
MIT Open Access Articles

Reading the Book of Memory: Sparse Sampling 
versus Dense Mapping of Connectomes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Seung, H. Sebastian. “Reading the Book of Memory: Sparse Sampling Versus Dense 
Mapping of Connectomes.” Neuron 62, no. 1 (April 2009): 17–29. © 2009 Elsevier Inc.

As Published: http://dx.doi.org/10.1016/j.neuron.2009.03.020

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/96185

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/96185


Neuron

Perspective
Reading the Book of Memory: Sparse Sampling
versus Dense Mapping of Connectomes

H. Sebastian Seung1,*
1Howard Hughes Medical Institute, Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA
*Correspondence: seung@mit.edu
DOI 10.1016/j.neuron.2009.03.020

Many theories of neural networks assume rules of connection between pairs of neurons that are based
on their cell types or functional properties. It is finally becoming feasible to test such pairwise models of
connectivity, due to emerging advances in neuroanatomical techniques. One method will be to measure
the functional properties of connected pairs of neurons, sparsely sampling pairs from many specimens.
Another method will be to find a ‘‘connectome,’’ a dense map of all connections in a single specimen, and
infer functional properties of neurons through computational analysis. For the latter method, the most
exciting prospect would be to decode the memories that are hypothesized to be stored in connectomes.
In constructing a neural network model of brain function, it is

standard to start from a mathematical description of spiking

and synaptic transmission, make assumptions about how

neurons are connected by synapses and then numerically simu-

late or analytically derive the activity patterns of the network.

Success is declared if the model’s activity patterns reproduce

those measured by neurophysiologists.

Initially, the model neurons used in such networks were highly

simplified to the point of being naive. But they have become

more sophisticated over the years, incorporating findings about

intrinsic and synaptic currents in neurons. In contrast, many

assumptions about neural connectivity have been used by theo-

rists for decades without revision, because they have been diffi-

cult to test empirically.

It has been popular to assume that the connectivity between

any pair of neurons is a function of variables associated with

the neurons. These variables, which I dub cell labels, are attri-

butes of a neuron that can be measured without determining

its connectivity directly. The cell label can include what neuro-

anatomists call cell type, which is defined classically by shape

and location (Bota et al., 2003; Masland, 2004). In the retina,

photoreceptors make connections onto horizontal cells, a rule

of connectivity based on cell type (Masland, 2001b). A cell label

could also include some property that is determined by a neuro-

physiologist through activity measurements. For example, some

models of the primary visual cortex assume that excitatory

neurons with similar preferred orientations are connected (Som-

ers et al., 1995; Ben-Yishai et al., 1995), so that the cell label is

preferred orientation.

For testing such a pairwise model of neural connectivity, two

standard neuroanatomical methods are available. Sparse recon-

struction relies on light microscopy and sparse labeling of

neurons, and dense reconstruction relies on electron micros-

copy and dense labeling. Both methods have been problematic.

Axons can be less than 100 nm in diameter (Shepherd and

Harris, 1998), and dendritic spine necks can be even narrower

(Fiala and Harris, 1999). Since 100 nm is less than the wavelength

of visible light, these structures cannot be resolved with a light
microscope if they are entangled in a densely stained neuropil

(but see Hell [2007] for exceptions to this rule). However, one

can see a single neuron stained with dye, as long as the

surrounding neurons are unstained and hence remain invisible.

This trick was employed by Golgi, who invented a stain that

marked a sparse subset of neurons in the brain.

Cajal used Golgi’s stain to reconstruct the branching patterns

of neurons. If two neurons made contact with each other, Cajal

inferred that they were connected. However, he could not rigor-

ously prove this inference, because he could not see synapses.

Contact suggests that a connection exists, but a synapse must

be identified to prove it. In short, connection = contact +

synapse.

