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SUMMARY 

Objective 

Scheduled air transport services connect airports throughout the world and thereby enable 

interaction on a global scale. By doing so, they spur globalization (Hummels, 2007) as well as 

social and economic development (Lakshmanan, 2011). In order to facilitate integration of 

regions into global value chains, planners, scholars and policymakers therefore need to 

understand as to how scheduled air transport services link a region to other markets. For this 

purpose, connectivity metrics have been developed, which measure the degree of connections 

between airports (Burghouwt, Redondi, 2013). In particular, the ‘connection quality-weighting’ 

approach (Veldhuis, 1997; Burghouwt, de Wit, 2005) has been used to compute the aggregate 

quality of all available connections at an airport with regard to their properties in quickly 

bridging distances. However, such a metric has neither been calibrated on the basis of observed 

passenger behavior nor been computed for the world’s airports across a multi-decade time series. 

This paper sets out to develop the first such metric and to discuss global airline network 

development between 1990 and 2012 from a connectivity perspective.  
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Methodology 

The Global Connectivity Index (GCI) for each airport is computed by summing the connection-

quality of each available flight connection weighted by the interaction potential, to which the 

connection provides access. This requires three levels of analysis. First, on the link-identification 

level, we identify from OAG flight schedules all scheduled nonstop and onestop connections, 

which are available to passengers at each airport. Second, on the link-quality level, we compute 

each connection’s frequency and relative connectivity value as compared to (hypothetical) 

nonstop flights. The relative connectivity value is derived from flight duration and layover time 

and calibrated through observed routing data for US passengers. Third, on the destination-quality 

level, we model the interaction potential, to which each worldwide airport provides access. For 

this purpose, we use gridded wealth-adjusted population data and a distance-decay function. 

 
Results 
By computing yearly GCI scores for 1990 to 2012, we analyze the geography of and trends in 

worldwide connectivity. While we observe significant growth of aggregate connectivity at the 

world’s airports, the growth patterns are heterogeneous with regard to the type of connectivity as 

well as time and location: First, nonstop connectivity increases significantly and steadily at Asian 

airports from 1990 to 2012, yet remains relatively unchanged at North American airports and   

European airports between 2000 and 2012. Economic crises as well as consolidation among 

legacy carriers, which has been offset by the emergence of newly established Low Cost Carriers, 

can be considered key contributors to the limited growth in nonstop connectivity in North 

America and Europe. Second, growth in global onestop connectivity outperforms growth in 

nonstop connectivity by a factor of ~3.5. Onestop connectivity growth coincides with the 

extension of global hub-and-spoke networks through increasing cooperation among airlines.  
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1 Introduction 

Air transport connections enable interaction on a global scale, thereby catalyzing globalization 

(Hummels, 2007) and spurring social and economic development (Lakshmanan, 2011). 

Consequently, there is a significant societal interest to analyze air transport networks in terms of 

the connections, which airports offer to potential users in its surrounding regions. In order to 

appraise air transport-related policy measures such as, for example, airport infrastructure 

investments or route subsidies, there is a need for planners and policymakers to consider the 

impact of these measures on air transport connections. 

Researchers have evaluated air transport networks and their connections with different 

approaches as summarized in recent reviews by Zanin and Lillo (2013) and Burghouwt and 

Redondi (2013). While Zanin and Lillo (2013) focus on analyses of network structure and 

overall network performance, Burghouwt and Redondi (2013) specifically address the concepts 

of ‘connectivity’ and ‘centrality’. They define connectivity as the degree of connection between 

nodes (airports) in a network and centrality as the significance of transfer points in forming 

indirect connections. In their review, Burghouwt and Redondi (2013) distinguish several metrics, 

including metrics based on shortest and quickest connection paths (e.g. Shaw, Ivy, 1994; 

Malighetti et al., 2008; Paleari et al., 2010; Zhang et al., 2010) as well as metrics computed by 

summing connection quality over all available connections (e.g. Veldhuis, 1997; Burghouwt, de 

Wit, 2005). However, they do not discuss the relative merits of these metrics. While shortest and 

quickest paths analyses study overall network quality through optimal connections, ‘connection 

quality-weighting’ approaches focus on the ‘value’ of each connection as perceived by 

passengers. The latter approach consider all feasible connections for reaching each available 

destination and use a set of assumptions to compute the (relative) ‘connectivity value’ of each 

link. Connectivity values are derived from the relative quality of each connection in terms of 

passengers’ efforts in traveling on that connection (i.e. flight duration and layover time) 

Transaction-specific idiosyncrasies such as tastes or fares, which vary among potential 

passengers and impact on each passenger’s itinerary choice, are not considered since they cannot 

be aggregated to the route level, yet. 

To date, no analysis exists which evaluates ‘quality-weighted’ connectivity and/or centrality at 

the world’s airports with the help of an empirically calibrated model. Such a model is developed 

in this paper. We compute these metrics to analyze worldwide connectivity and centrality trends 
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between 1990 and 2012. This period is of particular interest since it includes major changes in 

the airline industry by means of deregulation and liberalization in different world regions, and 

the emergence of global airline alliances and new airline business models. 

The remainder of this paper proceeds as follows: In Section 2, the building blocks of ‘connection 

quality-weighted’ connectivity and centrality are outlined. Section 3 develops the connectivity 

and the centrality metrics. Global and world-region trends in connectivity and centrality between 

1990 and 2012 are analyzed in Section 4. Section 5 concludes. 

 

2 Building Blocks of the Model 

Following ‘connection quality-weighting’ approaches (Veldhuis, 1997; Burghouwt, de Wit, 

2005), we compute connectivity and centrality by assessing the quality of each air travel 

opportunity. For this purpose, we structure the analysis into three levels (Fig. 1).  

Fig. 1. 
Building blocks of the connection quality-weighting approach. 

 

First, on the ‘link-identification-level’, we identify each airport’s travel connections to all linked 

destinations as well as each connection’s transfer point (if applicable). Since air transport is 

mostly scheduled transport, links are formed through (a series of) scheduled flights. We do not 

follow analyses of shortest and quickest paths (e.g. Shaw, Ivy, 1994; Malighetti et al., 2008; 

Paleari et al., 2010; Zhang et al., 2010), but instead identify all connections, which a passenger 

might consider a feasible travel option. In so doing, we follow our objective to evaluate 

connectivity and centrality of the entire network as perceived by passengers. 

Second, the ‘link-quality-level’ assesses the ‘connectivity value’ of each connection through the 

efforts to overcome distances with the help of the respective connection. As shown in the 

itinerary choice literature (Coldren, Koppelmann, 2005; Hsiao, Hansen, 2011), a connection’s 

quality is systematically driven by its frequency and its directness. The additional value of higher 
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frequencies results from a reduction in waiting time between a passenger’s desired departure 

time and the scheduled departure time. The directness of a flight connection is a function of 

detours and layovers which both cause disutility to the passenger. As discussed in the 

introduction, fares are not considered, as fares are not a systematic property of a scheduled 

connection due to widespread yield management practices leading to transaction-specific fare 

levels. 

Third, the ‘destination-level’ is used to account for the economic value of a connection in terms 

of the interaction potential, to which the respective connection provides access. Most analyses of 

air transport networks (e.g. Shaw, Ivy, 1994, Paleari et al., 2010) do not consider this quality 

dimension since they intend to evaluate traffic patterns and overall network performance without 

accounting for destination properties. In order to meet our objective of assessing the quality of 

each connection from a potential passenger’s perspective and in line with the Economic 

Geography literature (Redding, Venables, 2004; Breinlich, 2006; Redding, 2010), we add a 

destination quality dimension to the connectivity model. Consequently, our connectivity metric 

bears some resemblance to a transport-related accessibility metric, which maps the level of 

potential interaction accessible through transport from a specific location (Geurs, van Wee, 

2004).  

  



How Air Transport Connects the World 8 

3 The Model 

3.1 The Connectivity Model 

The connectivity metric is derived from the building blocks as outlined in Section 2. It extends a 

connectivity metric developed by Wittman and Swelbar (2014) through adding a global 

perspective, an itinerary model, an assessment of onestop flights’ relative connectivity value and 

continuous modeling of global destination quality.  

To compute the Global Connectivity Index score !"!!,! for an airport ! in year !, let ! be the 

set of world airports, !!,! be the set of all destination airports that can be reached from airport ! 

in year ! and ℛ!,! be the set of all routings which link airport ! to its set of destinations !!,! in 

year ! . Assuming the connectivity metric to be the sum of potential destinations’ quality 

weighted by properties of each routing, we yield eq. (1). 

!"#!,! = !!,!!!,!!!!,!
!∈ℛ!,!

! (1) 

where !!,! maps the directness of routing ! ∈ ℛ!,!, !!,! measures routing !’s frequency in year ! 
and !!!,! is the destination quality of route !’s final destination airport !! ∈ !!,! ⊆ !  in year !. 
The model is parameterized with the help of four sub-models, which are discussed in the 

subsequent paragraphs. 

3.1.1 Itinerary Model 

The Itinerary Model parameterizes the ‘link-identification-level’ by identifying each departure 

airport a ∈ !’s set of valid routings ℛ!,! in year !. For the identification of ℛ!,!, two routing 

types are distinguished: 

1. Nonstop Routings 

A nonstop routing ! consists of a single scheduled flight which links departure airport 

!! ∈ !! to destination airport !! ∈ !!,! without a stop. It is identified through the tuple 

!!!"!#$"% = !!;!!;!"#$"%!!; !!!,!! !where !"#$"%!!  is the operating airline of routing !’s 

flight and !!!,!!! is routing !’s arrival time at destination airport !!. The set of airport !’s 

nonstop routings ℛ!,!
!"!#$"%  is derived from flight schedules as published in the Official 

Airline Guide (OAG). It is obtained by listing all scheduled passenger flights, which depart 
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airport ! during year !.1 For multi-segment flights (e.g. NZ1 on LHR-LAX-AKL), we treat 

the first destination airport as being connected through a nonstop routing (e.g. LHR-LAX for 

LHR or LAX-AKL for LAX) only.  

2. Onestop Routings 

A onestop routing !  links its departure airport !! ∈ !  to its destination airport !! ∈
!!through two scheduled flights and a transfer at layover airport !! ∈ !. It is identified 

through tuple !!!"#$%!& = !!; !!;!!;!"#. !1!;!"#. !2!; !!!,!!; !!!,!! ! where !"#. !1!  and 

!"#. !2! are the operating airlines of routing !’s first and second flight respectively, !!!,!! is 

the arrival time of routing !’s first flight at layover airport !! and !!!,!! is the departure time 

of routing !’s second flight from layover airport !! .!Identification of an airport !’s set of 

valid onestop routings ℛ!,!
!"#$%!&builds on the set of its nonstop routings  ℛ!,!

