. Bhandari and P. Marziliano. Sampling and reconstruction of sparse signals in frac-

tional Fourier domain. IEEE Signal Proc. Letters, 17(3):221-224, 2010.

[56] M. Elad. Sparse and redundant representations: from theory to applications in signal and image

processing. Springer, 2010.

[57] G. Pfander. Sampling of operators. Journal of Fourier Analysis and Applications, pages

1-39, 2013.

[58] E Krahmer and G. Pfander. Local sampling and approximation of operators with

bandlimited Kohn-Nirenberg symbols. arXiv, (1211.6048), 2013.

105



[59] R. Heckel and H. B61cskei. Compressive identification of linear operators. In Proc. of

IEEE Intl. Sym. on Info. Theory (ISIT), pages 1412-1416, August 2011.

[60] R. Heckel and H. B6lcskei. Identification of sparse linear operators. IEEE Trans. Info.

Theory (to appear), 2013.

[61] A. Kadambi, A. Bhandari, R. Whyte, A. Dorrington, and R. Raskar. Multiplexing il-

lumination via low cost sensing and nanosecond coding. In IEEE International Conference

on Computational Photography (ICCP), March 02-04 2014.

[62] D. Jimenez, D. Pizarro, M. Mazo, and S. Palazuelos. Modelling and correction of

multipath interference in time of flight cameras. In Comp. Vis. and Patt. Rec. (CVPR),

pages 893-900, 2012.

[63] S. Fuchs. Multipath interference compensation in time-of-flight camera images. In

Intl. Conf Patt. Rec. (ICPR), pages 3583-3586, 2010.

[64] I. M. Gel'fand and G. E. Shilov. Generalized Functions. Volume I: Properties and Operations,

volume 1. Academic Press, 1964.

[65] J. E Claerbout and Muir. F Robust modelling with erratic data. Geophysics, 38(1):826-

844, 1973.

[66] H. L. Taylor, S. C. Banks, andJ. F McCoy. Deconvolution with the ti norm. Geophysics,

44(1):39-52, 1979.

[67] J. J. Fuchs. Multipath time-delay detection and estimation. IEEE Trans. Signal Proc.,

47(1):237-243, 1999.

[68] F Santosa and W W Symes. Linear inversion of band-limited reflection seismograms.

SIAMj on Sci. and Stat. Comp., 7(4):1307-1330, 1986.

[69] Special issue on compressed sensing. IEEE Signal Processing Magazine, 25(2), 2008.

[70] P T Boufounos. Depth sensing using active coherent illumination. In Proc. IEEE Int.

Conf Acoustics, Speech, and Signal Processing, March 25-30 2012.

106



[71] E. J. Candes and C. Fernandez-Granda. Towards a mathematical theory of super-

resolution. Commun. on Pure and Appl. Math., 2013.

[72] S. Levy and P K. Fullagar. Reconstruction of a sparse spike train from a portion of

its spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235-

1243, 1981.

[73] B. Muquet, Z. Wang, G. B. Giannakis, M. De Courville, and P Duhamel. Cyclic

prefixing or zero padding for wireless multicarrier transmissions? IEEE Trans. Commun.,

50(12):2136-2148, 2002.

[74] G. Plonka and M. Wischerhoff. How many Fourier samples are needed for real func-

tion reconstruction? Jour of Appl. Math. and Comp., 42(1-2):117-137, 2012.

[75] J. Cadzow. Signal enhancement-A composite property mapping algorithm. IEEE

Trans. Signal Proc., 36(l):49-62, 1988.

[76] Y Hua and T K. Sarkar. Matrix pencil method for estimating parameters of exponen-

tially damped/undamped sinusoids in noise. IEEE Trans. Signal Proc., 38(5):814-824,

1990.

[77] Special issue on spectral estimation. Proc. IEEE, 70, Sept. 1982.

[78] Thomas Peter and Gerlind Plonka. A generalized prony method for reconstruction of

sparse sums of eigenfunctions of linear operators. Inverse Problems, 29(2):025001, 2013.

[79] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the K-SVD

algorithm using batch orthogonal matching pursuit. CS Technion, 2008.

[80] S. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, 1993.

[81] Jingyu Lin, Yebin Liu, Matthias B. Hullin, and Qionghai Dai. Fourier analysis on

transient imaging by multifrequency time-of-ffight camera. In IEEE Conf on Comp. Vis.

and Patt. Rec. (CVPR), page to appear, June 2014.

107



[82] Felix Heide, Lei Xiao, Wolfgang Heidrich, and Matthias B. Hullin. Diffuse mirrors:

3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight

sensors. In IEEE Conf on Comp. is. and Patt. Rec. (CVPR), page to appear,June 2014.

[83] Daniel Freedman, Eyal Krupka, Yoni Smolin, Ido Leichter, and Mirko Schmidt. SRA:

Fast removal of general multipath for ToF sensors. arXiv:1403.5919.

[84] Ahmed Kirmani, Arrigo Benedetti, and Philip A Chou. Spumic: Simultaneous phase

unwrapping and multipath interference cancellation in time-of-flight cameras using

spectral methods. In IEEE Intl. Conf on Multimedia and Expo (ICME), pages 1-6, 2013.

[85] Joseph R Lakowicz. Principles offluorescence spectroscopy. Springer, 2007.

108