In the 1970s, neuroanatomists began to use electron micros-

copy for dense reconstruction of neurons. In principle, this

imaging method has enough spatial resolution to see all of the

axons and dendrites in a densely labeled neuropil. It is also

possible to identify synapses through telltale markers such as

vesicles. Most famously, electron microscopy was used to

map every connection in the nervous system of the nematode

C. elegans (White et al., 1986). For every synapse between two

neurites, the presynaptic and postsynaptic neurons were identi-

fied by tracing the neurites back to their parent cell bodies.

Although the C. elegans nervous system is quite small (see

http://wormatlas.org for about 300 neurons and 7000 synapses),

mapping its connections consumed over a decade of effort.

White et al. (1986) called the fruits of their labors a ‘‘reconstructed

nervous system.’’ Others dubbed it a ‘‘wiring diagram,’’

comparing the branches of neurons with the wires of an elec-

tronic device. Today we use the term connectome to refer to

the complete map of all connections in a brain or piece of brain

(Sporns et al., 2005; Lichtman and Sanes, 2008). Because of the

Herculean labor involved, dense reconstruction has not been

extended to more complex connectomes than that of C. elegans.

To diagnose the problems succinctly, sparse reconstruction

has yielded contacts rather than connections, while dense

reconstruction has been too laborious to be practical. Fortu-

nately, these deficiencies are being rectified by emerging
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technical advances. The advent of genetic methods of fluores-

cent labeling has improved the confidence with which sparse

reconstruction can identify synaptically coupled pairs of neurons

(Smith, 2007; Luo et al., 2008). And the automation of sectioning,

electron microscopy, and image analysis is making the finding of

connectomes more efficient (Briggman and Denk, 2006; Smith,

2007).

Improved methods for determining neural connectivity will aid

neuroscience in many ways. In the study of neural development,

it will become possible to precisely specify the goals of the

processes that wire up the brain and characterize what happens

when these processes malfunction. We will learn the exact

nature of ‘‘connectopathies,’’ pathologies of neural connectivity

that are associated with mental disorders (Catani and ffytche,

2005). The study of interspecies differences in connectivity will

shed light on brain evolution (Striedter, 2006).

These are all exciting possibilities, but I will take a more paro-

chial view, considering only the implications for pairwise models

of connectivity. Testing these models will either provide

evidence for neural network models or refute them conclusively

if the assumptions about connectivity are inconsistent with

empirical data. The latter possibility is perhaps more important

for scientific progress, if the definition of science rests on the

Popperian criterion of falsifiability.

It is obvious how to use sparse reconstruction to test pairwise

models. Simply determine the cell labels of connected pairs

of neurons. Doing this repeatedly will eventually yield good esti-

mates of pairwise statistics. If the cell label is just classical cell

type, it can be determined by neuroanatomical means from the

shape and location of the neuron. If the cell label also contains

functional properties, finding it will require measurements of

activity by electrophysiology or optical imaging.

In this paper, I’d like to advance a thesis that is less obvious:

pairwise models will be testable by dense reconstruction, even

if the cell labels are unknown. It may be possible to treat cell

labels as hidden variables and infer their values by computa-

tional analysis of connectomes. In general, the hidden-variable

approach will use dense information about connectivity to

amplify the utility of sparse information about activity for under-

standing neural networks.

The retina will be an important arena for testing the new

methods of sparse and dense reconstruction. Its neurons are

divided into five broad classes, which are further subdivided

into classical cell types, estimated to number 50–60 in the

mammalian retina (Masland, 2001b). According to one hypoth-

esis, the connectivity between a pair of retinal neurons is

a function of their cell types and locations. The hypothesis

appears to be true in the outer plexiform layer of the retina.

Current research is focused on the inner plexiform layer, where

the connectivity is still mostly unknown.