!"!#$"%. For each 

nonstop flight, we list all connecting flights in airport !!’s flight schedule to build all 

potential onestop routings, each mapped by !!!"#$%!& . A potential onestop routing is 

considered a feasible onestop routing ! ∈ ℛ!,!
!"#$%!&if the following conditions are met: 

i. Since passengers need sufficient time for a transfer at layover airport !!, a valid 

routing must meet !!!,!! − !!!,!! ≥ 30!!"#.2  

ii. If flights of routing ! are operated by different airlines or if the operating airline does 

not sell connecting itineraries on a single ticket, passengers will have to buy separate 

tickets, will have to bear the risk of missing their connection (without monetary 

compensation) and will have to re-check their baggage. Given this disutility, only 

onestop routings with two flights operated by a single airline, which sells connecting 

tickets, 3  are considered feasible routings. 4  Exceptions are routings, which are 

operated under code-share agreements. Such routings are evaluated as if the itinerary 

was operated by a single airline (Oum, Park, 1997; Park, 1997). This yields the 

conditions in eqs. (2). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1  For this analysis, the OAG data is filtered to include (i.) scheduled passenger flights only and (ii.) to remove multiple 

listings of a single flight (i.e. codeshare entries). 
2  We note that minimum layover time can exceed 30 min at numerous airports and longer minimum connection times (MCT) 

have been assumed in the literature (e.g.Veldhuis, 1997, Paleari et al., 2010). As most passengers transfer at hubs where 
airlines coordinate incoming and outgoing traffic to offer indirect connectivity (Burghouwt, de Wit, 2005), bias of using a 
short MCT is smaller than using long MCT.  

3  Many European Low Cost Carriers, for example, do not offer connecting tickets. A year-specific list of all airlines, which do 
not offer connecting flights, is compiled through desktop research. In a first step, we use an heuristic approach so that all 
airlines, which offer code shares, are assumed to sell transfer connections. 

4!! We note that this approach implicitly assumes a prohibitively high disutility of ‘self-help hubbing’ (Malighetti et al., 2008). !
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!!". !1! = !"#. !2! !!∧ !!!"#$%&'" !!". !1! = 1  (2a) 

∨ !"#. !1! ∈ Γ!!! !∨ !"#. !2! ∈ Γ!!! ! (2b) 

where Γ!!! [Γ!!!] is the set of airline codes on flight 1 [flight 2] of routing !5! and 

!"#$%&'" ! = 1!!!!if#airline#a#offers#connecting#tickets
0!!!!else$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ (3) 

We assume the set of all routings to consist of the set of nonstop routings and the set of onestop 

routings ℛ!,! = ℛ!,!
!"!#$"% ∪ ℛ!,!

!"#$%!& . Burghouwt and Redondi (2013) suggest that limiting 

the analysis to nonstop and onestop connections induces negligible bias for short- and medium-

haul connections, while some bias might exist for ultra-long-haul journeys (≥ 8,000 km). For our 

model, we regard such potential bias to be negligible for two reasons. First, transfers result in 

significant additional travel time for taxi, take-off and landings as well as for potential detours. 

Second, empirical analyses show that waiting time and transfer time cause high disutility to 

passengers (Veldhuis, 1997; Wardman, 2004). Since our model considers these dimensions of 

connection quality, it would assign very low connectivity values to itineraries with more than 

one transfer so that such itineraries would contribute only negligibly to overall connectivity. 

3.1.2 Frequency Model 

Frequency is considered as a driver of connectivity on the ‘link-quality-level’. Since a routing ! 

is defined through the combination of origin airport !! ∈ ! , layover airport !! ∈ !  (if 

applicable), destination airport !! ∈ !, operating airline(s) and arrival and departure times, we 

map multiple daily frequencies as different routings.6 In an effort to avoid potential seasonality 

bias caused by computing connectivity scores for a small number of days (e.g. Malighetti et al., 

2008; Paleari et al., 2010; Redondi et al., 2011), we run a yearly connectivity analysis.7 

Therefore, frequency !!,! maps the number of days on which routing ! is operated during year !. 
For onestop routings, both flights have to be operated to consider the routing operational.   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5  Codeshare information is drawn from OAG schedule data. Each entry’s codeshare set, which is posted in the original OAG 

schedules, is completed through adding codes from duplicate entries. 
6  Given the additive nature of the GCI score, this approach is equivalent to an approach which does not use a time-sensitive 

routing definition and therefore, explicitly considers frequency during the day.  
7  The data, which is used for this purpose, represent schedules as loaded in the OAG database in December (1990-1998) or 

January (1999-2012). 
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3.1.3 Directness Valuation Model 

The directness valuation model evaluates the quality of a routing in terms of its directness. In 

previous connectivity analyses that consider routings’ connection quality authors have suggested 

to uniformly value onestop routings at one eighth of the value of a nonstop routing (Emrich, de 

Harris, 2008; Wittman, Swelbar, 2014). Since onestop routings are heterogeneous with respect to 

their detour and layover though, we follow Veldhuis (1997) and Burghouwt and de Wit (2005) 

and derive a relative connectivity value !! for each routing !. This value is introduced so as to 

map the relative disutility of onestop routings as compared to (hypothetical) nonstop routings. 

We do not derive the relative connectivity value from disutility as compared to the quickest path 

(Redondi et al., 2011) because quickest paths’ directness is heterogeneous (Paleari et al., 2010) 

so that it cannot be used to normalize disutility. As shown in eq. (4), we therefore model !! as a 

function ! ∙  of its detour factor Δ!.  

!! = ! Δ!  (4) 

where the detour factor Δ! is computed as the ratio of total perceived travel time on routing ! as 

compared to the travel time on a (hypothetical) direct flight between airports !! and !!. This 

yields eq. (5).8 

Δ! =
1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!∀!!! ∈ !!!"!#$"%
!"#$!!!,!! + !"#$!!!,!! + ! ∙ !"#$!!

!"#$!!!,!!
!!!!∀!!! ∈ !!!"#$%!&

 (5) 

where !"#$!!,! is the duration of a flight between airports ! and !, !"#$!! is the layover time at 

airport !! on route ! and ! is the relative value of layover time as compared to flight time. The 

latter is considered because empirical evidence suggests the disutility of in-vehicle time (flight 

time) to be lower than the disutility of waiting (layover) time (Veldhuis, 1997; Wardman, 2004). 

Given recent empirical analyses on the value of waiting time for public transport, we assume 

! = 2 (Abrantes, Wardman, 2011).9 

For the calculation of Δ!, routing !’s scheduled layover time is computed as !"#$!! = !!!,!! −
!!!,!! . In order to use a consistent set of operational assumptions for all flights and to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8  Note that Δ! = 1!!!∀!!r ∈ ℛ!

!"!#$"%!since there is no layover and no detour for direct flights. 
9  Veldhuis (1997) assumes ! = 3 and Burghouwt and de Wit (2005) use ! = 2.4, but none of the analyses derive their values 

from published empirical literature.  
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homogenize scheduling behavior of airlines, the duration of nonstop flights is estimated with the 

help of the linear block-time model in eq. (6).  

!"#$!!,! = !! + !! ∙ !"#!!,! (6) 

This model assumes a flight’s block-time (scheduled gate-to-gate duration of a flight) to be a 

linear function of its great circle distance !"#!!,!  and a fixed block-time component !! for 

taxiing, take-off and landing. The parameters !! and !! are estimated by using OLS procedures10 

and OAG’s block-time data! on 27.66m worldwide scheduled nonstop flights in 2008. Great 

circle distance for each flight is computed by using geographical airport positions from the Open 

Flights Airport Database. The estimates are reported in Tab. 1. In Fig. 2, a scatterplot of the data 

and of the block time predictions is presented. The results show a high fit of the model so that the 

empirically calibrated model can be used to obtain scheduled block-time predictions.  

Fig. 2. 
Block time, estimated block time and great circle distance. 

 
 
 

Tab. 1. 
Estimation results for the block-time# model. 

Parameter Variable Estimate 
β0 cons. 39.12*** 

(0.032) 
β1 dista,b 0.072*** 

(0.000) 
R2  0.9667 
N  27,661,130 

Standard errors in parenthesis. 
#  Block-times are reported in minutes. 
*** Significant at the 1 % level.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10  By following this approach, we implicitly assume an ’average flight scenario’ for all flights. This scenario does neither 

account for route-specific impacts of aircraft choice nor for route-specific impacts of congestion or prevailing weather 
conditions. Thus, flight time differences result from ceteris paribus variations of distance, only.  
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To compute relative connectivity values !!, we parameterize function !(∙) as follows:  

1. We normalize the relative connectivity value of a nonstop connection ! ∈ !!!"!#$"% to 

!! = 1. This yields  !! = ! Δ! = 1 = 1.  

2. We assume that a critical detour factor Δ exists so that ! Δ! = 0!!!∀!!Δ! ≥ Δ. Thus, a 

onestop routing ! is assigned a relative connectivity value of 0, if passengers are not 

willing to accept its detour (∆!> ∆). 
By using linear interpolation for"1 ≤ Δ! ≤ Δ,"we yield eq. (7). 

!! = max 0, Δ
Δ− 1−

1
Δ− 1 ∙ Δ!  (7) 

Although previous analyses have assumed a maximum detour factor (Veldhuis, 1997; 

Burghouwt, de Wit, 2005; Redondi et al., 2011), Δ has not yet been calibrated empirically. For 

the calibration, this analysis studies Q2-2011 US-domestic ticket data from the DB1B sample on 

the degree of detour that passengers are willing to bear. For each onestop ticket in the sample, we 

compute Δ!  by using ticket information and complementary OAG flight schedule data. Δ is 

estimated through the 95th percentile11 of the observed Δ! (Tab. 2). We do not use the observed 

maximum of Δ!, since the distribution of observed Δ! is positively skewed and leptokurtic12 due 

to potential outliers and/or unlabeled multi-segment itineraries. 

In line with Veldhuis (1997), one might argue that Δ is a function of (hypothetical) direct flight 

distance !"#!!!,!! since the maximum acceptable detour in absolute terms might increase with 

!"#!!!,!!, but declines in relative terms. By calculating the 95th percentiles of observed Δ! for 

350-km-intervals of !"#!!!,!! (Tab. 2), we indeed identify a reduction of Δ with !"#!!!,!!. To 

avoid arbitrary breaks, Δ conditional on !"#!!!,!! is modeled through linear interpolation of the 

estimates (Fig. 3). The DB1B sample contains US-domestic tickets only so that 96.3 % of the 

covered nonstop flights are shorter than 4,200 km. Given visual indications of Δ’s convergence 

towards a constant value for high !"#!!!,!! (Fig. 3), we assume Δ to be constant for !"#!!!,!! ≥
4200!!".  

