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Alzheimer’s Ab(1-40) Amyloid Fibrils Feature Size-Dependent Mechanical
Properties
Zhiping Xu,† Raffaella Paparcone,† and Markus J. Buehler†‡§*
†Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering; ‡Center for Computational
Engineering; and §Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
ABSTRACT Amyloid fibrils are highly ordered protein aggregates that are associated with several pathological processes,
including prion propagation and Alzheimer’s disease. A key issue in amyloid science is the need to understand the mechanical
properties of amyloid fibrils and fibers to quantify biomechanical interactions with surrounding tissues, and to identify mechano-
biological mechanisms associated with changes of material properties as amyloid fibrils grow from nanoscale to microscale
structures. Here we report a series of computational studies in which atomistic simulation, elastic network modeling, and finite
element simulation are utilized to elucidate the mechanical properties of Alzheimer’s Ab(1-40) amyloid fibrils as a function of
the length of the protein filament for both twofold and threefold symmetric amyloid fibrils. We calculate the elastic constants asso-
ciated with torsional, bending, and tensile deformation as a function of the size of the amyloid fibril, covering fibril lengths ranging
from nanometers to micrometers. The resulting Young’s moduli are found to be consistent with available experimental measure-
ments obtained from long amyloid fibrils, and predicted to be in the range of 20–31 GPa. Our results show that Ab(1-40) amyloid
fibrils feature a remarkable structural stability and mechanical rigidity for fibrils longer than z100 nm. However, local instabilities
that emerge at the ends of short fibrils (on the order of tens of nanometers) reduce their stability and contribute to their disasso-
ciation under extreme mechanical or chemical conditions, suggesting that longer amyloid fibrils are more stable. Moreover, we
find that amyloids with lengths shorter than the periodicity of their helical pitch, typically between 90 and 130 nm, feature signif-
icant size effects of their bending stiffness due the anisotropy in the fibril’s cross section. At even smaller lengths ()50 nm), shear
effects dominate lateral deformation of amyloid fibrils, suggesting that simple Euler-Bernoulli beam models fail to describe the
mechanics of amyloid fibrils appropriately. Our studies reveal the importance of size effects in elucidating the mechanical prop-
erties of amyloid fibrils. This issue is of great importance for comparing experimental and simulation results, and gaining a general
understanding of the biological mechanisms underlying the growth of ectopic amyloid materials.
INTRODUCTION
Amyloid fibrils are highly ordered nanoscale assemblies of

protein protofibrils that result from densely packed parallel

b-sheet structures (Fig. 1). They play a crucial role in the initi-

ation and progression of various neurodegenerative disorders,

including Alzheimer’s disease, Parkinson’s disease, type 2

diabetes, and transmissible spongiform encephalopathies

(1). The amyloidic state of proteins is universally accessible

to a great diversity of amino acid sequences through the

conversion from their soluble functional states into highly

organized fibrillar aggregates. X-ray diffraction patterns,

experimental imaging, and many other experimental investi-

gations have shown that amyloid fibrils feature an extensive

b-sheet structure formed by fibrilized polypeptides, stabilized

by a dense network of backbone hydrogen bonds (H-bonds)

(2–4). Moreover, amyloid fibrils share a common character-

istic interstrand twist angle that strongly contributes to the

stability of the overall structure and has been theoretically

and experimentally investigated (3,5–11). Amyloids have

also been discussed as an example of a highly ordered, hierar-

chical protein material that combines elasticity, sturdiness,

and resistance with the ability to provide self-assembling
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and self-healing properties (12–15). These properties, com-

bined with a relatively high stability even in adverse

chemical environments (16), may also make them good candi-

dates for novel nanobiomaterial applications (17–19). For

example, they could be used as nanowires and self-assembled

nanostructures (20), natural adhesives (21), or functional

templates for biomaterials (13). The potential applications

of these supramolecular assemblies could go beyond those

of synthetic polymers because amyloid fibrils can provide

well-defined structural features and biological functionality

in addition to excellent mechanical properties (22,23).

A rigorous mechanical characterization of amyloid materials

is crucial for such applications, and to elucidate the stabilizing

mechanism of amyloid fibrils against structural, thermal,

chemical, and mechanical perturbations from a pathological

point of view—for example, to understand prion propagation

processes and derive statistical links between Alzheimer’s

disease and type 2 diabetes (24).

