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SUMMARY

The oocyte-to-embryo transition marks the onset
of development. The initial phase of this profound
change from the differentiated oocyte to the totipo-
tent embryo occurs in the absence of both transcrip-
tion andmRNA degradation. Herewe combine global
polysome profiling, ribosome-footprint profiling, and
quantitative mass spectrometry in a comprehensive
approach to delineate the translational and proteo-
mic changes that occur during this important transi-
tion in Drosophila. Our results show that PNG kinase
is a critical regulator of the extensive changes in the
translatome, acting uniquely at this developmental
window. Analysis of the proteome in png mutants
provided insights into the contributions of translation
to changes in protein levels, revealing a compensa-
tory dynamic between translation and protein turn-
over during proteome remodeling at the return to
totipotency. The proteome changes additionally sug-
gested regulators of meiosis and early embryogen-
esis, including the conserved H3K4 demethylase
LID, which we demonstrated is required during this
period despite transcriptional inactivity.

INTRODUCTION

The oocyte-to-embryo transition marks the onset of develop-

ment for any multicellular organism. This dramatic change in-

volves the completion of meiosis in the oocyte, sperm entry,

fusion of themale and female pronucleus, and the start of mitotic

divisions (Horner andWolfner, 2008b). These events accompany

the profound developmental change from a differentiated oocyte

into a totipotent embryo.

Studies on the restoration of cell potency have focused on the

regulation of transcription (Young, 2011), but the oocyte-to-

embryo transition necessitates a fundamentally different control

mechanism. Following the primary arrest in prophase I, oocytes
C

are transcriptionally silent, and in all animals at least the first

embryonic division occurs prior to the initiation of zygotic tran-

scription (Tadros and Lipshitz, 2009). Organisms such as in-

sects, fish, and amphibians rely on stockpiled maternal mRNAs.

These organisms proceed through several hours of embryonic

development (i.e., 12–13 division cycles in Xenopus and

Drosophila) prior to the onset of zygotic transcription, which

also triggers turnover of maternal mRNAs (Anderson and Len-

gyel, 1979; Zalokar, 1976). In Drosophila, a pathway to degrade

maternal mRNAs is not active until 2 hr after egg laying (Tadros

et al., 2003, 2007). Thus, the oocyte-to-embryo transition and

early embryogenesis occur with constant mRNA levels (Tadros

and Lipshitz, 2009).

Although many aspects of translational regulation in the

oocyte-to-embryo transition remain to be elucidated, the effect

of translation on meiotic progression has been extensively

analyzed in two other developmental contexts: (1) in yeast

meiosis, which proceeds without developmentally programmed

arrests and in the presence of transcriptional control, extensive

translational regulation nevertheless occurs (Brar et al., 2012;

Carlile and Amon, 2008; Chu and Herskowitz, 1998), and (2) in

metazoans, at maturation the oocyte exits the primary arrest in

prophase I and progresses into meiotic divisions. Experiments

in amphibians, mice, and marine invertebrates demonstrated a

role for cytoplasmic polyadenylation in activating translation at

oocyte maturation and showed that precisely timed translation

of several mRNAs is required for progression through themeiotic

divisions (Charlesworth et al., 2013; Chen et al., 2011; Gebauer

et al., 1994; Tay et al., 2000).

Here, we define the regulatory steps of gene expression at the

oocyte-to-embryo transition of Drosophila. In Drosophila, as in

most animals, themature oocyte is arrested at a secondary point

in meiosis (Sagata, 1996). In insects, this arrest point is themeta-

phase of meiosis I. The trigger for the oocyte-to-embryo transi-

tion is egg activation. Egg activation and exit from meiosis in

Drosophila take place as the oocyte passes into the uterus,

regardless of whether it is fertilized. Instead of sperm entry,

mechanical pressure as well as osmotic and Ca2+ changes are

thought to initiate egg activation in Drosophila (Horner and Wolf-

ner, 2008a).
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Egg activation is presumably accompanied by changes in

translation, as poly(A) tails on mRNAs are lengthened and pro-

teins involved in developmental patterning and cell-cycle control

are synthesized (Horner and Wolfner, 2008b). In addition, pro-

teins are actively subjected to degradation during egg activation.

Release of the metaphase I arrest and completion of meiosis re-

quires the Anaphase Promoting Complex/Cyclosome (APC/C) to

target Cyclin B for degradation (Pesin and Orr-Weaver, 2007;

Swan and Schüpbach, 2007). We recently showed that a

meiosis-specific form of the APC/C also contributes to the

change from meiosis in the oocyte to mitosis in the embryo by

mediating degradation of the meiotic protein Matrimony (Mtrm)

(Whitfield et al., 2013).

The Drosophila PNG kinase is required for the onset of mitotic

divisions in the embryo (Fenger et al., 2000; Shamanski and Orr-

Weaver, 1991). This Ser/Thr kinase is a complex of a catalytic

subunit, encoded by the png gene, and two activating subunits,

the proteins GNU and PLU (Lee et al., 2003). The PNG kinase

complex is present and acts solely at the oocyte-to-embryo

transition. By promoting the translation of cyclin B after egg

activation, the PNG kinase complex leads to Cyclin B/Cdk1 re-

activation and entry into the first embryonic mitosis (Fenger

et al., 2000; Vardy and Orr-Weaver, 2007). PNG has an indirect

role later in embryogenesis in promoting degradation of maternal

mRNAs. This degradation requires Smaug (SMG), whose trans-

lation also is dependent on PNG at egg activation (Tadros et al.,

2007).

We now quantitate changes in translation and the proteome

that occur during the oocyte-to-embryo transition, a combined

approach not previously used in any organism for this time frame,

and identify regulators of this key developmental change. Our

comprehensive approach allowed us to determine the extent to

which translational changes are reflected in the proteome. These

studies reveal that both extensive translational and posttransla-

tional regulatory mechanisms sculpt the proteome at the devel-

opmental change from oocyte to embryo, and they emphasize

the value of examining both the translatome and the proteome.

RESULTS

Translational Changes at Egg Activation
To assess globally the translational changes that occur at egg

activation, we performed polysome profiling and ribosome foot-

printing of mature oocytes and activated eggs (Figure 1A). We

used unfertilized Drosophila eggs instead of embryos because

they undergoall the eventsof activation, including thecompletion

of meiosis and the onset of expression of proteins that control

embryonic patterning (Horner and Wolfner, 2008b). Unfertilized

eggs offer an advantage over embryos: they allow monitoring

of egg activation while avoiding the potentially confounding

changes in protein synthesis and degradation that occur during

the subsequent embryonic divisions of fertilized embryos.

In polysome profiling, mRNA-protein complexes are sepa-

rated by fractionation through linear sucrose gradients (Beilharz

and Preiss, 2004). The position of an mRNA within the sucrose

gradient reflects its translational status: cosedimentation of

mRNAs with ribonucleoproteins (RNPs) or ribosomal subunits

suggests a lack of translation, whereas cosedimentation with
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polysomes indicates active translation. An abundant monosome

peak present in the polysome profiles of mature oocytes was lost

at egg activation, accompanied by a >5-fold gain in the relative

abundance of polysomes (Figure 1B). To define the translational

changes for each mRNA, we isolated mRNAs from six regions

within the gradient (Figure 1B) and quantified their abundance

by mRNA sequencing (mRNA-seq).