To validate the directness valuation model, we compute critical layover time and relative 

connectivity values for connections with a 45 min layover. The results are shown in Tab. 3. We 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11  The 92nd and the 97th percentile are considered to assess the sensitivities. 
12  Skewness ! = 6.68 and curtosis ! = 130.91.  
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find that the weights (for a 45 min layover) and critical layover times appear to be within 

reasonable bounds, which provides evidence for the validity of the directness valuation model. 

Tab. 2. 
Percentiles of Δ! in Q2-2011 DB1B tickets. 

Distance range 92nd 
Percentile 

95th 
Percentile 

97th 
Percentile from [km] to [km] 

0 350 3.757253 4.070018 4.3370387 
350 700 3.4519708 3.6936926 4.0369704 
700 1050 2.9950553 3.1914789 3.4916569 
1050 1400 2.6292191 2.8322571 3.1274016 
1400 1750 2.368249 2.544571 2.8105519 
1750 2100 2.177788 2.329377 2.560708 
2100 2450 2.0806659 2.2152831 2.4047286 
2450 2800 1.9633982 2.0890465 2.2553335 
2800 3150 1.9133304 2.0356163 2.2538368 
3150 3500 1.8464689 1.9590001 2.1074851 
3500 3850 1.819149 1.9255417 2.0841169 
3850 4200 1.7557251 1.8695927 2.0426838 
All distances 3.1266324 3.4331318 3.8511574 

 
 

 

Fig. 3. 
Maximum relative detour factor. 
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Tab. 3. 
Validation of the directness valuation model 

Origin 
airport 

Layover 
airport 

Destination 
airport 

Estimated block time 92nd Percentile ! 95th Percentile !      97th Percentile ! 
Nonstop 
[min] 

Onestop[min] Critical 
Layover 
[min]* 

Weight 
with 45 
min 
layover 

Critical 
layover 
[min]* 

Weight 
with 45 
min 
layover 

Critical 
layover 
[min]* 

Weight 
with 45 
min 
layover 

CDG MUC LHR 64 195 18 0.000 27 0.000 37 0.00 
CDG AMS LHR 64 134 49 0.047 58 0.138 68 0.22 
CDG ARN LHR 64 294 - ** 0.000 - ** 0.000 - ** 0.00 
CDG FRA JFK 459 556 125 0.462 151 0.532 191 0.61 
CDG VIE JFK 459 643 82 0.212 108 0.315 148 0.43 
CDG LHR JFK 459 502 152 0.617 178 0.667 218 0.72 
CDG ARN JFK 459 642 82 0.213 108 0.316 148 0.43 
CDG MUC HKG 730 777 252 0.751 294 0.784 357 0.82 
CDG AUH HKG 730 889 196 0.548 238 0.607 301 0.67 
CDG JNB HKG 730 1476 - ** 0.000 - ** 0.000 7 0.00 
CDG LHR HKG 730 797 242 0.715 284 0.752 347 0.79 
CDG AMS IST 200 266 76 0.286 90 0.365 109 0.45 
CDG ARN IST 200 348 35 0.000 49 0.031 68 0.16 
CDG MUC IST 200 241 89 0.403 103 0.469 122 0.54 
CDG FCO IST 200 257 81 0.327 94 0.402 114 0.48 
CDG MAD IST 200 350 34 0.000 48 0.023 67 0.16 
CDG SIN SYD 1259 1304 454 0.859 525 0.877 634 0.90 
CDG ICN SYD 1259 1322 445 0.840 516 0.861 625 0.88 
CDG PEK SYD 1259 1314 449 0.849 520 0.868 629 0.89 
CDG DXB SYD 1259 1323 444 0.839 516 0.860 625 0.88 
CDG HKG SYD 1259 1301 455 0.861 527 0.879 636 0.90 
BOS ATL MIA 185 257 70 0.240 84 0.326 104 0.42 
BOS ORD MIA 185 317 40 0.000 54 0.073 74 0.21 
BOS IAH MIA 185 375 12 0.000 25 0.000 45 0.00 
BOS JFK MIA 185 226 86 0.383 99 0.453 120 0.53 
BOS ATL LAX 341 413 93 0.372 112 0.454 142 0.54 
BOS ORD LAX 341 380 109 0.499 129 0.565 158 0.64 
BOS CLT LAX 341 408 95 0.390 115 0.470 144 0.56 
BOS JFK LAX 341 386 106 0.476 126 0.545 155 0.62 
BOS MIA LAX 341 495 52 0.053 71 0.177 101 0.31 
BOS YYZ IAH 224 278 83 0.345 97 0.420 116 0.50 
BOS ATL IAH 224 268 88 0.393 102 0.462 121 0.53 
BOS JFK IAH 224 264 90 0.409 104 0.477 123 0.55 
BOS SFO IAH 224 580 - ** 0.000 - ** 0.000 - ** 0.00 
BOS FRA DUS 451 516 138 0.545 164 0.605 203 0.67 
BOS CDG DUS 451 505 143 0.577 169 0.632 208 0.69 
BOS LHR DUS 451 492 150 0.616 176 0.666 215 0.72 
BOS ARN DUS 451 594 99 0.316 124 0.405 163 0.50 
BOS KEF DUS 451 517 137 0.543 163 0.603 202 0.67 
BOS FCO DUS 451 633 79 0.201 105 0.306 144 0.42 
BOS MAD DUS 451 576 108 0.368 133 0.451 172 0.54 
*  Layover time which yields ∆= ∆  and ! = 0. Minimum connecting time and actual schedules are not considered. 
** A critical layover time does not exist, since the flights use the maximum allowed additional perceived travel time.  
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3.1.4 Destination Quality 

The destination quality model addresses the ‘destination-level’ by evaluating the level of 

potential economic interaction to which an airport provides access. Since interaction partners are 

only partially located at the airport, the model needs to (i.) define the geographical area to which 

airports provide access and (ii.) identify a metric for interaction potential. As shown in eq. (8), 

both dimensions are reflected in destination airport !!’s quality metric !!!! , which is defined in 

line with Accessibility metrics (Paez et al., 2012) and market access metrics in (New) Economic 

Geography (Redding, 2010). 

!!!! = ℎ !"#$!!,! !!
!∈!!!

.! (8) 

where the set of markets!!!!, to which a destination airport !! provides access, and the decay 

function ℎ(∙), which is driven by linear distance !"#!!!,! between airport !! and market !, map 

the geography of the destination market while!!!  measures market ! ’s level of potential 

interaction. 

Contrary to the geographical scope of airport catchment areas for departing passengers, no 

literature exists, to date, on the geographical scope of regions to which arrival airports provide 

access. However, it is reasonable to assume that access to regions from an arrival airport is 

symmetric to airport access for departing passengers. The latter has been analyzed in airport 

choice studies, which have identified a negative impact of airport access impedance on airport 

choice (Pels et al. 2001; Başar, Bhat, 2004; Hess, Polak, 2005; Ishii et al., 2009; Marcucci, Gatta, 

2011).13 While such evidence underlines the significance of a decay pattern, the functional form 

of that pattern remains unexplored, since most analyses apply choice models derived from linear 

or linear-log utility functions. Notable exceptions are Harvey (1987), Hess et al. (2007) and de 

Luca (2012). Given their results, one might expect the decay function to be inversely s-shaped. 

Thus, we model the decay pattern through the logistic decay function in eq. (9).  

ℎ !"#$!!,! = !
1+ !!!∙!"#!!!,!!! ! (9) 

which is decreasing for ! < 0 and inversely s-shaped for ! < 0. For ! < 0, this pattern implies 

that markets far-away from an airport !! do not significantly add to airport !!’s destination 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13  We note that according to airport choice studies, air service-related attributes impact on airport choice. We do not model 

such attributes, as our analysis investigates the quality of the market, to which destination airports potentially provide 
access. 
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market quality, since ℎ(∙) → 0  for !"#!!!,! → ∞ . To avoid large computational burden, 

especially in case of using high-resolution market data, without inducing considerable error, we 

modify ℎ(∙) to include a distance threshold !"#$ so that ℎ !"#$!!,! = 0 for !"#$!!,! > !"#$. 
This yields eq. (10). 

ℎ !"#$!,! = max 0, !
1+ !!!∙!"#!!!,!!! − ! ! (10) 

Parameters !, !, ! and ! are fitted as follows: 

1. The decay function is standardized by assuming ℎ !"#$!!,! = 0 = 1. Based on this 

assumption, the scaling parameter ! is calculated as shown in eq. (11). 

! = (1+ !!)(! + 1)! (11) 

2. Matisziw and Grubesic (2010) consider airports within 257 km as part of a person’s 

airport choice set. By assuming symmetry of airport access and market access, we yield 

!"#$ = 257 km and eq. (12). 

! = (1+ !!)(! + 1)
1+ !!!∙!"#!! ! (12) 

3. We consider the decay function a representation of (scaled) passenger density, so that the 

share of passengers !"#!$%(!!), who travel less than !! km to airport !!, at airport !! is 

shown in eq. (13).  

!"#!$% !! =
ℎ !"#!!!,! !!"#!!!,!

!!
!

ℎ !"#!!!,! !!"#!!!,!
!"#$
!

! (13) 

While considering eqs. (10), (11) and (12), we use eq. (13) to compute !"#!$% for a 

distance threshold !! at given ! and !. With the help of airport choice data, parameters ! 

and ! can now be chosen so as to minimize the sum of squared deviations between 

observed and estimated passenger shares. For that purpose, we use data from the 2001 

Airline Passenger Survey for the San Francisco Bay Area (CRA, 2004) and from the 

2003 German Air Traveler Survey (Wilken et al., 2007).14 This yields ! = 1.0500, 

! = −3.0020 , ! = 0.0003  and ! = −0.0435  with an average absolute deviation of 

estimated and observed passenger shares at 3 percentage points. The resulting decay 

pattern is plotted in Fig. 4. !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14  From the Airline Passenger Survey for the San Francisco Bay Area, we include data on the share of (weighted) passengers 

for distance thresholds between 75km and 250 km at a 25 km resolution. In addition, the average share at a 75 km threshold 
at German airports is considered.  
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Fig. 4. 
Airport access decay pattern. 

!
We note that this analysis sets out to approximate markets, to which airports potentially provide 

access. Thus, it does not model observed passenger behavior, which varies between airports or 

between destination markets at a specific airport (Wilken et al., 2007; Lieshout 2012). 