Atomic force microscopy (AFM)-based nanoindentation

experiments can provide quantitative measurements of local

elasticity because they allow the imaging of individual fibrils

and the application of forces ranging from piconewtons

to nanonewtons. Recent studies have reported values of

Young’s moduli ranging from a few tens of megapascals

(25–27) to several tens of gigapascals (28–30), depending
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FIGURE 1 Structure of twofold (a) and threefold (b)

symmetric assemblies of Ab(1-40) amyloid fibrils. Both

structures have an intrinsic twist along the fibril axis

(10,36). In the twofold fibril, two b-strands align in parallel

and form a close contact, whereas in the threefold fibril,

a hydrophobic core nanopore is formed in the center of

the triangular structure. The visualizations on the outermost

right show the geometry of a single protofibril layer for

each morphology. (c) Full-atomistic and corresponding

ENM representations of a twofold symmetric amyloid

fibril.
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on the size of the considered protein structure (25,29),

the experimental approach, and specific loading conditions

used (26,30). However, the lack of a detailed mechanical

characterization at the atomistic scale (with molecular-level

insight into deformation mechanisms), and the relatively

large variation in the measured values of Young’s moduli

of amyloid fibrils have left two major issues unresolved:

1), the effect of boundary conditions and the coupling of

deformation modes; and 2), the validity of the model used

to extract the mechanical properties.

In AFM measurements, for example, when tensile or

bending load is applied to a specific region of amyloid fibrils,

the strain energy may be localized spatially at the point

where the loading is applied. In addition, at finite deforma-

tion, modes such as tension, bending, and twisting can be

coupled with one another, and thus the relation between

applied stress and measured displacement may not be used

directly to extract accurate stiffness measurements, due to

the lack of a well-defined stress and strain state.

AFM-based nanoindentations rely on an indirect evalua-

tion of the elastic properties based on stress-strain relations

obtained from some type of beam model (e.g., from Euler-

Bernoulli theory (25–30)). It is typically based on the

assumption of pure bending states while neglecting contribu-

tions from rotation and shear. Furthermore, the contact area

between the AFM tip or the nanoindenter and amyloid fibril

resides at the nanometer scale that is comparable to the char-

acteristic length scale of helical pitch in amyloid fibrils (on

the order of 100 nm) as well as the cross section (a few nano-
Biophysical Journal 98(10) 2053–2062
meters). At such a low aspect ratio, rotational and shear

deformations, the anisotropy of the cross section, and the

helical geometry may have a significant effect on the bending

rigidity of amyloid fibrils.

It is critical to resolve both of these issues to develop

a rigorous relationship among amyloid fibril structures, their

mechanical properties, and their pathological or physiological

functions. To that end, we propose a novel approach to

evaluate the structural stability and mechanical parameters

of amyloid fibrils by analyzing their normal modes. In

normal-mode analyses of proteins, the low-frequency modes

of proteins are identified. They typically correspond to

collective modes that are related to rigid-body motions and

continuum-like deformations (31–34). For proteins with a

fibrous structure, these low-frequency modes resemble basic

mechanical deformations, such as twisting, transverse bend-

ing, and stretching. By utilizing continuum mechanics

models, one can use the frequencies of these deformation

modes to identify key mechanical material parameters, such

as the torsional modulus G, bending rigidity D, and Young’s

modulus Y (35). Most importantly, the normal-mode-based

approach makes it possible to analyze the intrinsic mechanical

properties without the adverse effects of specific mechanical

boundary conditions or the limited timescales accessible in

direct molecular-dynamics simulations.

In this work, we systematically investigate the size

dependence of the mechanical properties of amyloid fibrils

by using atomistic and continuum finite element-based

normal-mode analyses combined in a scheme as shown in



Mechanics of Amyloid Fibrils 2055
Fig. S1 of the Supporting Material. The use of multiple

methods in our study, from atomistic to continuum, is critical

to cover the relevant length scales from nanometers to

micrometers. We begin by summarizing the key materials

and methods used, including the atomic structure of amyloid

fibrils, and details about the computational methods utilized.