Success in the retina will be followed by more ambitious

projects. An exciting prospect is testing the old theory that

memories are stored in neural connections. If the theory is

true, then a connectome might be compared to a book in which

memories are written. To read a book, we must see the letters on

the page and also decode their meaning. Dense reconstruction

will enable us to ‘‘see’’ connectomes. Computational methods

that infer cell labels by treating them as hidden variables will
18 Neuron 62, April 16, 2009 ª2009 Elsevier Inc.
allow us to ‘‘decode’’ connectomes. I will describe possible

methods of reading procedural memories from avian brain area

HVC (Li and Greenside, 2006; Jin et al., 2007) and spatial memo-

ries from the CA3 region of the rodent hippocampus (Tsodyks

and Sejnowski, 1995; Samsonovich and McNaughton, 1997;

Battaglia and Treves, 1998), based on existing pairwise models

of connectivity.

Advances in Techniques for Measuring Connectivity
In recent years, genetic tools have revolutionized sparse recon-

struction (see reviews in Smith, 2007; Luo et al., 2008). Geneti-

cally defined cell types can be labeled with fluorescent proteins,

a degree of control not possible with the Golgi stain. Marking

synapses with fluorescent proteins provides more evidence

whether contact between two neurons should be considered

a connection. Transsynaptic tracers spread from a neuron to

connected neurons by crossing synapses. Wickersham et al.

(2007) used a genetically modified rabies virus to label the

presynaptic partners of a sparse set of neurons in vitro. More

work will be required to verify the accuracy of this approach,

as tracing errors could result if the virus fails to cross certain

kinds of synapses or spreads between neurons that are not

synaptically connected. The challenge of delivering the virus to

specific cells or cell types in vivo also remains. But it’s safe to

say that sparse reconstruction has already improved dramati-

cally in its ability to measure neural connectivity.

In dense reconstruction, both image acquisition and analysis

have been laborious. Electron microscopy is coupled with the

technique of serial sectioning to create 3D volume images of

neural tissue (Harris et al., 2006). The specimen is manually cut

into extremely thin sections, and electron microscopy is applied

to produce a sequence of 2D images. This sequence is equiva-

lent to a 3D volume image, up to the distortions that are

produced by the process of sectioning and imaging. In expert

hands, the best section thickness is about 50 nm, which limits

the spatial resolution in the direction of cutting. Since axons

can be less than 100 nm in diameter, they can become difficult

or impossible to trace accurately when axons are nearly parallel

to the cutting plane (White et al., 1986; Hobert and Hall, 1999).

By eliminating manual handling of sections, it is possible to cut

thinner than the classical limit of 50 nm and yet reliably yield long

sequences of 2D images. In serial block face scanning electron

microscopy (SBF-SEM), the ultramicrotome is placed inside

the vacuum chamber of an electron microscope (Denk and

Horstmann, 2004). Thin sections are repeatedly cut off and

discarded without imaging them. Instead, the exposed face of

the block is repeatedly imaged with backscattered electrons.

The entire process requires no manual intervention and yields

a vertical resolution of better than 30 nm (Briggman and Denk,

2006). Alternatively, the automatic tape-collecting lathe ultrami-

crotome (ATLUM) is an instrument that cuts serial sections and

collects them on a tape (Kasthuri et al., 2007). Once the fragile

sections are on the sturdy tape, they can be handled for SEM

imaging with relative ease.

But improved methods of image acquisition are not enough to

make finding connectomes routine. White et al. (1986) recon-

structed C. elegans neurons by manually tracing their cross

sections through the images using a primitive technology, pen
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marks on photographic prints. Image analysis is becoming faster

and more accurate through the use of computers. In an ongoing

project to find the connectome of the C. elegans male, computer

software displays images to human users and captures and

organizes their annotations (S. Emmons, personal communica-

tion). This computer-assisted approach has sped up image

analysis by roughly ten times, making it probable that the

connectomes of the male and larval stages will finally be

completed in the near future. The approach has also enabled

the reconstruction of highly branched neurons in the male, which

were difficult or impossible by the original pen-based methods.