Nevertheless, we regard this approach as advancing previous work since it does neither rely on a 

subjective definition of a maximum access distance threshold without any decay (Malighetti et 

al., 2008; Maertens, 2010) nor on subjective definitions of decay not backed by observed 

passenger behavior (e.g. Bel, Fageda, 2010). 

To model the level of potential interaction in market !, gridded global population data adjusted 

by differences in wealth levels is used. 15 In particular, the analysis is based on the LandScan 

data16, which contains global estimates of ambient population at a 30 arc-second resolution for 

yearly model iterations between 2000 and 2012 (Oak Ridge National Laboratory, 2014). For 

missing years, population data is obtained by applying yearly country-level population growth 

rates from the World Bank’s World Development Indicators database (World Bank, 2014a) to 

each grid cell. Wealth differences are considered by normalizing the population in each grid cell 

with GDP per capita data from the World Development Indicators database for the respective 

country and year.  

For our calculations, we use the standardized destination quality metric !!!,! in eq. (14). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15  We do not follow Wittman and Swelbar (2014) or Reynolds-Feighan and McLay (2006) in using traffic data to approximate 

destination quality since traffic does not reflect the level of potential interaction to which a destination airport provides 
access. 

16  LandScan (2000 through 2012)™ High Resolution global Population Data Set is copyrighted by UT-Battelle, LLC, operator 
of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.   
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!!!,! =
!!!,!!

max !!,!!! !|!! ∈ !!! ∧ !!!′ = ! !!.! (14) 

This metric can be interpreted as the relative quality of the market, to which airport !! provides 

access, in year ! as compared to the highest observed destination quality of any airport in year !. 
Year-2007 results for the LandScan-based destination quality metric are presented in Tab. 4.  

 

Tab. 4. 
Results from the destination quality model for the year 2007. 

Airport City Country IATA 
Code 

!!!,! 
Percentile 
in Dataset 

Tokyo Intl. Tokyo Japan HND 0.949 0.0% 
Newark Liberty Intl. Newark United States EWR 0.730 0.2% 
John F. Kennedy Intl. New York United States JFK 0.705 0.2% 
Heathrow London United Kingdom LHR 0.594 0.5% 
Los Angeles Intl. Los Angeles United States LAX 0.512 0.7% 
Düsseldorf Düsseldorf Germany DUS 0.501 0.8% 
Manchester Manchester United Kingdom MAN 0.445 1.2% 
Orly Paris France ORY 0.418 1.6% 
Charles De Gaulle Paris France CDG 0.409 1.6% 
Schiphol Amsterdam Netherlands AMS 0.360 2.1% 
Chicago O'Hare Intl. Chicago United States ORD 0.360 2.1% 
Brussels Brussels Belgium BRU 0.359 2.2% 
Incheon Intl. Seoul South Korea ICN 0.340 2.5% 
Ronald Reagan Washington Natl. Washington United States DCA 0.276 3.2% 
Washington Dulles Intl. Washington United States IAD 0.246 4.1% 
Hong Kong Intl. Hong Kong Hong Kong HKG 0.221 4.6% 
 ...         

 Bahrain Intl. Bahrain Bahrain BAH 0.036 24.9% 
Lourdes Tarbes France LDE 0.035 25.1% 
 ...         

 Lanzarote Las Palmas Spain ACE 0.006 50.0% 
Luxor Intl. Luxor Egypt LXR 0.005 50.2% 
 ...         

 Strahan Airport Strahan Australia SRN 0.001 74.9% 
Teniente Vidal Coyhaique Chile GXQ 0.001 75.2% 
 ...         
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3.2 The Centrality Model 

For each airport ! ∈ ! , we define the set of onestop routings ℛ!,!
!"#$%!&  which pass 

through airport !, so that !! = !!!∀!!! ∈ ℛ!,!
!"#$%!&. Following eq. (1), airport !’s Global 

Hub Centrality Index score !"#!!,! can be calculated as the sum of destination quality at 

each destination !! !!∀!!! ∈ ℛ!,!
!"#$%!& weighted by properties of the respective routing. 

This yields eq. (15). 

!"#$!,! = !!,!!!,!!!!,!
!∈ℛ!,!

!"#$%!&
! (15) 

Applying the methodology from Section 3.1 parameterizes this metric. 

3.3 Growth Decomposition of the Metrics 

As analytically shown in Appendix A, changes of the GCI metric over time can be 

decomposed into three partial effects: 

1. Network effects 

 Network effects capture GCI-variation, which results from ceteris paribus changes of 

air services, i.e. in frequency, layover time or layover airport. We note, that in order 

to compute these network effects, the GCI decomposition (Appendix A) requires the 

network-induced changes in connection quality to be weighted by the year-1990 

destination quality score. If one wants to map network changes without accounting 

for destination weights, a related metric, the change in destination-invariant GCI, 

should be used. This is because the destination-invariant GCI assumes the destination 

weight to be 1 for all airports. 

2. Destination-quality effects 

Destination-quality effects are changes in GCI, which result from ceteris paribus 

variation in destination quality. In a full decomposition of GCI growth, these effects 

must be calculated by assuming connection quality as derived from the year-1990 

network (Appendix A). 
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3. Simultaneity effects 

 The network effects and the destination-quality effects are ceteris-paribus GCI 

variations, which are computed by using the base-year destination-weights and the 

base-year network respectively (Appendix A). In turn, simultaneous variation of the 

network and of destination quality causes impacts beyond the sum of the network 

effects and the destination quality effects (Appendix A). In the subsequent analysis, 

we call these additional effects “simultaneity effects”. They are positive, if 

destinations with growing destination weights receive improved air services, and 

negative if air services to destinations with growing destination weights are reduced. 

 

4 Results 

4.1 Nonstop Connectivity 

We assess the distribution of global nonstop connectivity among airports first by 

visualizing the scores.17 Fig. 5 (a) shows that global year-1990 nonstop connectivity was 

concentrated in North America, Europe and Japan. In particular, North American airports 

[European airports; Japanese airports] accounted for 63 % [23 %; 6 %] of global nonstop 

GCI in 1990. High destination weights in developed countries and well-established 

nonstop links between airports in these countries partly explain this dominance. 

However, while the year-1990 distribution of destination-invariant GCI scores (Fig. 6 

(b)) is more balanced than the distribution of GCI scores (Fig. 6 (a)), airports in North 

America, Europe and Japan still accounted for 76.2 % of global destination-invariant 

nonstop GCI in 1990.18  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17  The distance decay function outlined in Section 3.1. is applied for assigning each airport’s score to its surrounding 

region. 
18  Japan is part of the “East Asia & Central Asia” world region. In 1990, Japanese airports explained 76.2 % [41.8 

%] of nonstop GCI [destination-invariant nonstop GCI] in this region. 
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Fig. 5. 
World map of nonstop GCI. 

(a) Year 1990 

!
(b) Year 2012 

!
 
From 1990 to 2012, global aggregate nonstop GCI grew by 86.3 % (Fig. 7). During the 

1990s, growth was almost exclusively driven by network effects (96.7 % of growth), 

whereas between 2000 and 2012, network effects [destination-invariant GCI] declined 

[increased] by 1.0 % [9.6 %]. At first glance, the results for the destination-invariant GCI 

for 2000-2012 might seem contradictory to observed increases in air traffic volumes over 

the same time-period. 19 However, the reported 62 % rise in revenue passenger kilometers 

for 2000-2012 (Airbus, 2013) can be explained by increases in flight distances (+12.7% 

(Airbus, 2013)), aircraft capacity (+18.6 % (Airbus, 2013)) and load factors (~71% to 

~79% (Airbus, 2014)). The difference between the development of the network effects 

and destination-invariant GCI is caused by above-average growth in traffic in less-

developed world regions which points to the existence of spatial heterogeneity in the 

connectivity development. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19    Note that the destination-invariant GCI should be used for the comparison to traffic growth since it is independent 

of destination weights (Section 3.3). 
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Fig. 6.  
Nonstop connectivity distribution by world region. 

a) Nonstop GCI. 

 

b) Destination-invariant nonstop GCI. 

 
 
 
To further assess this spatial heterogeneity, we analyze changes in the nonstop 

connectivity distribution between 1990 and 2012. Although the year-2012 nonstop 

connectivity distribution was still concentrated to North America, Europe and Japan (43.2 

%, 23.6 % and 8.7 % of global nonstop connectivity), the connectivity share of airports in 

those areas declined from 92.0 % to 75.4 % (Fig 5 (b); Fig. 6 (a)). This was particularly 

caused by high connectivity growth at (non-Japanese) Asian airports, whereas during the 

2000s, the North American network deteriorated and network-related connectivity growth 

in Europe slowed down (Fig. 6 (b)). Given the heterogeneity in development in North 

America, Europe and Asia, we discuss nonstop connectivity trends in these regions in 

more detail.  
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Fig. 7. 
Global nonstop connectivity development. 

!
 
 

4.1.1 North America 

Between 1990 and 2012, the increase in nonstop GCI at North American airports (28.1 

%) was lower than global aggregate GCI growth (86.3 %) (Fig. 8). Network effects drove 

54.7 % of the North American increase in GCI during the 1990s. In the 2000s, network 

effects at North American airports decreased by 17.7 %. Since US airports accounted for 

95 % of aggregate North American nonstop GCI, we can explain the development in 

North America with US developments. 

Fig. 8.  
Nonstop connectivity development in North America. 

!
!
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In the beginning of the 1990s, the US airline industry incurred significant losses (Chan, 

2000; Dempsey, 2008). Carriers such as Continental, Pan Am, Midway, Eastern Airlines 

and TWA filed for bankruptcy (Chan, 2000). However, these bankruptcies did not 

significantly impact on aggregate connectivity since many services were taken over by 

competitors (e.g. PanAm) or bankrupt airlines were allowed to continue their operations 

(Chan, 2000). From the mid 1990s, the industry recovered (Dempsey, 2002; Goetz, 

Vowles, 2009), which is reflected in positive network effects until the end of the 1990s. 

From 2000 to 2002, declining travel demand after the collapse of the dot-com bubble, 

catalyzed by the attacks on September 11, 2001, rising security concerns and the SARS 

outbreak (Goetz, Vowles, 2009), led to an 11 % service reduction at North American 

airports. In spite of schedule reductions, US carriers incurred losses of $ 35b between 

2001 and 2006 (Dempsey, 2008). Furthermore, several legacy carriers (e.g. Delta 

Airlines, United Airlines, US Airways and Northwest Airlines) filed for bankruptcy 

(Goetz, Vowles, 2009) and/or underwent reorganization resulting in a reduction of legacy 

operations by 4.0 % between 2002 and 2007.20 At the same time, US low cost carriers 

were still profitable (Francis et al., 2006; Goetz, Vowles, 2009), grew their business by 

41.7 %21 and thereby stabilized the aggregate US network effect.  