We then proceed with a discussion of the results, and

conclude with a broader perspective on the impact of our

results on amyloid science and related fields.
MATERIALS AND METHODS

Atomic structure of Ab(1-40) amyloid fibrils

For this study, we focus on two polymorphous atomic structures of amyloid

fibrils: the twofold symmetric and threefold symmetric Ab(1-40) amyloid

fibril morphologies. The notation Ab(1-40) is used here to indicate the 40

amino acids comprising the fibril. For both the two- and threefold symmetric

structures, the atomic geometries of the Ab(1-40) amyloid fibrils were con-

structed from monomer protofibrils as described previously (10,36). These

studies provided us with the key geometric parameters, such as the inter-

strand distance d and the twist angle q, that facilitate the construction of

Ab(1-40) amyloid fibrils with arbitrary lengths, as shown in Fig. 1. These

structures served as input geometries for the normal-mode analysis, atom-

istic simulations, and finite element model development.

The twofold symmetric Ab(1-40) amyloid fibril structure consists of two

symmetric b strands that form separate b sheets in a double-layered, cross-

b motif. The two protofilaments aggregate in the fibril growth direction and

possess a helical symmetry along the axis, as shown in Fig. 1 a. The cross

section of the fibril is approximated as a rectangle with a height of

2.87 nm and a width of 4.67 nm, where the cross-sectional area A ¼
13.70 nm2. As a result of the organized interstrand H-bonds, the protofibrils

are closely packed and form layered structures. The threefold symmetric Ab

(1-40) amyloid fibril consists of three b-strands that form separate b-sheets

in a triangular cross-b motif. The three protofibrils also aggregate in the fibril

growth direction and possess a helical symmetry along the axis. The fibril

cross section can be represented as an equilateral triangle with an edge length

of 6.47 nm. The cross-sectional area A ¼ 18.146 nm2. In contrast to the side

contacts found in twofold symmetric fibrils, the threefold symmetric fibril

has a hydrophobic hole in the center; thus, the structure is geometrically con-

strained, which reduces the contact between the protofibrils. The optimized

distances and twist angles between adjacent protofibrils were calculated

to be d ¼ 0.482 nm and q ¼ 1.29� (twofold symmetric structure), and

d ¼ 0.485 nm and q ¼ 2.12� (threefold symmetric structure) (10,36).

The interstrand distance d can also be used to calculate the length of fibril

L ¼ Nlayerd, where Nlayer is the number of protofibril layers in an amyloid

fibril. The aspect ratio n can thus be defined as the ratio between the amyloid

fibril length L and the characteristic dimension of the cross section, such as

the longer edge length of 4.67 nm in the twofold symmetric structure, and

the equilateral edge length of 6.47 nm in the threefold symmetric structure.
Elastic network model

To simulate the mechanical properties of amyloid fibrils based on atomistic-

level structure information at relatively large length scales, we used the

elastic network model (ENM), which was originally proposed by Tirion

(37) and later extended by Hinsen and colleagues (38,39). Here we use

the formulation of the ENM as defined by Hinsen (38). The interactions

between atoms are smoothly cut off above 10 Å (37). As shown in previous

studies (31–34), the lower-frequency normal modes calculated from the

ENM describe experimental measurements or standard empirical force-

field simulations with good agreement. These modes are collective and

correspond to large-amplitude movements and conformational changes of
proteins. A representation of the ENM model is shown in Fig. 1 c. Further

details are included in the Supporting Material.

Normal-mode analysis

The ENM is widely used in normal-mode analysis of large protein molecules

because of the linear elastic nature of the springs that connect the atoms and

the resulting computational efficiency. It should be noted that if full-atom-

istic, conventional force-field methods were to be used, the resulting

normal-mode analysis would quickly become computationally intractable.

In that case, only very short amyloid fibrils with rather few layers would

be accessible to the computational analysis, which would preclude investi-

gation of the size effects of mechanical parameters at scales of up to tens

of nanometers and beyond.

The normal modes of a molecular assembly are calculated by diagonal-

izing the second derivative of the potential energy (Hessian matrix). The

eigenvalues of the mass-weighted Hessian matrix give the frequencies of

corresponding modes, and the corresponding eigenvectors represent the

mode shapes. For macromolecules such as Ab(1-40) amyloid fibrils, the first

six modes are the rigid-body modes with zero frequencies (including three

translation and three rotation modes) (31–34). Most of the next-higher

modes (all modes are ranked by the eigenvalues from low to high) with

low frequencies are collective modes that typically correspond to elastic

deformations such as twisting, bending, and stretching. Although it is rather

simple, the ENM model provides an accurate representation of small-defor-

mation (linear elastic) mechanical behavior, as characterized by the collec-

tive modes with low frequencies (see also earlier studies using a similar

approach (31–34)). Further details are included in the Supporting Material.