We identified 5,088 mRNAs (�35% of the annotated genes)

in sucrose gradient fractions in two independent polysome-

profiling experiments (Table S1). As expected, mRNA abun-

dance in unfractionated lysates of mature oocytes and activated

eggs, which are devoid of mRNA transcription and degradation,

was highly correlated (R2 = 0.89; Figure S1A). This result also

indicated that although cytoplasmic polyadenylation has been

reported to accompany egg activation, poly(A) selection is a

reliable method for isolating mRNA in mature oocytes and acti-

vated eggs (Horner and Wolfner, 2008b; Sallés et al., 1994).

Importantly, the mRNA abundance within the same fraction

from two independent polysome-profiling experiments was

highly correlated (R2 = 0.72–0.99; Figures S1B and S1C), which

allowed us to calculate the average percentage distribution of

each mRNA across the six fractions.

To confirm that the mRNAs that cosedimented with the poly-

somal peaks (defined here as R5 ribosomes) were actively

engaged in translation, we treated lysates of mature oocytes

and activated eggs with puromycin ex vivo, which causes pre-

mature termination of elongating ribosomes (Blobel and Saba-

tini, 1971). The lysates were fractionated and mRNA-seq was

performed. Puromycin treatment of mature oocytes and acti-

vated eggs was efficient, as it led to complete disassembly of

polysomes as measured by OD254 (Figures S2A and S2B). Frac-

tionation of puromycin-treated lysates of mature oocytes, but

not of activated eggs, revealed that many mRNAs migrated

within sucrose gradients in a translation-independent manner

(Figures S2C and S2D). Following puromycin treatment of

mature oocyte lysates, the median association of an mRNA

with fractions corresponding to polysomes equaled a surpris-

ingly high percentage of the total abundance (25%; Figure S2C).

In contrast, in activated eggs after puromycin treatment, on

average only 9% of the total mRNA cosedimented with the

gradient regions corresponding to polysomes (Figure S2D).

The large fraction of mRNA from mature oocytes that cosedi-

mented, but was not actually associated with actively translating

polysomes, highlights the necessity of the puromycin control in

genome-wide polysome-profiling experiments. After correcting

for translation-independent migration in the region correspond-

ing to polysomes (see Supplemental Experimental Procedures),

we classified 802 mRNAs as recruited onto polysomes, 729

mRNAs as released off the polysomes, and 3,557 mRNAs as un-

changed during egg activation (Figures 1C and S2E; Table S4).

The discovery of a large number of translationally regulated

mRNAs prompted us to employ an alternative genome-wide

method to analyze the change in translational status of mRNAs

at egg activation. Ribosome footprint profiling measures the

number of ribosome-protected fragments (RPFs) derived from

the mRNAs of each gene, which when normalized to mRNA

abundance results in a single value for the translation efficiency

(TE) of each gene (Ingolia et al., 2009). Moreover, ribosome



Figure 1. Translational Changes at Egg Activation

(A) Micrograph of a mature, stage 14 oocyte (preactivation state) and an activated egg (postactivation state). Anterior is on the left and dorsal is up.

(B) Representative profile of 254 nm absorbance for wild-type mature oocytes (black) and wild-type activated eggs (red). The inset is an enlargement of the

polysomal section of the profile (starting from disomes). The six gradient fractions that were sequenced are labeled. Low polysomes correspond to 2–4 ribo-

somes, medium polysomes correspond to 5–9 ribosomes, and heavy polysomes correspond to R10 ribosomes. Polysome/monosome (P/M) ratios averaged

from three biological replicate experiments are represented as mean ± SD.

(C) Comparison of mRNAs associated with polysomes (R 5 ribosomes) in mature oocytes and activated eggs. Data were corrected for the presence of mRNAs in

the same regions of the gradient after fractionation of puromycin-treated samples. mRNAs were categorized as translationally inhibited (blue) if they had at least

9.1% higher polysomal recruitment in mature oocytes than in activated eggs. Translationally activated (red) mRNAs had at least 26.4% higher polysomal

recruitment in activated eggs than in mature oocytes. The cutoffs were chosen because they are 1 SD from the mean difference for all the identified mRNAs. The

remaining, translationally unchanged, mRNAs are shown in yellow; 5,088 mRNAs are represented as the mean of two biological replicates.

(D) Translation efficiencies (TEs, where TE = rpkm of RPFs/rpkm for mRNA abundance) in mature oocytes and activated eggs for 5,842 mRNAs. A total of 986

translationally activated mRNAs (red) have �4.1-fold higher TE in activated eggs than in mature oocytes in both replicates, whereas for 448 translationally in-

hibited mRNAs (blue) the TE ratio is �4.1-fold lower in activated eggs than in mature oocytes in both replicates. The cut-off of a �4.1-fold change in TEs was

chosen because it represents 1 SD of the ratios of TEs between activated eggs andmature oocytes in the samples prepared in the absence of cycloheximide. The

mean of two biological replicates is shown.

(E) Correspondence between the two complementary methods to measure the translational status of mRNAs in activated eggs versus mature oocytes; 4,580

mRNAs, detected by both approaches, are shown as the average of two biological replicates for both experiments. The Spearman R value is indicated.

(F) The upper Venn diagram compares the number of mRNAs identified by polysome profiling (left) or ribosome footprinting (right) as translationally upregulated at

egg activation, applying the criteria described in Figures 1C and 1D, respectively. The lower Venn diagram presents translationally inhibited mRNAs. Here and for

all of the other Venn diagrams, only factors identified by both approaches (or in all compared samples) are represented.

See also Figures S1 and S2, and Tables S1 and S2.
footprinting reports the position of ribosomes on mRNAs. We

observed an unusual accumulation of ribosomes on start codons

specifically in mature oocytes, even though no cycloheximide
C

was used (Figure S2F). This feature, however, seems to be unre-

lated to translational regulation for two reasons: (1) even in

mature oocytes, RPFs at the start codon comprised only a small
ell Reports 7, 1495–1508, June 12, 2014 ª2014 The Authors 1497
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fraction of the RPFs for each gene (Figure S2F), and (2) initiation

codon occupancywas not predictive of translational status in the

activated egg (Figures S2G and S2H).

Two independent ribosome footprinting experiments yielded

TE measurements for 5,842 mRNAs in mature oocytes and

activated eggs (Figure S2I) and revealed drastic translational

changes at egg activation (R = 0.37) (Figures 1D and S2J).

Mtrm, the regulator of timing of oocytematuration, and 447 other

mRNAs were translationally repressed at egg activation, with

�4.1-fold lower TE in activated eggs than in mature oocytes. A

total of 986 mRNAs, including positive controls such as the

embryonic patterning mRNAs bcd, hb, cad, tor, Tl, and smg,

as well as mRNAs encoding cell-cycle regulators (cycA, cycB,

and stg), had �4.1-fold higher TE in activated eggs than in

mature oocytes and were translationally activated at egg

activation (Tables S2 and S4). We found that 968 of the 986

mRNAs categorized as translationally activated at egg activa-

tion, and 390 of the 448 translationally repressed mRNAs were

significantly translationally regulated with a p value of <0.05

between the two replicate experiments. If only a p value cutoff

of < 0.05 is applied, 2,435 mRNAs would be considered transla-

tionally activated and 989 would be considered translationally

repressed. Because the mRNAs identified as translationally

regulated at egg activation using a �4.1-fold-change cutoff

were largely contained in the set selected by p value analysis,

we chose the former approach for subsequent analyses, as it

is more stringent.