During the US subprime crisis starting in summer 2007 and the subsequent world 

financial crisis, a decrease in air travel demand caused airlines to enter another phase of 

substantial financial losses (Dobruszkes, van Hamme, 2011; Wittman, 2014). As a 

reaction to decreased demand, US carriers employed “capacity rationalization” (Wittman, 

2014) and adjusted schedules by cutting flight services, which lead to a decrease in the 

North American destination-invariant GCI [the network effect] by 12.1 % [10.7%] from 

2008 to 2010. Between 2010 and 2012, the reductions in North American destination-

invariant nonstop connectivity [the North American network effect] slowed to 4.4 % [2.9 

%], which Wittman (2014) calls a phase of “capacity discipline”.  

Turning to the connectivity distribution among North American airports, researchers have 

found the build-up of US hub-and-spoke networks to enhance core-periphery patterns 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20  We consider American Airlines, Northwest Airlines, United Airlines, Delta Air Lines, US Airways, Continental, 

America West Airlines, Midwest Airlines and Alaska Airlines. 
21  We consider Southwest Airlines, JetBlue, AirTran, Frontier Airlines, Spirit Airlines, Sun Country Airlines, 

Allegiant Air and Virgin America. 
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(Goetz, Sutton, 1997). Indeed, the year-1990 distribution of nonstop connectivity among 

North American airports was highly concentrated on the largest 25 [10] North American 

airports, which accounted for 48.0 % [25.9 %] of aggregate year-1990 nonstop GCI (Fig. 

9). Furthermore, the concentration ratio of the 25 [10] largest airports increased by 

∆CR!" = 7.8!!pp [∆CR!" = 3.3!!pp] between 1990 and 2012 (Fig. 9). 30.8 % [54.1 %] of 

the CR!" [CR!"] increase was observed between 2010 and 2012. This is consistent with 

observed network development strategies of US carriers, which have centered traffic at 

their hubs in these years (Wittman, 2014) and thereby increased the “peripheralization” 

(Goetz, Sutton, 1997) of secondary and tertiary US airports. 

Fig. 9. 
Connectivity concentration among US airports. 

!
 
 

4.1.2 Europe 

European nonstop GCI grew by 89.7 % from 1990 to 2012, which is similar to global 

average nonstop GCI growth (86.3 %) (Fig. 10 (a)). The growth between 1990 and 2000 

was predominantly fueled by a 69.0 % increase in network effects (Fig. 10 (a)), whereas 

in the 2000s, destination quality effects largely drove nonstop GCI developments 

(correlation coefficient: 0.99).   
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Fig. 10. 
Nonstop connectivity development in Europe. 

(a) World region “Europe” 

!
(b) EU-15 and Norway 

!
(c) New EU entrants 

!
!
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Between 1987 and 1997, the European air transport market was liberalized. In 1993, 

capacity control and market access control were abolished with the exception of cabotage 

rights, which were granted in 1997 (Berechman, de Wit, 1996). Deregulation first 

affected the EU-15 member states and Norway.22 In these countries, network effects 

increased by 59.7 % between 1993 and 2000 (Fig. 10 (b)), thereby outperforming the 

global aggregate nonstop network effects over the same period (30.5 %). Although this 

growth might partly be explained by economic recovery after the Gulf crisis, market 

deregulation should be considered a catalyst since new (albeit small) airlines entered the 

market (Berechman, de Wit, 1996) and above-average growth in intra-European traffic 

was observed (Burghouwt, Hakfoort, 2001).  

In 2004, 10 countries joined the European Union followed by Romania and Bulgaria in 

2007. This has resulted in significant aviation growth (Dobruszkes, 2009; Dobruszkes, 

2013). While the compound annual growth rate (CAGR) of the nonstop network effect in 

the new member states averaged 8 % between 1990 and 2003, it increased to 19.2 % 

between 2003 and 2006 (Fig. 10 (c)). We note that multiple causal relationships, which 

are catalyzed through EU entry, may cause this, including the deregulation of air 

transportation in the new member states (Dobruszkes, 2009), additional trade as part of 

the common European market and increases in income in the new member states 

(Rapacki, Próchniak, 2009).  

Deregulation has also been a catalyst for the emergence of European Low Cost Carriers 

(LCCs). During the early 1990s, European LCCs first entered the deregulated domestic 

UK and Irish markets, successively followed by market entries throughout Europe after 

full market deregulation (Francis et al., 2006; Budd et al., 2014; Fig. 11). Despite a 77 % 

failure rate among the new carriers (Budd et al., 2014) and two major economic crises, 

annual LCC traffic growth in the EU-27, Switzerland, Norway and Iceland averaged 18.8 

% between 2000 and 2012. 23 This growth explains roughly 57.2 % [72.2 %] of European 

aggregate destination-invariant GCI growth between 1990 [1995] and 2012 24  and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22  We note that Austria, Sweden and Finland became EU members in 1995. 
23  Airlines have been classified as LCCs using information from Budd et al. (2014) and Dobruszkes (2006). 
24  In line with our results, Dobruszkes (2013) reports that additional LCC flights explain approximately 70 % of the 

increase in total number of flights in the EU from 1995 to 2012.  
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compensates the 18.8 % service reductions of the 20 largest European legacy carriers25 

between 2000 and 2012 by a factor of 2. Consequently, LCCs gradually became 

established market participants and accounted for 25.2 % of destination-invariant GCI at 

airports in the EU-27, Switzerland, Norway and Iceland by 2012. The highest year-2012 

destination-invariant LCC-connectivity was observed in the UK and Ireland (40.8 % 

market share), the Mediterranean EU countries (29.3 % market share) and the German-

speaking countries (23.3 % market share) (Fig. 11). This spatial distribution supports 

Dobruszkes (2006) and Dobruszkes (2013) who observe a concentration of European 

LCC traffic in (North-)Western Europe and at (Mediterranean) tourist destinations. With 

the EU enlargement in 2004 and 2007, the LCCs also built up a significant market 

presence in Eastern Europe (Dobruszkes, 2009; Budd et al, 2014; Gabor, 2010). Due to 

their significant size at the time of EU enlargement26, they could quickly enter new 

markets, thereby increasing their destination-invariant GCI share in the new member 

states from 2.0 % in 2003 to 14.2 % in 2006 (Fig. 11).  

 

Fig. 11.  
Destination-invariant GCI generated by European Low Cost Carriers by origin airport location. 

! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25  Operations at airports in the EU-27, Norway, Iceland and Switzerland are considered only. 
26  LCCs claimed roughly 10.1 % of the year-2003 destination-invariant GCI in the EU-15. 
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The observed growth of European LCCs during the early 2000s and the traffic decline of 

European legacy carriers are responsible for the divergence of the destination-invariant 

GCI from the network effects as depicted in Fig. 10 (a). This is because as compared to 

legacy carriers, LCCs serve more remote (secondary) airports (Francis et al., 2006), 

which have 13.2 % lower average destination weights than European airports served by 

the 15 largest European legacy carriers.27 In turn, the LCC growth resulted in additional 

connectivity at airports, which received little or no service by the legacy carriers 

(Burghouwt, Hakfoort, 2001; Fan, 2006; Suau-Sanchez, Burghouwt, 2011).  

 

4.1.3 Asia 

The largest relative growth in nonstop connectivity scores among the world-regions was 

observed at Asian airports where, driven to a large extent by network effects (56.1 % of 

the Asian 1990-2012 nonstop GCI growth), nonstop GCI increased by 376.1 % from 

1990 to 2012 (Fig. 12). In turn, 41.2 % of the global aggregate nonstop GCI increases 

were recorded at Asian airports. The Asian development differs from the European and 

North American as network effects are steadier. Network deteriorations are only observed 

in two years, as compared to 11 years in North America and 6 years in Europe. In 

particular, Asian air transportation was not significantly hit by the Gulf crisis in the 

beginning of the 1990s (Rimmer, 2000; Fig. 12) and network deterioration first appeared 

during the Asian crisis towards the end of the 1990s (Chin et al., 1999; Bowen, 2000, 

Rimmer, 2000). Due to Asian carriers being relatively financially healthy (Lawton, 

Solomko, 2005), carriers were able to quickly recover from the crisis, before the 9/11 

attacks led to service reductions (2001-2002) and the SARS outbreak slowed network 

growth (2003-2004) (Fig. 12; Lawton, Solomko, 2005). Fueled by increasing 

liberalization of air transportation in Asian countries (Forsyth et al., 2006) and the 

emergence of Asian Low Cost Carriers (Hooper, 2005; Lawton, Solomko, 2005), 

network effects recovered, and, with the exception of a one-year slowdown in growth 

during the world financial crises in 2009, high growth rates prevailed until 2012 (Fig. 12; 

Dobruszkes, van Hamme, 2011).   
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27  Average destination weights are calculated for destination airports located in the EU-27 states, Norway, Iceland 

and Switzerland. The average is weighted by flight frequency. 
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Fig. 12. 
Nonstop connectivity development in Asia. 

!
!
A geographical decomposition of the Asian 1990-2012 nonstop GCI growth reveals that 

Chinese and Japanese airports accounted for more than half of the absolute Asian 

increase in nonstop GCI. 

• In 1990, Japanese airports explained 63.0 % [6.0 %] of Asian [global] nonstop GCI, 

and could therefore be considered the dominant air transport market in Asia. From 

1990 to 2012, the nonstop GCI in Japan increased by 170.9 % - almost twice as 

much as the global average growth (89.7 %). Network effects caused 96.3 % of the 

GCI increase at Japanese airports. This increase occurred in conjunction with 

gradual deregulation of the Japanese air transport market during the 1990s, with full 

deregulation of airfares happening in the early 2000s (Yamauchi, Ito, 1996; 

Yamaguchi, 2007; Murakami, 2011).  

 

• Connectivity generated at Chinese airports increased unprecedentedly in the years 

1990-2012. While in 1990, only 1.6 % [0.2 %] of Asian [global] aggregate nonstop 

GCI was accessible to passengers at Chinese airports28, the GCI score increased by 

5856.9 % between 1990 and 2012 (Fig. 13). As a consequence, Chinese airports 

accounted for 20.0 % [4.8 %] of the year-2012 Asian [global] aggregate nonstop 

GCI. Network effects (1688.0 %), potentially driven by growing passenger demand 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28  Hongkong and Macau are not considered. 
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and by the transformation of the Chinese airline industry from an entity under 

military control into a business (Zhang, 1998; Zhang, Round, 2008; Shaw et al., 

2009; Wang et al., 2011), were a significant source of this increase. Furthermore, 

network improvements in China coincided with significant destination quality 

growth, so that rising simultaneity effects were observed (Fig. 13). These effects 

indicate that services to locations, which have substantially grown in destination 

quality since 1990, have significantly increased. Given the high growth rates of the 

Chinese economy, the simultaneity effects can, in turn, be interpreted as an 

indication of considerable service growth in the Chinese domestic market. 