Extraction of elastic properties

The normal-mode decomposition of macromolecular motions provides

a specific frequency and stiffness for each mode, and thus offers direct infor-

mation about the elastic properties of an amyloid fibril. Provided that the

collective motion of the amyloid fibrils corresponds directly (or closely) to

the deformation modes assumed in a continuum model, the parameters

extracted from a normal-mode analysis can be related to the elastic constants

(such as the Young’s modulus) in a continuum model (31–34). Further

details are included in the Supporting Material.

Visualization of normal modes

The twisting, bending, and stretching modes of amyloid fibrils are quite

distinct from other modes with spatially localized deformation, and thus

can be easily picked out. Mechanical deformation modes can be character-

ized by visualizing the solved mode shape through the associated atomic

movement trajectory. To visualize the normal-mode shapes in structural

space, the displacement field (i.e., the eigenvectors of the Hessian matrix)

xin on atom i for mode n is added to the atom position xi0 at equilibrium

with a phase factor Asin(a) (where a varies continuously from �p to p).

The amplitude Ani is determined to obtain an average root mean-square

displacement of 3 Å at phase p/2 and�p/2. The Visual Molecular Dynamics

(VMD) program (40) is used for visualization of data. The new cartoon

representation of the secondary structure is read from the equilibrium struc-

ture of amyloid fibrils for each system considered.

Compressive wave-front tracking simulations

We perform all-atom simulations of propagation of a compressive shock

wave through the amyloid fibrils to obtain elastic parameters for the finite-

element model and additional validation of the ENM results. This represents

a direct approach to measure the elastic modulus of amyloid fibrils. The

overall simulation approach and integration of different techniques are sum-

marized in Fig. S1. By tracking the wave-front position (i.e., the boundary

that separates the deformed and undeformed regions) as a function of
Biophysical Journal 98(10) 2053–2062
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time, we determine the group speed of the propagating wave. In the compu-

tational shock experiments, we first equilibrate the system at 300 K for 200

ps (we have confirmed that longer equilibration times do not affect the wave

propagation dynamics). One end of the fibril (containing two protofibril

layers) is constrained against axial displacement, and a constant velocity

shock pulse is applied at the other end (and to the two constrained protofibril

layers). As illustrated in Fig. 2 a, the pulse is applied by given a constant

velocity v0 ¼ 100 m/s to the a-carbon (Ca) atoms in the protofibrils

(different shock velocities v0 from 10 m/s to 1000 m/s are used, and have

not been found to affect the wave propagation speed). The constant-velocity

compression is maintained for 4 ps of simulation time, during which the

shocked end of the protofibrils moves downward by 0.4 nm. We then

remove the constant-velocity constraint at the shocked end of the amyloid

fibril and constrain its motion along fibril axis to facilitate tracking of the

compressive wave propagation (Fig. 2 b). Once it is nucleated, the wave

front travels at the speed of a longitudinal elastic wave, c. The elastic prop-

erties can be extracted based on Y ¼ c2r, where Y is the Young’s modulus

and r is the mass density of the fibril. All tracking simulations are performed

using an NVT ensemble with T ¼ 300 K (Nosé-Hoover thermostat), with

a time step of 1 fs. We employ the CHARMM19 all-atom energy function

and an effective Gaussian model for the water solvent (41,42) to facilitate

rapid sampling of structural configurations (43).

For the twofold (with L ¼ 19.28 nm) and threefold (with L ¼ 29.1 nm)

symmetric amyloid fibrils, we obtain a group speed c ¼ 4000 m/s and

3860 m/s, which correspond to Young’s modulus values of Y ¼
27.24 GPa and 26.50 GPa, respectively. We find that the sound speed values

are rather similar for the two- and threefold fibrils. This suggests that the

dense H-bond network within the fibril (with a similarly layered structure

in both symmetries) is responsible for the mechanical energy transfer during

wave propagation. We note that the Young’s moduli values correspond well

to earlier experimental measurements (several tens of gigapascals) of the

elastic modulus of amyloid fibrils (28–30).

Finite-element analysis of the bending rigidity

Measurements based on the ENM model are limited by the system size that

scales with the number of atoms, limiting fibril lengths to ~30 nm. To reach

scales comparable to or larger than the characterized helical pitch length in

amyloid fibrils (on the order of 100 nm), and to capture the size dependence

of mechanical properties associated with this length scale, we carry out

finite-element analyses.