The translational changes observed by ribosome footprinting

and polysome profiling were in broad agreement (Spearman

R = 0.70; Figure 1E), especially considering that these methods

measure slightly different translational properties. Polysome

profiling reveals the translationally active fraction of an mRNA.

Ribosome footprinting provides information about the average

number of ribosomes on each mRNA, with no insights as to

whether only a small fraction of that mRNA is efficiently trans-

lated and the bulk is repressed.

Both methods identified 301 and 213 mRNAs as transla-

tionally upregulated or downregulated, respectively, at egg

activation (Figure 1F). Our data set of 301 mRNAs translationally

upregulated at egg activation was significantly enriched (false-

discovery rate [FDR] < 0.05) for Gene Ontology (GO)-term

categories such as ‘‘RNA processing,’’ ‘‘mRNA binding,’’ and

‘‘chromatin organization’’ (Figure S2K). Thus, translational acti-
Figure 2. PNG Kinase Regulates the Translational Status of the Majori
(A) Representative profile of 254 nm absorbance for wild-type (WT, red) and png

independent experiments.

(B) Graph showing the TEs of four mRNAs translationally upregulated at egg act

(C) Box plot showing TEs in WT mature oocytes (black), png mature oocytes (g

upregulated at WT egg activation. The black lines within each box indicate the me

whiskers extend to the minimum and maximum values.

(D) A heatmap for 986 translationally activated mRNAs compares the TE ratios o

activated eggs. Three classes defining dependence on PNG for translational act

mean of two biological replicates.

(E) TEs in WT and png mature oocytes, as well as activated eggs, of three mRNA

(F and G) Same as in (C) and (D), except that 448 translationally inhibited mRNA

(H) Same as in (E), except that three mRNAs representative of the three groups cl

shown.

See also Figure S3 and Table S2.

C

vation might help prepare the egg for the maternal-to-zygotic

transition, or these factors might serve transcription-indepen-

dent roles during the first 2 hr of embryogenesis. Although

hundreds of mRNAs were reported as translationally inhibited

at egg activation in mice (Potireddy et al., 2006), none had

been described in Drosophila. The 213 mRNAs we identified as

translationally inhibited at egg activation showed enrichment in

several GO-term categories, including ‘‘cell cycle process,’’

consistent with egg activation involving completion of meiosis.

Other enriched GOcategories, such as ‘‘pyruvatemetabolic pro-

cess,’’ ‘‘tRNA aminoacylation,’’ and ‘‘nucleotide (ATP) binding,’’

suggest that changes in metabolism or translation could be

occurring at the exit of meiosis and entry into embryonic cycles

(Figure S2L).

The PNG Kinase Is a Major Translational Regulator at
Egg Activation
Having identified hundreds of mRNAs as translationally regu-

lated at egg activation, our next goal was to discover key regula-

tory factors. One candidate was PNG, a Ser/Thr kinase that was

previously demonstrated to promote translation of cycB and

smg at egg activation (Tadros et al., 2007; Vardy and Orr-

Weaver, 2007).

A slightly lower polysome/monosome ratio (P/M) in the png

than wild-type activated eggs suggested a more systemic trans-

lational activation failure in png eggs (Figure 2A). These differ-

ences between wild-type and png activated eggs could not be

attributed to mRNA expression levels, as mRNA abundance

was highly correlated between these two samples (Pearson

R = 0.99; Figure S3A). To identify translational targets of PNG,

we performed ribosome footprinting of png mutant mature

oocytes and activated eggs. The TEs of the positive controls,

cycB, cycA, and smg were lower in png activated eggs than in

wild-type (Figure 2B; Table S2). In png eggs, the TEs of all 986

mRNAs normally translationally upregulated at egg activation

were closer to those of either wild-type or png mature oocytes

than to those of wild-type activated eggs (Figure 2C).

A heatmap depicting the differences in TE in png activated

eggs compared with the wild-type for each of the 986 transla-

tionally upregulated mRNAs shows that many, but not all,

mRNAs require PNG function for activation (Figure 2D). A total

of 608 mRNAs were dependent on PNG for their translational

activation (e.g., scra; Figure 2E; Tables S2 and S4). In contrast,
ty of mRNAs at Egg Activation
activated eggs (blue) as in Figure 1B, except that the P/M ratios are from two

ivation in WT, but not in png mutants (png).

reen), WT (red), and png activated eggs (blue) for 986 mRNAs translationally

dian, the edges of the boxes show the first and third quartiles of the values, and

f WT activated eggs versus mature oocytes with the ratios of WT versus png

ivation at egg activation emerged. n, number of mRNAs in each category; TE,

s representative of the three groups described in (D).

s are shown.

assifying dependence on PNG for translational repression at egg activation are
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we identified 133mRNAs as PNG independent (e.g., kdm4B) and

245 as partially PNG dependent (e.g., aef-1; Figures 2D and 2E).

We found that 38% of translationally activated mRNAs were at

least partially independent of PNG, suggesting that there are

one or more pathways acting in parallel to PNG to govern trans-

lation at egg activation, possibly serving divergent goals (Table

S4). The PNG-independent pathway(s) may control translational

activation of mRNAs encoding proteins involved in chromatin

modifications (Figure S3B), whereas the PNG-dependent

pathway seems to regulate mRNAs encoding protein kinases

and factors involved in cell or tissue morphogenesis as well as

embryonic development (Figure S3C).

We also found that many mRNAs translationally repressed at

egg activation were dependent on PNG (Figure 2F). Based on

differences in TEs in png versus wild-type activated eggs, we

classified 323 mRNAs translationally inhibited at egg activation

as dependent on PNG (e.g., mtrm), 37 as PNG independent

(e.g., gnu), and 88 as partially PNG dependent (e.g., CG9674;

Figures 2G and 2H; Tables S2 and S4). PNG-independent

mRNAs were not enriched in any particular GO-term category

(FDR > 0.05).

To examine the developmental timing when PNG is active, we

tested whether PNG impacts the translational status of its target

mRNAs prior to egg activation. The difference in TE for both

translationally activated and repressed mRNAs was more pro-

nounced between wild-type and png activated eggs than be-

tweenmutant and wild-type mature oocytes (p < 0.0001; Figures

2C and 2F). Combining polysome profiling and quantitative RT-

PCR (qRT-PCR), we found a similar distribution of four different

candidate mRNAs within the sucrose gradients of wild-type

and png mature oocytes (Figure S3D). These results indicate

that mRNAs are translationally regulated by PNG at, but not

prior, to egg activation.