Fig. 13. 
Nonstop connectivity development in China. 

!
 

Fig. 14. 
GCI concentration rates in Asia. 

!
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Compared to 1990, when Asian nonstop GCI was concentrated at Japanese airports, 

nonstop GCI scores dispersed over time and the concentration rates of nonstop GCI 

among Asian airports declined (Fig. 14). While connectivity growth has occurred at 

existing airports, we also observe a 63.1 % increase in the number of airports, which 

receive regular scheduled air services29 between 1990 and 2012 (Tab. 5). This increase in 

the number of airports with regular service can be assumed to have been facilitated 

through demand growth for air travel in Asia. Furthermore, the growth coincides with 

supply-side developments such as the emergence of Asian LCCs (Francis et al., 2006), 

more liberal international air service agreements, that open up access to additional 

airports for international routes and/or multiple carriers, (Hooper, 1997; Bowen, 2000; 

Hooper, 2005; Lawton, Solomko, 2005; Forsyth et al., 2006) and the development of new 

airport infrastructure (Yamaguchi, 2007).  

Tab. 5.  
Airport count by airport size class in Asia. 

Airport size 
[daily flights] 

Number of airports 

from to 1990 2000 2012 
2 20 388 451 550 
21 50 33 64 90 
51 100 22 17 42 
101 200 6 20 31 
201 400 1 5 15 
401  0 0 6 
  450 557 734 

 

4.2 Onestop Connectivity and Onestop Centrality 

4.2.1 The Connectivity Perspective 

The results from Fig. 15 (a) suggest that the year-1990 onestop GCI was concentrated at 

North American airports, which, indeed, accounted for 85.9 % of global onestop GCI, 

whereas airports in Europe accounted for 8.7 % only (Fig. 17 (a)). The North American 

dominance in the year-1990 onestop GCI is still observed if destination-weights are 

factored out (North American share in global aggregate destination-invariant onestop 

GCI 87.4 %) (Fig. 17 (b)). Thus, one may conclude that North American airports were 

served through extensive hub and spoke networks already in 1990 (Berechman, de Wit, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29  “Regular” is defined here as two or more departures per day on average 



How Air Transport Connects the World 34 

1996; Borenstein, 1992). In such networks, frequent flights to hub airports facilitate high-

frequent services to many onward destinations (Kanafani, Ghobrial, 1985; Alderighi et 

al., 2007), thereby creating high onestop connectivity at each spoke airport. This effect is 

especially high if (1) hub locations are chosen so as to attract passengers to the indirect 

routings (Dempsey, 1991; O’Kelly, 1998) and (2) flight schedules at the hubs are 

designed to avoid excessive waiting time during layovers (Kanafani, Ghobrial, 1985; 

Burghouwt, de Wit, 2005). While US carriers designed their year-1990 networks in that 

regard, European carriers operated centralized, but temporally rather uncoordinated 

networks (Burghouwt, de Wit, 2005) so that European aggregate year-1990 onestop GCI 

was relatively low. 

Fig. 15.  
World map of global onestop connectivity scores. 

(a) Year 1990 

!
(b) Year 2012 

!
! !
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Fig. 16. 
Onestop connectivity development 1990-2012. 

!
!

Between 1990 and 2012, global onestop GCI grew by 175.8 % and thereby outperformed 

growth in nonstop connectivity by a factor of roughly 3.5. The development can be 

subdivided into two phases.  

Phase 1: 1990-2000 

From 1990 to 2000, network effects explained 94.4 % of the 115.2 % global onestop GCI 

growth (Fig. 16). The increase in network effects coincided with expanding cooperation 

among carriers. In particular, carriers started offering their customers “seamless” global 

network coverage by selling tickets of onward flights, which are operated by partnering 

airlines, but carry the ticketing carrier’s code (“codeshares”) (Chan, 2000; Gudmundsson, 

Rhoades, 2001; Fan et al., 2001). Such collaborations first emerged during the late 1980s 

and their number grew significantly during the 1990s (Oum, Park, 1997; Chan, 2000; 

Gudmundsson, Rhoades, 2001). The foundation of global airline alliances such as Star 

Alliance (1997), Qualiflyer (1998),30 oneworld (1999) and SkyTeam (2000) marked the 

peak of that trend. An estimate of the significance of cooperation in creating onestop 

connectivity can be obtained by computing the codeshare-induced onestop GCI31. The 

results underline the significance of inter-airline cooperation for the growth of global 

onestop GCI during the 1990s (Tab. 6). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30  Qualiflyer was disintegrated in 2001. 
31  The codeshare-induced onestop GCI is the difference between the onestop GCI and a onestop GCI metric, which 

allows for intra-airline transfers only (if applicable for the airline). 
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Fig. 17.  
Onestop connectivity distribution by world region. 

(a) Onestop GCI 

!
(b) Destination-invariant onestop GCI 

!
 
The largest absolute 1990-2000 increases in onestop GCI were observed at North 

American airports (57.3 % of the absolute 1990-2000 onestop growth) and European 

airports (25.6 % of the absolute 1990-2000 onestop growth) (Fig. 17 (a)). In particular, 

the onestop GCI CAGR at European airports (15.9 %) outperformed the CAGR at North 

American airports (5.9 %), so that European airports significantly caught up on their 

North American counterparts in terms of onestop connectivity. Overall, the share of 

European airports in global onestop GCI increased from 8.7 % in 1990 to 17.7 % in 2000 

(Fig. 17 (a)). This growth coincides with the reorganization of European airline networks. 

While North American airlines had already operated established hub-and-spoke networks 

back in 1990, European legacy carriers significantly optimized their networks during the 

1990s by further consolidating their (long-haul) operations at their hubs (Burghouwt, 

Hakfoort, 2001; Burghouwt et al., 2003) and improving temporal coordination of their 

schedules (Burghouwt, de Wit, 2005).  
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In total, airports in wealthy regions in Europe and North America received 82.9 % of the 

1990-2000 onestop GCI growth. Thus, one may conclude that during the first phase of 

hub-and-spoke network development, those networks predominantly enhanced links 

among wealthy regions. In turn, the (destination-weighted) network effects outperformed 

destination-invariant GCI growth between 1990 and 2000 (Fig. 16). Furthermore, this 

result supports Bowen (2002) who finds higher air traffic connectivity improvements in 

wealthy countries than at poor and peripheral locations during the late 1980s and early 

1990s. 

 
Tab. 6. 
Share and growth rate of codeshare-induced onestop GCI. 

!
 Share of codeshare-induced onestop GCI CAGR of aggregate codeshare-induced onestop GCI 
 1993 1997 2000 2004 2008 2012 1993-1997 1997-2000 2000-2004 2004-2008 2008-2012 
Africa 2.9% 18.7% 31.1% 32.8% 34.4% 34.8% 98.0% 41.8% 14.8% 15.3% 0.3% 
Australia & Oceania 10.6% 17.5% 46.6% 35.7% 38.7% 51.1% 58.8% 65.5% -4.4% 12.1% 10.6% 
Europe 1.3% 23.4% 34.2% 41.0% 48.3% 52.2% 156.3% 31.3% 11.1% 14.0% -1.5% 
North America 0.9% 9.6% 22.2% 38.6% 39.9% 45.8% 99.7% 42.3% 18.8% 3.2% -3.0% 
Central America, South America 
& Caribbean 1.1% 11.1% 28.9% 32.6% 32.4% 33.3% 112.8% 61.0% 11.7% 11.2% -0.9% 

East Asia & Central Asia 0.8% 8.2% 25.4% 33.1% 41.1% 45.3% 117.3% 68.8% 17.1% 24.1% 6.0% 
South Asia & South-East Asia 0.3% 18.0% 32.3% 34.6% 36.7% 36.5% 249.5% 33.6% 17.3% 18.7% 3.1% 
West Asia 1.2% 13.9% 24.2% 30.1% 38.5% 37.6% 124.6% 42.7% 13.9% 26.6% 5.8% 
Global 1.0% 12.0% 25.3% 38.3% 41.2% 45.7% 110.9% 40.8% 16.1% 7.7% -1.3% 

 

Phase 2: 2000-2012 

Between 2000 and 2012, the network effects declined twice (13.8 % (2001-2002); 11.0 % 

(2007-2010)), but subsequent recoveries led to an almost constant level in 2012 as 

compared to 2000. While economic crises following the 9/11 attacks and the collapse of 

the US subprime market explain short-term variations (Section 4.1), significant spatial 

heterogeneities in the development patterns exist (Fig. 17). 

• At North American airports, a 21.1 % [15.0 %] decline in the onestop network effects 

[destination-invariant GCI] was observed between 2000 and 2012 (Fig. 17 (b)). This 

is because the legacy carriers, which operate hub-and-spoke networks (Franke, 2004; 

Dempsey, 2002), reduced their services, whereas the LCCs, which offer fewer 

indirect connections (Franke, 2004; Gillen, Lall, 2004), grew (Section 4.1.1). We also 

find that the absolute growth in codeshare-induced GCI offset 88.6 % of the decline 
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in onestop intra-airline-transfer GCI, and that the codeshare-induced GCI share 

increased from 22.2 % in 2000 to 45.8 % in 2012 (Tab. 6). Thus, one may conclude 

that North American carriers were able to stabilize aggregate onestop connectivity in 

times of “capacity rationalization” and “capacity discipline” by partially substituting 

intra-airline-transfer offerings with inter-airline-transfer offerings through codeshares.  

 

• At European airports, growth of onestop connectivity slowed as compared to 1990-

2000. In particular, the network effect CAGR fell from 16.7 % (1990-2000) to 1.1 % 

(2000-2012). At EU-15 airports, EU legacy carriers significantly reduced their 

services (Section 4.1.2). The resulting ceteris-paribus decrease in onestop 

connectivity, however, was offset by growth of codeshare-induced GCI so that the 

share of codeshare-induced GCI rose from 2000 to 2012 (Tab. 6). We note that at 

airports in the new EU member states, onestop GCI grew by 89.3 % from 2000 to 

2012 and almost all of this growth (96.3 %) was observed in the aftermath of the EU 

enlargement.  

 

• The largest 2000-2012 GCI growth was observed in Asia and Africa, which 

accounted for 53.3 % of the 2000-2012 global onestop GCI increase (Fig. 17). 