This approach allows us to capture the rotational and shear contributions

to the bending mode at small aspect ratios, and the effects of helical symme-

tries in amyloid fibrils with fibril length less than the helical pitch length.

Because of the one-dimensional nature of amyloid fibrils, an isotropic elastic
a c

db
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fiber model with Young’s modulus E (obtained from wave-front tracking

(WFT) simulations as described above) and a Poisson’s ratio of v ¼ 1/3

(following the analysis in del Mercato et al. (44)) is chosen. We use rectan-

gular and equilateral triangular cross sections that reflect the geometrical

parameters of the corresponding atomistic structures, for both the two-

and threefold symmetric fibril morphologies. Three-dimensional solid

elements C3D8I are used to discretize the amyloid fibril. In the normal-

mode analysis, the vibrational frequencies are calculated via the linear

perturbation module in ABAQUS using a Lanzcos solver. The results for

eigenfrequencies are substituted into expressions from Euler-Bernoulli

theory to obtain the nominal bending rigidity, D (elastic properties other

than the bending rigidity are not considered here).
RESULTS AND DISCUSSION

To obtain a complete picture of the mechanical properties of

amyloid fibrils and their dependence on the geometry, an

integrated study using the methods outlined above is carried

out, with a focus on the dependence of the mechanical prop-

erties on the fiber length, cross-sectional morphology, and

intrinsic helical symmetry. As an overview, visualizations

of the normal-mode shapes are shown in Figs. 3 and 4 for

the two- and threefold symmetric structures, for different

fibril lengths. Table S1 summarizes the normal-mode shapes

and the ordering of Ab (1-40) amyloid fibrils for the two-

and threefold symmetric structures. Table S2 summarizes

vibrational frequencies with different modes, and Table S3

provides an overview of the mechanical parameters associ-

ated with each mode. Movies S1, S2, S3, S4, S5, S6, S7,

and S8 show visualizations of the twisting, bending, and

stretching modes for the two- and threefold symmetric

fibrils.

Twisting modes

The lowest-order mode for the shortest twofold symmetric

structure considered here, (with 20 layers or corresponding

to z10 nm length), is a twisting mode as visualized in

Fig. 3 and shown in Table S1. The twisting mode turns

into the second- and third-lowest modes as the length of
FIGURE 2 Compressive WFT approach carried out

using full-atomistic simulations. (a) Compression load is

applied by prescribing a constant velocity to the Ca atoms

in the two top protofibrils layers. (b) Loading history,

consisting of an equilibration process for 200 ps, a pulse

compression process with constant velocity applied to

two top protofibril layers, and a wave-tracking process.

(c) Displacement of Ca atoms in the twofold symmetric

fibrils (length L ¼ 19.28 nm), resulting in a measured

wave speed of 4000 m/s. The color describes the axial

displacement of the Ca atoms as a function of time

(x-axis) and their initial positions (y-axis). (d) Displace-

ment of Ca atoms in the threefold symmetric fibrils

(length L ¼ 29.1 nm), resulting in a measured wave speed

of 3860 m/s.



FIGURE 3 Lowest-order collective modes of twofold symmetric amyloid fibrils, including twisting, bending along different axes (soft and stiff), and

stretching modes. For shorter fibrils, the soft and stiff axes are well defined, showing significant differences between the two bending modes (where the

one with lower frequency corresponds to bending around the soft axis). We find that there is also a significant coupling within these modes, particularly in

bending and stretching.
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the fibril is increased, when bending modes take the place of

the lowest-order modes. The shortest threefold symmetric

fibril considered here does not show a distinct first-order

twisting mode (as explained in detail further below), which

only emerges when longer fibrils are considered, as in the

40- and 60-layer systems (with z20 nm and/or z30 nm

length; see results in Fig. 4 and Table S1). In these two cases,

the twisting modes are the third-lowest mode observed, with

two bending modes taking the place of the lowest two

modes.

The corresponding torsional modulus G calculated from

Eq. S4 ranges from 5.19 to 5.83 GPa, and is found to be

an increasing function of the fibril length L. Fig. 5 a reports

the torsional modulus G as a function of the fibril length

for both two- and threefold symmetric morphologies. The

increase in G is more pronounced in the twofold symmetric

structure. Notably, we find that the increase of the torsional
modulus G saturates quickly as the fibril length exceeds

20 nm, suggesting that these boundary effects quickly

disappear for this mode of deformation as the length is

increased.