Translational Upregulation Can Strongly Contribute to
Increased Protein Levels at Egg Activation
Translational activity is well correlated with protein levels in

S. cerevisiae growing in nutrient-rich media (Ingolia et al.,

2009). However, the extent of coupling between the transla-

tome and proteome has not been investigated in a develop-

mental context. To assess proteome changes accompanying

Drosophila egg activation, we compared unfertilized eggs with

mature oocytes using a quantitative proteomics approach.

Between 3,648 and 4,187 proteins were quantified in three bio-

logical replicate experiments (Figure S4A). At egg activation,

comparing the change in protein levels with either a change in

polysomal recruitment (Figures S4B and S4C) or a change in

TE (Figures 3A and S4D) of the encodingmRNAs revealed a rela-

tively poor correlation (R = 0.17 or 0.2, respectively). There were

many examples of robust changes in TE corresponding to unde-

tectable changes in protein levels. The correlation was not

improved by considering changes in RPFs instead of changes

in TE (Figure S4E). This is a consequence of egg activation

occurring in the presence of constant mRNA levels (Figure S1A),

thus resulting in a high correlation between changes in TE and

changes in RPF (Spearman R = 0.99; Figure S4F).

We found that 291 proteins significantly increased after egg

activation (FDR < 0.05; Figures 3A and 3B; Table S4). Among
1500 Cell Reports 7, 1495–1508, June 12, 2014 ª2014 The Authors
them were well-characterized regulators of early embryogenesis

that served as our positive controls, such as theCdc25 phospha-

tase String (Stg), as well as the embryonic patterning factors Toll

and SMG (Edgar et al., 1994; Sallés et al., 1994; Tadros et al.,

2007; Tables S3 and S4). The list of proteins that increased at

egg activation was enriched in some of the same GO-term cate-

gories as mRNAs translationally activated at egg activation, i.e.,

chromatin organization and modification, as well as protein

amino acid phosphorylation (Figure 3C). Additionally, the pro-

teins upregulated at egg activation participated in a variety of

other processes, supporting the complexity of this develop-

mental transition (Table S4).

Approximately 40% of proteins whose levels increased at egg

activation were encoded by mRNAs with a significant increase

(>4.1-fold) in TE (category I, 89 proteins; Figure 3D; Table S4).

Increased levels of several category I proteins were confirmed

by immunoblots (Figures 3E and S4G). Overall, translational

upregulation strongly contributed to increases in protein levels

at egg activation, as the log2 median fold-change in TE for

mRNAs encoding these proteins was 1.32 as compared with

0.14 for the entire quantified proteome. However, mechanisms

other than translational regulation also play a role. For example,

category II contains mRNAs that are not significantly translation-

ally upregulated yet encode proteins whose levels are increased

(Figures 3D and S4H; Table S4). In these cases, protein accumu-

lationmight be caused by posttranslational or other changes that

stabilize these proteins and increase their half-life even in the

absence of new synthesis. Alternatively, these proteins might

be inherently more stable.

Surprisingly, only 25% of mRNAs identified as translationally

activated by ribosome footprinting (or 20% in the case of poly-

some profiling) encoded proteins whose levels increased at

egg activation (Figures 3A, 3D, S4B–S4D, and S4H; Table S4).

The rest of the translationally activated mRNAs, category III,

encoded proteins that were either unchanged (e.g., Dlg1;

Figure 3E) or actually decreased (e.g., Dup; Figure S4G). For

example, the level of Dlg1 remained unchanged at egg activa-

tion despite a 23.6-fold increase in the TE of its mRNA (Fig-

ure 3E). The level of Dup decreased 1.4-fold at egg activation,

although the TE of its mRNA increased 2.6-fold (Figure S4G;

Tables S2 and S3).

One possible explanation for the existence of category III

(unchanged) proteins is that increased protein degradation off-

sets higher synthesis rates in activated eggs. An alternative

explanation is that preexisting stores of these proteins greatly

exceed the newly synthesized protein, such that increases

from translation make up an undetectably small fraction of the

total protein pool. We note that if preexisting protein stores

generally obscured our ability to observe newly synthesized pro-

tein, this effect was independent of the starting amounts of pro-

tein, as we observed no significant difference in the abundance

of category III compared with category I proteins in mature

oocytes (two-sample Wilcoxon test, p = 0.09; Figures S4I–

S4K). We also did not detect a significant difference in mRNA

abundance between these two categories (two-sample Wil-

coxon test, p = 0.17; Figure S4L).

Regardless of the mechanism involved, the imperfect relation-

ship between changes in protein levels and changes in TE



Figure 3. Protein Remodeling during the Oocyte-to-Embryo Transition

(A) Changes in protein levels and TE at egg activation. A scatterplot of the ratio of protein levels in activated eggs versus mature oocytes (mean of three biological

replicates) and TE (mean of two biological replicates) is shown. The proteins that were scored as upregulated are shown in red and those scored as down-

regulated are in blue; 2,934 data points are presented (identified by both quantitative MS and ribosome footprinting).

(B) Table summarizing the number of proteins that had increased or decreased levels during egg activation.

(C) GO-term categories (FDR, p < 0.05) for proteins that were more abundant in activated eggs than in mature oocytes.

(D) Venn diagram comparing the number of translationally activated mRNAs (Figure 1D) that encode proteins upregulated at egg activation (category I). Proteins

whose levels increased at egg activation according to quantitative MS without a corresponding increase in TE are shown in category II (violet). mRNAs identified

by ribosome footprinting as being translationally upregulated at egg activation but encoding proteins with unchanged or decreased levels at egg activation are in

category III (gray). Only factors identified by both approaches are represented.

(E) Western blot validation of candidates belonging to the categories described in (D). Rm62, SCRA (the same membrane reprobed), and DCO are validation

examples for category I; Cnn and Sema-2a (reprobed on Rm62/SCRA membrane) are representative of category II; and Dlg1 (reprobed on Cnn membrane) is

representative of category III. In this and all subsequent western blots, tubulin was used as a loading control. The dashed linemarks that one lane from the original

blot is not shown.

See also Figure S4 and Tables S3 and S4.
highlights the value of our integrated approach. When we

considered translational changes that were most relevant for

egg activation, the acquisition of quantitative proteomics data

enabled us to focus on those that had the greatest impact on

protein levels (category I). Moreover, proteomics measurements

revealed some changes that were not detectable when we

examined translation changes (category II), whereas translation

measurements uncovered translationally activated mRNAs that
C

were not detectable when we examined only protein changes

(category III).

Lid Activity Is Required in Early Embryogenesis
The limited number of proteins that increase at activation may

represent factors that are critical for early embryonic develop-

ment. It was interesting that the levels of three histone demethy-

lases significantly increased at egg activation, given that early
ell Reports 7, 1495–1508, June 12, 2014 ª2014 The Authors 1501



embryonic development in Drosophila is transcriptionally silent.

The levels of Little Imaginal Discs (Lid) were increased 2.7-fold

at egg activation, whereas those of Kdm4A and Kdm4B

increased 3.6- and 2.3-fold, respectively (Table S3). Lid is a

conserved and essential histone H4-me3-specific demethylase

that has been shown to regulate gene expression, particularly

of hox genes (Gildea et al., 2000; Lloret-Llinares et al., 2008),

but it also may be involved in growth control through its associ-

ation with dMyc (Secombe et al., 2007).