Network effects (CAGR between 5.5 % (Africa) and 8.2 % (South & Southeast 

Asia)) were significant contributors to this trend, explaining between 57.7 % (Africa) 

and 65.6 % (East & Central Asia) of the 2000-2012 onestop GCI increase in the 

respective region.  

 

Overall, the onestop connectivity trends resulted in a spatial deconcentration of global 

onestop connectivity (Fig. 15 (b)). In particular, the share of onestop GCI at North 

American airports dropped from 85.9 % in 1990 to 53.5 % in 2012, whereas the onestop 

GCI share of European airports increased from 8.7 % in 1990 to 17.7 % [21.9 %] in 2000 

[2012] and the Asian onestop connectivity share rose from 5.7 % [2.8 %] to 14.9 % 

between 2000 [1990] and 2012. Thus, a shift of onestop connectivity growth from 

prosperous western countries (1990-2000) into emerging markets (2000-2012) was 
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observed and caused the destination-invariant GCI to catch-up on the (destination-

weighted) network effects during the 2000s (Fig. 17).  

In terms of the world’s poorest countries32, we find that while they had a less than 

proportionate share in onestop GCI growth between 1990-2000 (onestop GCI CAGR of 

these countries 6.1%, global average: 8.0%), onestop GCI growth from 2000-2012 

outperforms the global average (CAGR 15.0% vs. 2.1%). This might indicate that the 

“marginalization” of poor countries within airline networks described by Bowen (2002), 

has ended – at least in terms of onestop connectivity.  

 

 

4.2.2 The Centrality Perspective 

We now turn to the centrality perspective, i.e. the contribution of transfer airports to the 

generation of connectivity. In 1990, 87.4 % of global onestop connectivity was facilitated 

through hub operations at North American airports (Fig. 18 (a)), which can be explained 

by coordinated hub-and-spoke networks already being available to passengers in North!
America, whereas hub-and-spoke networks were less extensive in other parts of the world 

(Section 4.2). Furthermore, the GHCI was concentrated at the Top-5 [10] hub airports, 

which accounted for 38.7 % [56.5 %] of the global GHCI score (Fig. 18). The most 

important hubs outside North America were Frankfurt and London Heathrow, which 

together explained roughly one third of the aggregate non-North American GHCI, but 

only achieved 33.1 % and 22.4 % of the average GHCI score at Top-5 North American 

hubs, respectively.  

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32  We consider the 34 countries with the lowest per-capita income as defined by the World Bank (2014b). 
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Fig. 18. 
World map of Top-150 Hubs. 

(a) Year 1990. 

!

(b) Year 2012. 

!
 

 

Between 1990 and 2000, 93.6 % of the GHCI growth occurred at airports in North 

America and Europe. In particular, the strong centrality growth of European airports 

caused the centrality share of European airports [North American airports] to increase 

[decrease] from 10.0 % [87.4 %] in 1990 to 20.1 % [75.3 %] in 2000. Since European 

legacy carriers drove this trend by improving temporal schedule coordination in their 

centralized networks (Burghouwt, Hakfoort, 2001; Burghouwt, de Wit, 2005), the five 

most central European hubs in 1990 received the largest absolute growth in centrality 

(68.4 % of the 1990-2000 GHCI growth at European airports). In turn, European hubs 

significantly caught up to their American counterparts in terms of centrality so that the 

global centrality concentration rate of the 5 [10] largest global hubs fell from 38.7 % 

[56.5 %] in 1990 to 28.9 % [45.9 %] in 2000 (Fig. 19).   
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Fig. 19. 
Concentration rates of global hub centrality. 

!
!
After 2000, the growth of hub centrality scores remained strong at European airports 

(50.5 % of global 2000-2012 growth) and accelerated at Asian airports (43.1 % of global 

2000-2012 growth), whereas the centrality score remained almost constant in North 

America. 

• In Europe, the three largest hubs, Frankfurt, London Heathrow and Paris CDG, 

accounted for 64.9 % of the 2000-2012 GHCI growth and in 2012, explained 51.4 % 

of the European year-2012 GHCI (Fig. 18 (b)). In addition, the extension of 

Lufthansa’s second hub at Munich airport (Albers et al., 2005) caused an 11.6 % 

increase in European GHCI and led to Munich Airport becoming the fifth most 

central European airport.  

• In Asia, hub centrality more than quintupled between 2000 and 2012. The largest 

growth was observed at Chinese airports (34.5 % of Asian GHCI growth), Japanese 

and South Korean airports (18.7 % of Asian GHCI growth), airports in the United 

Arab Emirates and Qatar (14.7 % of Asian GHCI growth) and Turkish airports (8.6 % 

of Asian GHCI growth). The growth contribution of airports in the United Arab 

Emirates and Qatar is particularly noteworthy, since it is driven by the market entry 

and expansion of Middle East Carriers (Qatar, Etihad, Emirates), which use the 

geographical position of their home airports to connect world-regions with one-

transfer hub-and-spoke networks (Vespermann et al., 2008; O’Connell, 2011). As a 

consequence, we find their home airports (Doha, Abu Dhabi, Dubai) to develop from 

regional hubs for Africa, Western Asia and South Asia & Southeast Asia to hubs for 
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journeys into all world regions (Tab. 7). In particular, we observe significant year-

2012 centrality of the three hubs under consideration in South Asia & Southeast Asia, 

West Asia, Africa and Australia & Oceania. This results from the Middle East 

carriers’ network structures, which were particularly focused on these regions 

(Vespermann et al., 2008; Hooper et al., 2011; Grimme, 2011). We note that the 

relative centrality of the three hubs with regard to North America and Europe remains 

low in 2012 (Tab. 7) due to limited frequencies to these regions from Middle Eastern 

hubs, relatively long layovers and low destination weights for routes with reasonable 

detour factors (e.g. South and Southeast Asia) (Grimme et al., 2011). 

 

Tab. 7. 
Onestop connectivity ranking and onestop connectivity share facilitated through 
Dubai Airport, Doha Airport and Abu Dhabi Airport by world region of origin 
airport. 

  2000 2000 2012 2012 

  GHCI Destination-
invariant GHCI Destination-

invariant 
Africa DXB 39  (0.1%) 35  (0.2%) 6    (5.6%) 7   (5.1%) 

DOH 71  (0.0%) 57  (0.1%) 10  (2.3%) 10 (2.6%) 
AUH 78  (0.0%) 47  (0.1%) 26  (0.7%) 23 (0.8%) 

Australia & Oceania DXB - - 8    (3.1%) 7   (3.4%) 
DOH - - 18   (0.7%) 24 (0.7%) 
AUH - - 16   (0.9%) 18 (0.9%) 

Europe DXB 119 (0.0%) 89   (0.0%) 32   (0.4%) 24 (0.7%) 
DOH 206 (0.0%) 164 (0.0%) 44   (0.3%) 31 (0.6%) 
AUH 193 (0.0%) 154 (0.0%) 64   (0.1%) 48 (0.2%) 

North America 
 

DXB 372 (0.0%) 393 (0.0%) 89   (0.0%) 55 (0.1%) 
DOH - - 105 (0.0%) 71 (0.1%) 
AUH - - 141 (0.0%) 91 (0.0%) 

Central America, 
South America & 
Caribbean 

DXB - - 45   (0.2%) 45 (0.2%) 
DOH - - 51   (0.1%) 58 (0.1%) 
AUH - - - - 

East Asia & Central 
Asia 
 

DXB 116 (0.0%) 127 (0.0%) 53  (0.2%) 44 (0.5%) 
DOH - - 51  (0.2%) 47 (0.4%) 
AUH 134 (0.0%) 181 (0.0%) 81  (0.1%) 75 (0.1%) 

South Asia & South-
East Asia 
 

DXB 18  (1.2%) 21  (0.9 %) 2   (7.6%) 3  (6.1%) 
DOH 36  (0.2%) 47  (0.3%) 8   (4.5%) 8  (4.3%) 
AUH 41  (0.1%) 48  (0.3%) 15  (1.9%) 22(1.4%) 

Western Asia DXB 26  (0.5%) 18  (1.0%) 5   (4.3%) 5  (4.5%) 
DOH 28  (0.4%) 20  (0.9%) 4   (4.6%) 4  (5.5%) 
AUH 31  (0.3%) 24  (0.8%) 13 (2.2%) 15 (2.0%) 

 

Onestop connectivity share through a transfer at the respective hub in the respective origin region given in 
parentheses. 
- No scheduled service. 
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• In North America, the concentration rate of the 10 largest hubs increased from 61.3 % 

in 2000 to 67.7 % in 2012. This process was driven by restructuring of US legacy 

carriers during the 2000s (Wittman, 2014), which, inter alia, led the carriers to 

strengthen their main hubs, i.e. Atlanta (Delta), Charlotte (US Airways), Newark 

(United) and Philadelphia (US Airways), and to de-hub secondary hubs such as 

Dallas Fort Worth (Delta), St. Louis (TWA / American Airlines), Pittsburgh (US 

Airways) and Cincinnati (Delta).  

Overall, significant GHCI scores were created at airports in all world regions between 

1990 and 2012 (Fig. 18). However, the world’s most significant hubs in 2012 were still 

located in North America and Europe and airports in these regions explain 85.5 % of 

global aggregate year-2012 GHCI. In addition, we find evidence that the 4 hubs with the 

highest GHCI score in each world-region account for 39 % to 89 % of the GHCI score in 

each world region (Fig. 18 (b); Tab. 8), which we explain with economies of scale and 

density (Brueckner, Spiller, 1994) of centralized hub-and-spoke networks. We note that 

hubs with the highest centrality in a region may not have the highest contributions to 

onestop connectivity of a region (Tab. 8). This is because highly valued connections 

(short detour, short layover and/or high destination weight) may pass through hubs, 

which are located outside of the respective region (e.g. Redondi et al. 2011).  

!
Tab. 8. 
Top-4 central hubs in and for each world region.  