Based on a detailed analysis of the mode shapes of short

fibrils with both two- and threefold symmetry, we find that

there exist localized deformations at the open ends in the

fibrils. This implies that the protofibrils at the ends are

more weakly bound to the rest of the amyloid fibrils, and

as a result could begin to disassociate relatively easily under

mechanical or chemical perturbation from environment. This

applies in particular to the threefold symmetric fibrils, where

a hydrophobic core nanopore is formed in the center of the

triangular structure (as shown in Fig. 1 b), and thus the

contact between protofibrils is looser than in the twofold

symmetric fibrils. This results in an overall reduced stability

of this fibril morphology. In agreement with this notion, the
Biophysical Journal 98(10) 2053–2062



FIGURE 4 Lowest-order collective modes of threefold symmetric amyloid fibrils, including twisting, bending, and stretching modes. The threefold

symmetric triangular symmetry of the cross section results in a degenerated transverse bending mode.
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lowering of geometric constraints also gives rise to a series of

radial breathing modes with low frequencies for short fibrils,

(such as the 9th–12th modes for the 20-layer fibril, as shown

in Table S1). We observe that these modes are strongly

coupled to the first-order twisting mode. As a result, the

torsional modulus cannot be extracted in this case (and the

mode shape of the second-order twisting mode is instead

represented in Fig. 4). This twisting mode also shows a strong

localization at the fibril ends, suggesting an enhanced disas-

sociation probability of the threefold symmetric structure, as

discussed in previous reports (30).
Transverse bending modes

We now turn to the transverse bending modes and focus first

on the twofold symmetric fibril. Since the twofold symmetric

amyloid fibril has a rectangular cross section, as shown in

Fig. 1 a, it possesses two distinct nondegenerate bending

axes that correspond to two different eigenfrequencies and

thus mode shapes (as can also be directly confirmed in the

visualizations shown in Fig. 3). As a result, there exist

two distinct bending stiffnesses depending on the axis of

bending. The axis that gives the smaller moment of inertia

for bending is referred to as the ‘‘soft’’ axis, and the other

one is referred to as the ‘‘stiff’’ axis for bending.
Biophysical Journal 98(10) 2053–2062
The results summarized in Fig. 5 b show that the resulting

bending rigidity D depends strongly on the fibril length L.

Furthermore, the values obtained from our model are consis-

tent with the experimentally measured values (in the range of

10�26–10�25 Nm�2) (28,30). Due to the intrinsic twist along

the fibril axis, the anisotropy of the cross section is expected

to disappear once the fibril length is much larger than the

helical pitch length Lp (when the twist angle accumulated

along the fibril axis is much larger than 2p), that is,

Lpz130 nm for two-fold symmetric fibrils, and Lpz82 nm

for three-fold symmetric fibrils (10,36). This means that

even though there exists a length-dependent anisotropy in

the bending rigidity, it is expected to disappear for very

long fibrils. The applicability of ENM for relevant length

scales, however, is prohibited by the limitation of computa-

tional power.

To overcome this limitation, we perform finite-element

analyses that enable us to reach much larger length scales

and directly test this hypothesis. Fig. 6 a shows the finite-

element model setup, depicting a model without and with

twisting. These models are chosen to test the hypothesis that

the twisted geometry indeed results in the emergence of

a single bending rigidity once a critical length scale is reached.

Fig. 6 b shows example results from the normal-mode anal-

ysis for these two models, for different lengths. Fig. 6 c shows
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FIGURE 5 Elastic properties of amyloid fibrils as a function of length L, as obtained from ENM calculations. (a) Torsional modulus G. (b) Bending rigidity

D ¼ YI along the soft and stiff axes of two- and threefold symmetric amyloid fibrils (with smaller and larger moments of inertia, respectively). (c) Young’s

modulus Y. All parameters are shown as a function of the amyloid fibril length up to z30 nm.
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the bending rigidities for both models and for both the soft and

stiff bending axes. The results confirm that once the fibril

length is larger than the helical pitch length, the difference

between soft mode and stiff mode disappears in twisted fibrils,

but remains in untwisted fibrils. In agreement with our

hypothesis, the rigidity of the long, twisted fibril lies between

the two limits for untwisted amyloid fibrils. Furthermore, we

observe that the nominal bending rigidities show a size-

dependent bending rigidity for aspect ratios below a critical

aspect ratio of n* z 10. This is because at such small aspect

ratios, the rotational and shear effects that are neglected in the

Euler-Bernoulli theory, which assumes pure bending defor-

mation, become important for n< 10. Altogether, the critical

aspect ratio n for Euler-Bernoulli theory validity, and the

helical pitch length Lp in the fibrils define two critical length

scales that characterize the size-dependent bending behavior

of amyloid fibrils. Specifically, our analysis shows that rela-

tively simple rod models can only be applied to amyloid fibrils

whose length exceeds Lp.