To study the role of Lid in the oocyte-to-embryo transition,

we depleted Lid in the female germline by expressing RNAi

against lid using the UAS-GAL4 system. qRT-PCR analysis

of lid levels in mature oocytes of two different lid RNAi-express-

ing lines revealed that they were about 99% lower than in

the control, demonstrating efficient knockdown (Figure S5A).

Importantly, meiotic progression was not perturbed upon lid

knockdown, as evidenced by metaphase I plate morphology

that was comparable to that of the control (Figures S5B

and S5C).

To examine the consequence of lid ablation on the early

embryonic mitotic divisions, we measured the progression

through early embryonic cycles by counting the percentage of

laid embryos that (1) completed meiosis and thus contained

polar bodies arranged into rosettes, but did not initiate embry-

onic divisions; (2) completed one to four embryonic cycles; (3)

completed five to nine embryonic cycles; or (4) reached the

syncytial blastoderm, corresponding to division cycles 10–13

(Figures 4A and S5D). The embryos from lid RNAi-ablated

mothers showed slower progression through embryogenesis

than the control. In particular, increased numbers of embryos

were in the rosette stage or going through the first-to- fourth

embryonic cycles. Consequently, fewer embryos reached later

cycles (Figure 4A). There were subsequent embryonic defects,

including a reduction in the number of gastrulating embryos

and the appearance of embryos with pycnotic or aberrantly

aggregated nuclei (Figures 4B and 4C). These data indicate

that Lid has a role unrelated to transcription that is required

during early embryogenesis for proper further embryonic

development.

PNG-Mediated Translational Upregulation Provides
Insights into the Balance of Translation and Protein
Degradation for a Subset of Proteins
It was striking that at egg activation the majority of translationally

activated mRNAs encoded proteins whose levels remained

equal or even decreased (Figures 3D and S4B–S4D). To test

the importance of translational upregulation for those mRNAs,

we compared the proteomes of wild-type activated eggs with

eggs laid by mothers mutant for the translational regulator

PNG (Figure S6A; Table S3). The majority of proteins that

increased at egg activation and were encoded by translationally

upregulated mRNAs had lower levels in png eggs than in wild-

type eggs (46 out of 75; Table S4; Figure 5A). Consistently,

�80% of these 46 mRNAs completely depended on PNG for

translational upregulation at egg activation (Figure 5B). The other

29 mRNAs encoded proteins with unchanged levels in png acti-

vated eggs as compared with wild-type (Figures 5A and S6B;

Table S4), most likely because a large fraction of them (�59%)
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were at least partially independent of PNG for their translational

activation at egg activation (Figure 5B).

Interestingly, there were 63 translationally upregulated

mRNAs that encoded proteins with stable levels at egg activa-

tion but decreased abundance in png as compared with wild-

type activated eggs (orange segment in Figures 5A and S6B;

Table S4). We found that 86% of these 63 mRNAs were depen-

dent on PNG for their translational upregulation at egg activation

(Figure 5B). This group of proteins, represented by Dlg1, sug-

gested that translational upregulation at egg activation might

even be influencing proteins whose abundance does not

change (Figure 5C). Another possibility was that inefficient

maternal protein deposition in png mature oocytes led to the

lower levels of proteins in png activated eggs versus wild-type

(orange segment of Figure 5A), although this was not the case

for Dlg1 (Figure 5C). In addition, the majority of these 63 pro-

teins were present at lower levels in png activated eggs as

compared with png mature oocytes (Figures S6B and S6C;

Table S3). Collectively, these results are consistent with

the possibility that, for a subset of proteins, translational upre-

gulation compensates for protein turnover occurring at egg

activation to maintain rather than increase their levels at this

developmental transition.

Downregulation of Protein Levels at Egg Activation Is
Largely Posttranslationally Driven
A quantitative comparison of the proteomes of mature oocytes

and activated eggs revealed that 376 proteins became signifi-

cantly less abundant at egg activation (p < 0.05; Figures 3A

and 3B; Table S4). This group was not enriched in any particular

GO category (FDR > 0.05). Downregulation of proteins can be at

least partially attributed to the activation of the APC/C at the

completion of meiosis, resulting in the proteasomal degradation

of its substrates, such as cell-cycle regulators CycB3 and Mtrm

(Pesin and Orr-Weaver, 2007; Whitfield et al., 2013). In addition,

other degradation pathways are likely to be active.

For 265 of 376 significantly downregulated proteins, we ob-

tained TE information about their mRNAs and found that 43

were translationally downregulated (category IV; Figure 6A;

Table S4). In agreement with the proteomics data, immunoblots

showed that the levels of Giant Nuclei (GNU, category IV)

decreased after egg activation (Figure 6B). The number of down-

regulated proteins encoded by translationally inhibitedmRNAs is

significant, as only six of the translationally repressed mRNAs

encode proteins whose levels increased during egg activation

(p < 10�7; Figure 6A). The levels of 226 proteins encoded by

translationally inhibited mRNAs were not decreased at egg acti-

vation, presumably because the maternal stockpiles of these

proteins are stable. We obtained comparable results when we

measured the translation status at egg activation as a change

in polysomal recruitment (Figure S6D).

Category V proteins showed decreased levels at egg activa-

tion even though their encoding mRNAs retained their transla-

tional status (Table S4). For example, CycB3 protein was

reduced 5.6-fold although the TE of its encoding mRNA

increased 7.6-fold (Tables S2 and S3). Most of the proteins

that were downregulated at egg activation have not been

studied for their role in meiosis, and many are completely



Figure 4. The Histone H3K4 Demethylase

lid Is Required for Proper Early Embryonic

Development

(A) Quantification of the percentage of 0–2 hr

embryos that were present in different cycles of

embryogenesis after completion of meiosis (as

shown in Figure S5D). Embryos were laid either by

mothers with only the maternal a-tubulin-Gal4

driver (control) or by mothers in which a lid RNAi

line was expressed using the mata-tubulin-Gal4

driver. lid RNAi line 1 is BL35706; line 2 is

BL36652. One representative experiment is

shown. n, number of embryos scored.

(B) Representative images of 0–2 hr embryos that

were aged for an additional 3 hr and stained with a

DNA stain (propidium iodide, red). For gastrulating

embryos (control) and embryos with pycnotic or

aggregated nuclei laid by mothers expressing lid

RNAi, maximal intensity projections of z stacks are

shown. For embryoswith large, aggregated nuclei,

the figure shows the maximal intensity projections

of the entire embryo as well as the optical sections

in which aggregated nuclei are particularly visible.

In all panels, the dorsal side of the embryo is

shown with anterior at the top. Scale bar, 50 mm.

(C) Percentage of properly developed (gastrulat-

ing) and aberrantly developed embryos that were

collected for 2 hr and aged for an additional 3 hr.

Aberrantly developed embryos were classified as

still at the rosette stage, in syncytial divisions,

gastrulating, or displaying pycnotic or aggregated

nuclei (as shown in B). The same genotypes as in

(A) were examined. n, number of embryos scored.