 Top-4 central hub in the region Top-4 central hubs for the region 
 1 2 3 4 1 2 3 4 

Africa 
 

JNB 
(57%) 

CAI 
(17%) 

CMN 
(7%) 

NBO 
(4%) 

CDG 
(14%) 

LHR 
(13%) 

JNB 
(13%) 

FRA 
(9%) 

Australia & Oceania 
 

SYD 
(54%) 

MEL 
(14%) 

AKL 
(14%) 

BNE 
(10%) 

SYD 
(26%) 

LAX 
(14%) 

AKL 
(8%) 

SIN 
7%) 

Europe 
 

FRA 
(19%) 

LHR 
(17%) 

CDG 
(15%) 

AMS 
(10%) 

FRA 
(15%) 

CDG 
(11%) 

LHR 
(11%) 

MUC 
(9%) 

North America 
 

ATL 
(13%) 

ORD 
(12%) 

DFW 
(7%) 

DTW 
(7%) 

ATL 
(12%) 

ORD 
(11%) 

DFW 
(7%) 

DTW 
(7%) 

Central America, South America 
& Caribbean 

GRU 
(19%) 

MEX 
(17%) 

PTY 
(12%) 

BOG 
(8%) 

MIA 
(11%) 

ATL 
(10%) 

IAH 
(10%) 

DFW 
(7%) 

East Asia & Central Asia 
 

PEK 
(20%) 

NRT 
(13%) 

HKG 
(11%) 

ICN 
(10%) 

PEK 
(13%) 

HND 
(6%) 

NRT 
(5%) 

ORD 
(5%) 

South Asia & South-East Asia 
 

SIN 
(29%) 

BKK 
(20%) 

KUL 
(16%) 

DEL 
(8%) 

LHR 
(9%) 

DXB 
(8%) 

FRA 
(7%) 

HKG 
(6%) 

Western Asia 
 

IST 
(34%) 

DXB 
(29%) 

DOH 
(18%) 

AUH 
(8%) 

IST 
(18%) 

LHR 
(13%) 

FRA 
(8%) 

DOH 
(5%) 

 

Centrality share given in parenthesis 
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5 Conclusion 

In this paper, we have proposed a new connectivity and centrality model that sets out to 

assess the quantity and quality of nonstop and onestop air transport services from the 

perspective of (potential) passengers. By computing the metric for 1990 to 2012, we have 

analyzed both the geography of, and trends in global air services. In turn, this paper is the 

first to describe the effects of airline deregulation, airline network structures, cooperation 

among airlines, market entry of Low Cost Carriers and Middle East carriers and 

economic crises on connectivity in a consistent framework. Since the societal value of air 

transportation depends on its quality in bridging distances quickly, we regard the 

connectivity perspective as particularly insightful. 

The contribution of this paper is threefold. First, it extends existing connectivity models 

as summarized by Burghouwt and Redondi (2013). In particular, our approach builds on 

the “connection quality-weighting” model (Veldhuis, 1997; Burghouwt, de Wit, 2005; 

Burghouwt, Veldhuis, 2006) rather than shortest- or quickest-path models (e.g. Malighetti 

et al., 2008; Paleari et al., 2010; Zhang et al., 2010), which allows us to compute 

connection quality as perceived by passengers at each airport. While the assessment of 

connection quality previously relied on assumptions about maximum detour, our 

approach estimates these patterns empirically. In line with the accessibility approach 

(Geurs, van Wee, 2004; Paez et al., 2012), we further extend the connection quality 

assessment by considering the economic interaction potential to which each destination 

airport provides access.  

Second, this paper is the first to use a connectivity model for describing the impacts of 

global 1990-2012 aviation market developments on connectivity. While analyses of 

network structures and performance (Burghouwt, Hakfoort, 2001; Bowen, 2002; 

Reynolds-Feighan, 2007; Paleari et al., 2010; Wang et al., 2011; Lin, 2012) as well as 

market developments following airline deregulation (Borenstein, 1992; Dempsey, 2002; 

Goetz, Sutton, 1997; Chan, 2000), the emergence of new airline business models 

(Dobruszkes, 2006, 2009, 2013; Fan, 2006; Francis et al., 2006; Hooper et al., 2011; 

Budd et al., 2014;) and economic crises (Rimmer, 2000; Alderighi, Cento, 2004; 

Wittman, 2014) have been conducted, a consistent framework for global supply-side 
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market analyses from the connectivity perspective has not been applied, to date. As 

shown by Suau-Sanchez and Burghouwt (2012), the development of such an approach is 

particularly important given the increasing significance of indirect connections, which 

require network analyses to simultaneously model network geography and temporal 

schedule coordination.  

Third, the application of our connectivity metric can advance air transport-related 

research. The methodology proposed for connection quality weighting might be used to 

study, for example, competition among hub airports or among different routings (Hansen, 

1990; Redondi et al., 2011). In line with Grubesic and Matisziw (2011), Grubesic and 

Wei (2012) and Matisziw et al. (2012), one might also apply the connectivity model to 

evaluate the effectiveness and efficiency of the US Essential Air Service Program or the 

European Public Service Obligations. It could also be used to assess the impact of airport 

incentive schemes (Malina et al., 2012; Allroggen et al., 2013) from a societal 

perspective. Furthermore, analyses of the economic growth and employment effects of 

aviation (e.g. Brueckner, 2003; Percoco, 2010; Allroggen, Malina, 2014) would benefit 

from incorporating a connectivity metric, since the metric reflects the degree of access to 

other regions facilitated through air transport services.  

We close by noting that future extensions of the connectivity model could deal with 

transaction-specific heterogeneities such as airfares, airline service levels and passenger 

preferences, as they impact on individually perceived connectivity. In order to do so, one 

would need to empirically analyze the trade-off between these heterogeneities and the 

degree of connectedness, as well as to develop an approach for the aggregation of 

individual preferences. In addition, future work could be directed towards identifying 

causal drivers of connectivity to complement our descriptive analysis. This would entail 

the development of suitable empirical identification strategies for these drivers. 
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APPENDIX 

Appendix A: Decomposition of GCI Growth 

The growth rate !!,!,!!!  of the GCI score for an airport ! between base-year ! − ! and 

year ! is calculated as outlined in eq. (A-1): 

!!,!,!!! =
!"!!,! − !"!!,!!!

!"!!,!!!
=

!!,!!!,!!!!,! − !!,!!!!!,!!!!!!,!!!!∈ ℛ!,!∪ℛ!,!!!
!"!!,!!!

 (A-1) 

For routings !, which are operated in year ! or year ! − ! only, we assume eqs. (A-2). 

!!,! = 0!!∀!! ∈ ℛ!,!!! !\ℛ!,!! (A-2a) 

!!,!!! = 0!!∀!! ∈ ℛ!,!!\ℛ!,!!! ! (A-2b) 

For each route !, we now derive the absolute change of its GCI-contribution Δ!"!!,!,!,!!! 

as shown in eq. (A-3). 

Δ!"!!,!,!,!!! = !!,!!!,!!!!,! − !!,!!!!!,!!!!!!,!!! (A-3) 

Furthermore, we rewrite !!,! , !!,! and !!!,! as outlined in eqs. (A-4). 

!!,! = !!,!!! + Δ!!,!,!!! ! (A-4a) 

!!,! = !!,!!! + Δ!!,!,!!! (A-4b) 

!!!,! = !!!,!!! + Δ!!!,!,!!! (A-4c) 

where Δ!!,!,!!! , Δ!!,!,!!!  and Δ!!!,!,!!!  are the absolute changes of ! , !  and ! 

respectively between base-year ! − ! and year !. Substitution of eqs. (A-4) into eq. (A-3) 

yields eq. (A-5). 

Δ!"!!,!,!,!!! = !!!,!!! !!,!!!Δ!!,!,!!! + !!,!!!Δ!!,!,!!! + Δ!!,!!!Δ!!,!,!!! "
+!!!,!!!!!,!!!Δ!!!,!,!!! "

(A-5) 



How Air Transport Connects the World 47 

+Δ!!!,!!! !!,!!!Δ!!,!,!!! + !!,!!!Δ!!,!,!!! + Δ!!,!!!Δ!!,!,!!!  

In eq. (A-5), we identify the destination-quality-neutral absolute growth !!,!,!!! of route 

!’s GCI contribution which is caused by a ceteris paribus variation of the network 

between base-year ! − ! and year !. It is shown in eq. (A-6). 

!!,!,!!! = !!,!!!Δ!!,!,!!! + !!,!!!Δ!!,!,!!! + Δ!!,!!!Δ!!,!,!!! (A-6) 

Eq. (A-5) is now rewritten as presented in eq. (A-7). 

Δ!"!!,!,!,!!! = !!!,!!!!!,!,!!!+!!!,!!!!!,!!!Δ!!!,!,!!! + Δ!!!,!!!!!,!,!!! (A-7) 

From eqs. (A-7) and (A-1), we derive eq. (A-8). 

!!,!,!!! =
!!!,!−!!!,!,!−!!∈ ℛ!,!∪ℛ!,!−!

!"!!,!−!
!!+ !

!!,!!!!!,!!!!!!!,!,!!!!∈ ℛ!,!∪ℛ!,!!!
!"!!,!!!

+
!!!!,!!!!!,!,!!!!∈ ℛ!,!∪ℛ!,!!!

!"!!,!!!
 

(A-8) 

GCI-growth rates are subsequently decomposed as follows: 

1. Network effects 

Network-related GCI effects result from ceteris paribus changes of the network. 

!!,!,!!! =
!!!,!!!!!,!,!!!!∈ ℛ!,!∪ℛ!,!!!

!"!!,!!!
 maps the network-related GCI growth rate 

!!,!,!!!  at airport ! between base-year ! − !  and year !. For our analysis, we 

compute !!,!,!""# from the difference of year !’s GCI scores with constant year-

1990-destination quality weights33 and the year-1990 scores divided by the year-

1990 scores. 

2. Destination-quality effects 

Destination quality-related GCI effects result from ceteris paribus changes of 

destination quality. !!,!,!!! =
!!,!!!!!,!!!!!!!,!,!!!!∈ ℛ!,!∪ℛ!,!!!
!"!!,!!!

 represents the 

destination quality-related GCI growth rate !!,!,!!!  at airport !  between year 

! − ! and year !. In our analysis, we calculate !!,!,!""# from the difference of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33  For each year !, this score is computed by assuming the network of year ! and the destination quality weights for 

year 1990. Computation is conducted by airport. 
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constant year-1990-network GCI scores for year !34 and the year-1990 GCI scores 

divided by the year-1990 GCI scores. 

3. Simultaneity effects 

Simultaneity effects are the additional GCI effects of simultaneous variation of 

the network and destination quality. The interaction-related GCI growth rate for 

airport ! , base-year ! − !  and year !  is defined by 

!!,!,!!! =
!!!!,!!!!!,!,!!!!∈ ℛ!,!∪ℛ!,!!!

!"!!,!!!
. According to eq. (A-8), we calculate 

!!,!,!""# = !!,!,1990 − !!,!,!""# − !!,!,!""#. 

!
!
!
!

Appendix B: Definition of World Regions 

The world regions are defined in Fig. B-1. 
Fig. B-1. 
Map of world regions. 

!
!
!
!
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34  For each year !, this score is computed by assuming the year-1990 network and the destination quality weights for 

year !. Computation is conducted by airport. 
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