We now briefly focus on the bending properties of the

threefold symmetry amyloid fibril. Due to the symmetric

triangular cross section of the threefold symmetric fibril

(see Fig. 1 b), the bending rigidities measured from our

normal-mode analysis are very close to one another. This

can be confirmed by comparing the values reported in
Fig. 5 b, which shows that as the length of amyloid fibrils

approaches z30 nm, the two obtained bending rigidities

approach the same value of 6.3 � 10�25 Nm2. As discussed

above, this behavior is in contrast to the twofold symmetric

fibril, where a significant deviation of the bending stiffnesses

around the soft and stiff axes is observed.
Longitudinal stretching modes

As shown in Fig. 5 c, the Young’s modulus Y is calculated

to be 30–31 GPa for the twofold symmetric fibril, and

19–20 GPa for the threefold symmetric fibril, which is on

the same order of previous experimental measurements

(2–24 GPa) (28–30). For the longitudinal stretching mode

in twofold symmetric fibrils, we find that there exists a signif-

icant coupling with bending modes along the soft axis, as

shown in Fig. 3. The narrow distribution of Young’s modulus

values as a function of the fibril length suggests that less

significant boundary effects exist in this deformation mode

in comparison with the twisting modes. Therefore, the appli-

cation of stretching and compression modes represents a more

reliable method to extract elastic properties even from rela-

tively small structures (however, boundary effects due to

the application of tensile or compressive load may still play

an important role and must be carefully considered).
Biophysical Journal 98(10) 2053–2062



ba

c

FIGURE 6 Results of normal-mode analysis based

on three-dimensional, finite-element simulations. (a)

The geometry of untwisted and twisted amyloid fibrils

(length L ¼ 48.2 nm (100 layers)). (b) The shape of

bending modes along soft and stiff axes, respectively

(for fibril lengths L ¼ 48.2 nm (100 layers) and L ¼
192.8 nm (400 layers)). The bending modes for longer

fibrils illustrate the degeneracy of the soft and stiff

modes. The color represents displacement amplitude,

scaled up by a factor of 80 for visualization. (c)

Bending rigidity D of twofold symmetric amyloid

fibrils with (solid symbols) and without (open

symbols) the intrinsic twist along the fibril axis. The

length-dependent bending rigidity values show signif-

icant size effects resulting from two distinct mecha-

nisms: 1), at low aspect ratios n < n* ¼ 10, the

bending rigidities calculated based on the Euler-Ber-

noulli theory increase with fibril length because of

the unaccounted-for contributions from rotational

and shear effects (for details, see Supporting Mate-

rial); and 2), there is a geometric effect from the

intrinsic twist on the resulting bending properties.

For the untwisted fibril, the bending rigidities associ-

ated with the soft and stiff modes converge to distinct

constant values for larger L. For twisted fibrils, when

L is larger than the helical pitch length Lp, the differ-

ence between the soft and stiff modes disappears and

their bending rigidity approaches the same value.
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Higher-order modes

The normal modes with frequencies higher than the first-order

twisting, bending, and stretching modes discussed above

correspond to higher-order collective modes and those with

localized deformation in the fibril. Some of the characteristic

modes that can be related to continuum deformations are

summarized in Table S1.

CONCLUSIONS

In this work, we used ENM-based normal-mode analysis,

full-atomistic simulations, and finite-element analysis to

investigate the mechanical properties of Ab(1-40) amyloid

fibrils. The use of normal-mode analysis enabled us to

exclude ambiguous effects that result from the application

of loading and boundary conditions. We find that the aspect

ratio and helical pitch length of the fibrils determine two

critical size-dependent length scales, below which the pre-

senting shear stress or low bending rigidity along the soft

axis will reduce its mechanical resistance. The size depen-

dence and enhancement of the structural stability and associ-

ated mechanical properties for long amyloid fibrils revealed
Biophysical Journal 98(10) 2053–2062
here may imply a pathological consequence. Furthermore,

our study also clarifies the validity of mechanical models

to extract the mechanical properties of nanoscale helical

fibrils from experiments or atomistic simulations by achiev-

ing a physical stress/strain state and applying the appropriate

model at various length scales.