See also Figure S4.
uncharacterized. In addition to revealing candidate regulators of

the oocyte-to-embryo transition, these results indicate that for

most of the proteins that were downregulated at egg activation,

posttranslational rather than translational control governed the

decrease in protein levels at egg activation. Most of these down-
Cell Reports 7, 1495–150
regulated proteins decreased without

translational inhibition of their mRNAs.

Failure in Translational Inhibition
for a Subset of mRNAs Interferes
with Successful Removal of the
Proteins They Encode at the
Oocyte-to-Embryo Transition
The modest contribution of translational

inhibition to decreased protein levels at

egg activation suggested that many of

the proteins that were reduced at egg

activation in the wild-type would also be

reduced in the png mutant background.

Indeed, 289 proteins were significantly

reduced in png activated eggs as

compared with png mature oocytes,

and 193 of themwere among the 283 pro-

teins that were significantly reduced in

wild-type eggs at activation (Figure 6C).
Nonetheless, 42 proteins that were reduced at egg activation

in the wild-type had higher levels in png versus wild-type

activated eggs (Figure 6D). Approximately 31% of these pro-

teins, including Mtrm, were encoded by mRNAs that were

dependent on PNG for their translational shutoff. Consequently,
8, June 12, 2014 ª2014 The Authors 1503



Figure 5. The Translational Regulator PNG

Reveals the Importance of Translational

Regulation for Homeostasis of Protein

Levels for a Subset of Proteins at Egg Acti-

vation

(A) Same as Figure 3D, except that the comparison

included the proteins whose levels are higher in

WT than png activated eggs according to MS.

Only factors identified in all compared samples

are represented. The translationally upregulated

mRNAs are from the WT.

(B) Percentage of mRNAs encoding proteins

belonging to the light gray, orange, green, or tur-

quoise segments in (A) that are independent,

partially dependent, or dependent on PNG for

translational upregulation at egg activation.

(C) Western blot validation of Dlg1, a candidate

from the orange segment of the Venn diagram in

(A). Dlg1 levels do not change at egg activation

in the WT, although the protein shows altered

mobility. In contrast, protein levels are decreased

following activation of png mutants (reprobed on

the same membrane as in Figure 6F).

See also Figure S6 and Tables S3 and S4.
their TEs were overall significantly higher in png than in wild-type

eggs (Mann-Whitney test, p < 0.0001; Figure 6E; Table S4).

The absence of a translational shutoff in png eggs allowed us

to investigate the role of translational inhibition in decreased

protein levels at egg activation, using Mtrm as an example. In

parallel, we employed the mr mutant, which carries a mutation

in the APC2 subunit, to weigh the contributions of APC/C-medi-

ated proteasomal degradation versus translational inhibition to

Mtrm protein levels (Kashevsky et al., 2002). Western blotting

confirmed the proteome data showing that although there was

a substantial decrease in Mtrm levels in both wild-type and

png activated eggs as compared with mature oocytes, there

was persistent Mtrm protein in png eggs (Figure 6F). Because

the Mtrm levels that remained in png activated eggs were lower

than those in mr activated eggs, we conclude that Mtrm levels

are primarily regulated by targeting via the APC/C for protea-

somal degradation. Thus, optimal protein decrease at egg

activation in addition to protein degradation may require a

PNG-dependent shutoff of translation.

DISCUSSION

Relationship between the Translatome and the
Proteome
This study provides a demarcation of the contribution of

translational and posttranslational regulation to proteome re-

modeling during a key developmental transition from oocyte to

embryo. This transition requires a change frommeiosis tomitosis

as well as resetting of the oocyte to restore totipotency in the

embryo. The absence of transcription and mRNA degradation

in the oocyte and early embryo leads to exclusively translational

and posttranslational control of gene expression. In this study,

the oocyte-to-embryo transition was assessed through quantita-

tive proteomics analysis combined with complementary transla-

tome measurements. We found that translational upregulation

strongly contributes to increased protein levels at egg activation.
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The effect of translational shutdown on decreased protein levels

is more modest, with decreased levels appearing to be largely

driven by protein degradation.

The striking translational changes that occurred at egg activa-

tion, with as many as 802–986 translationally upregulated and

448–729 inhibited mRNAs, are comparable to those observed

in other developmental studies. Polysome profiling at oocyte

maturation and egg activation in mouse or in different stages

of Drosophila embryogenesis also showed that hundreds of

mRNAs were both released from and recruited to the polysomes

(Chen et al., 2011, 2014; Potireddy et al., 2006; Qin et al., 2007).

Thus, this window of development is highly dynamic across spe-

cies and it relies on translational control.

Mechanism of Translational Control at Egg Activation
We observed both activation and inhibition of mRNA translation

at the oocyte-to-embryo transition. Translational inhibition at

egg activation may not be an actively regulated process. Rather,

the onset of increased translational activity observed at egg acti-

vation may limit the available ribosomes, resulting in reduced

access to ribosomes and consequently translational repression

for the subset of mRNAs.

The Ser/Thr kinase PNG was previously demonstrated to

activate the translation of cycA, cycB, and smg, but given the

specificity of the mutant phenotypes and results from rescue

experiments with overexpression of cycB, it was assumed to

influence a circumscribed set of targets (Lee et al., 2001). In

contrast, we find that PNG is a global regulator of the transla-

tional status of mRNAs exclusively at egg activation. In addition,

although PNG has been thought to activate translation, our

analysis reveals that it acts both positively and negatively, con-

trolling the translational activation of at least 60% of regulated

mRNAs and inhibition of 70%. Despite the critical role of PNG

in controlling the translational status of the majority of mRNAs

at egg activation, it is unlikely that the primary function of

PNG kinase is to mediate an activation event upstream in the



Figure 6. The Absence of a Translational Shutdown at Egg Activation May Interfere with Efficient Downregulation of a Subset of Proteins

(A) Venn diagram showing the number of translationally inhibited mRNAs (Figure 1D) that encode proteins downregulated at egg activation (category IV). Other

proteins whose levels decrease at egg activation according to quantitativeMS are in category V. Among translationally inhibitedmRNAs there are two groups: the

majority of mRNAs encode proteins with unchanged levels at egg activation, whereas only six encode proteins whose levels increase. Only factors identified in

both samples are represented.

(B) Western blot validation of GNU, a protein from category IV.

(C and D) Venn diagrams comparing the number of proteins that according to MS are downregulated at egg activation in WT or png activated eggs

(C) or downregulated at activation in WT but more abundant in png activated eggs than in WT (D). Only factors identified in both compared samples are

represented.

(E) Box plot showing TEs of mRNAs encoding for 36 proteins in the overlap zone (shown in light pink) of Venn diagram in (D). Only 36 out of 42 mRNAs are

presented because the other six were not identified by ribosome footprinting.

(F) Western blot comparingMtrm levels at egg activation inWT and pngmutant background as well as in the activated eggs laid bymothers transheterozygous for

female-sterile alleles of the APC2 subunit of APC/C,morula (mr1/mr2). In pngmutants in which translational inhibition ofmtrm does not occur, Mtrm protein levels

are elevated, although to a lesser extent than when the APC/C is mutated.

See also Figure S6 and Tables S3 and S4.
egg activation pathway. Many activation events, such as

eggshell hardening (Tadros et al., 2003) and downregulation of

protein levels, occur in png mutants.