Specifically, for short fibrils (L < 10 nm for twofold and

L < 15 nm for threefold fibrils), large-amplitude displace-

ment at the open ends (twofold fibrils) and radial breathing

motion (threefold fibrils) play a significant role, leading to

structural instabilities. Under perturbations in environments

such as thermal fluctuations, pH value changes, or solvent

flow, the protofibrils at the ends may disassociate from the

rest of the structure.

For long amyloid fibrils, a remarkably enhanced structural

stability was observed. The torsional modulus G and Young’s

modulus Y are well defined: G z 5.5 and 4.3 GPa for twofold

symmetric and threefold symmetric Ab(1-40) amyloid fibrils,

respectively, and Y z 31 and 20 GPa, respectively. The

higher stiffnesses in the twofold fibril are due to its close

contact within protofibrils and denser structure. The bending

rigidity (in the range of 2–7 � 10�25 Nm2), however, shows



TABLE 1 Comparison of key mechanical properties of amyloid fibrils with other materials

Material Torsional/shear modulus (GPa) Bending rigidity (10�25 Nm2) Young’s modulus (GPa)

Twofold Ab(1-40) amyloid fibril (ENM, this work) 4.3 2.1–4.8 31.0

Threefold Ab(1-40) amyloid fibril (ENM, this work) 5.6 1.8–6.3 20.0

Twofold Ab(1-40) amyloid fibril (WFT, this work) - - 27.2

Threefold Ab(1-40) amyloid fibril (WFT, this work) - - 26.5

Amyloids (simulation) (28) - - 4–40

Amyloid fibrils (experimental) 0.3 (30) 0.1–2.5 (28–30) 12–17 (28–30)

Spider silk (45) 2.38 - 10–30

Steel (46) 80 - 200

Concrete (46) - - 18–30

Glass (46) 5–24 - 17–90
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a significant size dependence because of both the rotational/

shear contributions at low aspect ratios and the effect of the

helical symmetry along the fibril axis. This size dependence

is prominent for the structures investigated in this work and

will be significant for fibrils with either a small aspect ratio

or length L smaller than the helical pitch length Lp, which is

on the order of 100 nm. The threefold fibril optimizes its resis-

tance to bending loads by utilizing a more isotropic cross

section. Full-atomistic, molecular-dynamics simulations

based on the wave-tracking method result in a rather similar

value of the Young’s modulus close to 27 GPa, which is

well defined here by the elastic dynamics. Additional finite-

element analysis results based on this value elucidated the

validity of a one-dimensional continuum model for amyloid

fibrils at lengths larger than the periodicity defined by their

intrinsic twist, L > Lp.

The elastic parameters identified here, such as the torsional

and Young’s moduli, lay the foundation for understanding the

mechanical properties of amyloid fibrils. Specifically, our

results suggest that amyloids are extremely stiff nanostruc-

tures in comparison with engineering materials such as

concrete, glass, and steel, and other biological structural mate-

rials such as spider silk (Table 1). In addition, amyloid fibrils

feature an intrinsic self-assembling ability and a remarkable

propensity to change conformation, controlled by external

cues (22). The coupling between different deformation modes

(e.g. tension/compression and rotation) is an interesting

feature of amyloid fibrils, which has also been observed in

recent full atomistic simulations (47).

We note that the ENM approach used here is limited by

both the nature of the normal-mode analysis and the simplicity

of the model. The normal-mode analysis uses the second

energy derivatives matrix, which is calculated based on the

equilibrium structure. Thus, the perturbation nature of the

analysis is only reasonable for small-amplitude harmonic

motions, and prohibits large-amplitude motion and nonlinear

mechanisms, such as fracturing of the amyloid fibrils with

breaking or reforming of the H-bond network. Furthermore,

in the ENM, the simple exponential decaying function (given

in Eq. S1) may not correctly reflect the huge stiffness

difference (rk ¼ kc/kH) between covalent bonds in backbone

and H-bonds (here defined as the distance between donor
and acceptor atoms, for example, between oxygen and

nitrogen atoms in a C¼O.H-N H-bond). A revised ENM

with correct stiffness levels inside proteins could be imple-

mented to obtain more accurate results (and with an explicit

treatment of slip planes associated with potential failure

mechanisms of H-bonded b-sheet structures).
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