We postulate that many of the PNG-dependent translational

effects reflect a direct role of the kinase. It will be interesting to

investigate PNG substrates for candidates whose phosphoryla-

tion affects the TEs of mRNAs. It is likely, however, that transla-

tion of some mRNAs may be affected as a secondary or indirect

effect of PNG activity.

One possible direct target of PNG that affects translation is the

translational repressor Pumilio (PUM). The png embryonic cell-

cycle defect is suppressed by pum mutations, which restore

Cyclin B protein levels (Vardy and Orr-Weaver, 2007). PNG-PUM

antagonism does not appear to be an exclusive mechanism

through which PNG mediates translational activation, as there is
C

noenrichmentofPUM-binding sites in the30 UTRsofPNG-depen-
dent translationally activated mRNAs compared with PNG-inde-

pendent mRNAs (see Supplemental Discussion for additional 50

and 30 UTR analyses). This suggests that PNG controls translation

via multiple targets. Some of its targets may also be translational

regulators, as CG17514, a putative activator of translation, is

translationallydownregulated,whereas the translational repressor

Cup is translationally upregulated, in png activated eggs.

The large number of puromycin-insensitive mRNAs we ob-

served in mature oocytes was surprising and suggests that

many mRNAs are localized to cytoplasmic granules or heavy

RNPs at this developmental stage. The inefficient translation of

these mRNAs in mature oocytes was corroborated by ribosome

footprinting analysis, as they were found to associate with signif-

icantly fewer ribosomes compared with puromycin-sensitive
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mRNAs (data not shown). Since puromycin only displaces

actively translocating ribosomes, a fraction of puromycin-insen-

sitive mRNAs may localize to cytosolic compartments where

they are associated with stalled and nonelongating polysomes.

There isprecedent for thenotion that specificmRNAsare local-

ized to cytoplasmic granules in oocytes. InDrosophila, themater-

nally deposited mRNAs for three patterning genes, osk, grk, and

bcd, localize to large RNP complexes (Chekulaeva et al., 2006;

Weil et al., 2012). It has been suggested that these cytoplasmic

RNPs control both activation and repression of translation: grk

mRNA is on theperiphery of the complex and translated,whereas

the internally localized bcdmRNA is repressed (Weil et al., 2012).

Cytosolic granule association alsomay serve as a timer for trans-

lational activation. In zebrafish and mouse oocytes, association

of cycB mRNA with cytosolic granules is not necessary for

translational repression, but release out of the granules leads to

premature CycB synthesis (Kotani et al., 2013).

Insights into Key Regulators of the Oocyte-to-Embryo
Transition
By identifying translationally regulated mRNAs and proteins

whose levels change at egg activation, this work also highlights

potential keyprocesses in theoocyte-to-embryo transitionand re-

veals previously unrecognized regulators. As a proof of principle,

wedemonstrated that oneof the 291proteins that are upregulated

at egg activation, the histone H3K4 demethylase LID, is required

for timely progression through early embryonic cycles and proper

further embryonic development. Other upregulated proteins may

be required immediately at the onset of embryogenesis.

Downregulation of specific proteins at the oocyte-to-embryo

transition also is important. This has been demonstrated for the

Polo kinase inhibitor Mtrm, whose degradation is required for

proper embryogenesis (Whitfield et al., 2013). The microtu-

bule-severing enzyme katanin subunit Kat80 is controlled simi-

larly (Tables S1–S4). In C. elegans, katanin (MEI-1) is required

for assembly of the meiotic spindle, but failure to decrease its

levels before embryonic mitosis leads to spindle defects (Quin-

tin et al., 2003; Stitzel et al., 2006). The translational inhibition

applied to these mRNAs may combine with proteasomal

degradation for faster and more complete removal of meiotic

proteins.

‘‘Resetting’’ the Proteome at the Oocyte-to-Embryo
Transition
Our translatome and proteome survey of png eggs provided an

unexpected insight into the possible coupling of translational

regulation and protein degradation at egg activation. There is a

class of 63 mRNAs that are translationally upregulated without

a perceptible increase in their protein levels in wild-type eggs.

These proteins seem to be properly maternally deposited in

png mutant oocytes, but their mRNAs require PNG for transla-

tional upregulation at egg activation. Lower levels of these

proteins in png versus wild-type activated eggs showed that a

failure of translational activation resulted in easily detected de-

creases in protein levels. Hence, the apparently constant levels

of these proteins in the wild-type background were not merely

a consequence of high maternal stores overwhelming the

translational activation. Moreover, the proteome changes in
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pngmutants are unlikely to result from an additional independent

effect of PNG on protein stability, as quantitative mass spec-

trometry (MS) data show that downregulation of protein levels

occurs comparably in wild-type and png mutants eggs.

Thus, the simplest explanation for these results is that transla-

tional activation compensates for protein degradation, leading to

no net change in protein abundance in the wild-type back-

ground. Although the png mutant allowed us to demonstrate

this for 63 proteins, it is likely that additional proteins are reset.

An additional possibility is that for some of these proteins, there

is a spatial control in the embryo, with synthesis at one site and

degradation at another. The increased protein degradation that

normally occurs at egg activation probably is supported by

mechanisms in addition to the APC/C, as we found at least 11

E2 Ubiquitin-conjugating enzymes, E3 Ubiquitin ligases, or their

putative regulators among the proteins that were upregulated at

egg activation.

The conclusions from our analysis of developmental control of

the proteome at Drosophila egg activation contrast with a previ-

ous study in mouse fibroblasts in which the contribution of pro-

tein degradation to protein abundance is minor (Schwanhäusser

et al., 2011). UnlikeDrosophila activated eggs,mouse fibroblasts

are transcriptionally active, a steady-state system that lacks

maternally loaded proteins, potentially resulting in different re-

quirements for translational regulation in controlling protein

levels.

Why would a subset of proteins in activated eggs undergo an

energetically costly process of increased synthesis and degra-

dation only to maintain the same levels as in mature oocytes?

We suggest that the developmental coordination between trans-

lation and protein stability restores the proteome, changing

these proteins from their ‘‘oogenesis’’ form to their ‘‘embryogen-

esis’’ form. As some posttranslational modifications might

interfere with the embryonic functions of a given protein, an

expedient mechanism to remove these modifications might be

to degrade and then resynthesize the proteins. Such a ‘‘reset-

ting’’ of this subset of the proteome at egg activation resembles

a phenomenon that occurs later in embryogenesis at the mid-

blastula stage, in which the transcriptome is reset to allow

zygotic control of development (Tadros and Lipshitz, 2009).
EXPERIMENTAL PROCEDURES

Quantitative Mass Spectrometry

Mature oocytes were hand dissected in Grace’s Unsupplemented Insect

Media (Gibco) from 4-day-old flies that had been fattened for 3 days with

wet yeast at 22�C. Activated eggs collected for 0–2 hr (laid by wild-type

Oregon R females mated with spermless twine HB5 males) were dechorio-

nated, lysed, and sonicated, and the supernatants were frozen. Digestion of

the proteins and stable isotope labeling of the peptides (peptide dimethylation)

were performed as previously described (Wi�sniewski et al., 2009; Boersema

et al., 2009). The labeled peptides were fractionated, desalted, and separated

using the nanoAcquity UPLC system (Waters), from which they were directed

to an LTQOrbitrap Velos (Thermo Fisher Scientific) using a Proxeon nanospray

source. The MS raw data were processed using MaxQuant (version 1.1.1.25)

(Cox and Mann, 2008) and MS/MS spectra were searched using the

Andromeda search engine (Cox et al., 2011) against a Uniprot Drosophila

melanogaster database. Statistical analysis of MS data was performed using

the Limma package in R/Bioconductor (Gentleman et al., 2004). Further details

are provided in Supplemental Experimental Procedures.



Western Blots

Samples were lysed and western blots performed as previously described

(Whitfield et al., 2013). The antibodies used are described in Supplemental

Experimental Procedures.

Polysome Analysis, Ribosome Footprint Profiling, RNA Isolation, and

mRNA-Seq

Samples were lysed as described previously (Mermod and Crippa, 1978) and

flash frozen. For puromycin treatment, samples were prepared as described

previously (Clark et al., 2000). The samples were run on 10%–50% linear su-

crose gradients with 0.5 mg/ml cycloheximide. Cycloheximide was excluded

for the gradients in the puromycin-treatment experiments. Following centrifu-

gation and fractionation, prior to RNA extraction, 5 ng of in vitro transcribed

Firefly luciferase (5 ng; Promega) and 5 ng of S. cerevisiae mRNA were

added to each pooled fraction to allow for normalization between the

fractions.

RNAwas isolated fromwhole lysates ofmature oocytes or activated eggs by

homogenizing them in TRIzol (Invitrogen) according to the manufacturer’s

instructions. To extract RNA from sucrose gradient fractions, 0.5% SDS and

200 mg/ml of Proteinase K (Sigma-Aldrich) were added for 30 min at 50�C, fol-
lowed by RNA isolation using the hot acid phenol method.

For ribosome footprint profiling, samples were thawed on ice and then trit-

urated four times with a 26-gauge needle. After centrifuging to clear the lysate,

ribosome profiling and mRNA-seq were performed as described previously

(Subtelny et al., 2014) using a detailed protocol available at http://bartellab.

wi.mit.edu/protocols.html. A replicate of each sample was prepared with

cycloheximide excluded from all solutions.

To sequence mRNAs, 1 mg of total RNA was poly(A) selected using Sera-

Mag magnetic oligo(dT) magnetic particles (Thermo Scientific). Barcoded

mRNA-seq libraries were made according to the manufacturer’s instructions

(Illumina), with the exception that mRNA was fragmented using a RNA frag-

mentation kit (Ambion). The mRNA-seq analysis is described in Supplemental

Experimental Procedures.

The average TE from two independent ribosome footprinting experiments

obtained by our method of isolating and preparing lysates from 0–2 hr unfertil-

ized eggs correlated well (Spearman R = 0.89) with TEs recently published for

fertilized 0–2 hr embryos cryolysed in the absence of dechorionation (Dunn

et al., 2013).

Immunofluorescence and Imaging

Embryos were collected at 25�C for 2 hr (and, if indicated, aged for an addi-

tional 3 hr at 25�C), dechorionated, fixed, and stained as described previously

(Pesin and Orr-Weaver, 2007). Images were acquired on an LSM 700 micro-

scope (Carl Zeiss) and processed using ImageJ software.

ACCESSION NUMBERS

The polysome profiling and ribosome footprinting sequencing data reported in

this work have been deposited in the Gene Expression Omnibus (www.ncbi.

nlm.nih.gov/geo/) under accession number GSE52799.
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Swan, A., and Schüpbach, T. (2007). The Cdc20 (Fzy)/Cdh1-related protein,

Cort, cooperates with Fzy in cyclin destruction and anaphase progression in

meiosis I and II in Drosophila. Development 134, 891–899.

Tadros, W., and Lipshitz, H.D. (2009). The maternal-to-zygotic transition: a

play in two acts. Development 136, 3033–3042.

Tadros, W., Houston, S.A., Bashirullah, A., Cooperstock, R.L., Semotok, J.L.,

Reed, B.H., and Lipshitz, H.D. (2003). Regulation of maternal transcript desta-

bilization during egg activation in Drosophila. Genetics 164, 989–1001.

Tadros, W., Goldman, A.L., Babak, T., Menzies, F., Vardy, L., Orr-Weaver, T.,

Hughes, T.R., Westwood, J.T., Smibert, C.A., and Lipshitz, H.D. (2007).

SMAUG is a major regulator of maternal mRNA destabilization in Drosophila

and its translation is activated by the PAN GU kinase. Dev. Cell 12, 143–155.

Tay, J., Hodgman, R., and Richter, J.D. (2000). The control of cyclin B1 mRNA

translation during mouse oocyte maturation. Dev. Biol. 221, 1–9.

Vardy, L., and Orr-Weaver, T.L. (2007). The Drosophila PNG kinase complex

regulates the translation of cyclin B. Dev. Cell 12, 157–166.

Weil, T.T., Parton, R.M., Herpers, B., Soetaert, J., Veenendaal, T., Xanthakis,

D., Dobbie, I.M., Halstead, J.M., Hayashi, R., Rabouille, C., and Davis, I.

(2012). Drosophila patterning is established by differential association of

mRNAs with P bodies. Nat. Cell Biol. 14, 1305–1313.

Whitfield, Z.J., Chisholm, J., Hawley, R.S., and Orr-Weaver, T.L. (2013). A

meiosis-specific form of the APC/C promotes the oocyte-to-embryo transition

by decreasing levels of the Polo kinase inhibitor matrimony. PLoS Biol. 11,

e1001648.

Wi�sniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal

sample preparation method for proteome analysis. Nat. Methods 6, 359–362.

Young, R.A. (2011). Control of the embryonic stem cell state. Cell 144,

940–954.

Zalokar, M. (1976). Autoradiographic study of protein and RNA formation dur-

ing early development of Drosophila eggs. Dev. Biol. 49, 425–437.


	Widespread Changes in the Posttranscriptional Landscape at the Drosophila Oocyte-to-Embryo Transition
	Introduction
	Results
	Translational Changes at Egg Activation
	The PNG Kinase Is a Major Translational Regulator at Egg Activation
	Translational Upregulation Can Strongly Contribute to Increased Protein Levels at Egg Activation
	Lid Activity Is Required in Early Embryogenesis
	PNG-Mediated Translational Upregulation Provides Insights into the Balance of Translation and Protein Degradation for a Sub ...
	Downregulation of Protein Levels at Egg Activation Is Largely Posttranslationally Driven
	Failure in Translational Inhibition for a Subset of mRNAs Interferes with Successful Removal of the Proteins They Encode at ...

	Discussion
	Relationship between the Translatome and the Proteome
	Mechanism of Translational Control at Egg Activation
	Insights into Key Regulators of the Oocyte-to-Embryo Transition
	“Resetting” the Proteome at the Oocyte-to-Embryo Transition

	Experimental Procedures
	Quantitative Mass Spectrometry
	Western Blots
	Polysome Analysis, Ribosome Footprint Profiling, RNA Isolation, and mRNA-Seq
	Immunofluorescence and Imaging

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