Scaling up the computer-assisted approach to larger connec-

tomes would require large armies of human operators. Alterna-

tively, it may be possible to reduce human effort by automating

most of the analysis. This will depend on advances in computer

vision, a branch of artificial intelligence. In general, it has been

difficult to make computers perform visual tasks with accuracy

approaching that of humans, and the task of tracing neurons in

3D electron microscopic images is no exception. One promising

approach is based on machine learning. Examples of the tracing

tasks are collected from human experts, and a computer is

trained to emulate these examples (Jain et al., 2007; Andres

et al., 2008). Historically, the machine learning approach has

prevailed in speech and image recognition. Most likely, it will

also produce superior accuracy in the neuron tracing problem.

The automation of image acquisition and analysis are crucial

for speeding up the process of finding connectomes. At the

present time, the spatial resolution and general quality of image

acquisition is a prime concern. Once these problems are solved,

the focus will turn to image analysis. There is still a long way to go

before it becomes practical to find connectomes more complex

than that of C. elegans, but there is reason to be optimistic. In

time, technical progress will give rise to a new field called ‘‘con-

nectomics,’’ dedicated to the high-throughput generation of

data about neural connectivity and the mining of that data for

knowledge about the brain (Lichtman and Sanes, 2008).

Pairwise Models of Connectivity
New methods for sparse and dense reconstruction of neural

connectivity will find many applications in neuroscience. One

important application will be to formulate and test pairwise

models of connectivity, which associate a variable li with each

neuron i. The probability of a connection from neuron j to neuron

i is

Pr½Cij = 1�= Fðli; ljÞ (1)

where Cij = 1 means that the i ) j connection exists. In effect,

the function F specifies a set of rules of connection. I will call

the variable li the cell label of neuron i. Since the point of the

model is to relate connectivity to other quantities, cell labels

include attributes of neurons other than their connectivity.

The cell label could include the location of the cell body, the

shape of the dendrite, and the projection targets of the axon,

all part of the classical notion of cell type (Masland, 2004).

Revisionists would prefer to define cell type based on other

attributes, like gene expression, intrinsic firing properties, and
synaptic properties (Markram et al., 2004; Nelson et al., 2006),

which could also enter in the cell label.

In the classic approach, it’s assumed that cell types have

functional significance, even though they are defined morpho-

logically (Masland, 2004). Neurophysiologists are expected to

find that each cell type possesses a distinct and well-defined

function. If indeed cell types have functional significance, then

a pairwise model indirectly relates the connectivity of a neural

network to its function.

Neurophysiologists describe the encoding of information in

neural activity using concepts like the preferred orientation of

a neuron in primary visual cortex. Such attributes are functional

properties of neurons and could also be included in the cell label.

When cell labels contain functional properties, a pairwise model

directly relates the connectivity of a neural network to its

function.

Cell type is generally considered to be a discrete quantity. In

other words, neurons are assumed to fall into distinct clusters

in some parametric space, though formal tests of this assump-

tion have been scarce (Badea and Nathans, 2004; Kong et al.,

2005). There is no such restriction on cell labels: both discrete

and continuous attributes are allowed.

According to Equation 1, the rules of connection are probabi-

listic rather than deterministic, allowing for ‘‘sloppiness’’ in the

connectivity. Here I have written a Bernoulli model in which the

number of i ) j connections is either 0 or 1. An alternative is

a Poisson model that allows multiple connections, in which

case F would specify the mean of the Poisson distribution. The

model can also be generalized to apply to analog strengths of

synapses, in addition to binary connectivity.

C. elegans

In the C. elegans nervous system, connectivity is trivially a

function of classical cell type. Since neurons have unique names

and can be identified based on its shape and location, every

neuron can be regarded as its own cell type. In a pairwise model

of connectivity, the cell labels are simply the names of the

neurons. Alternatively, a slightly more compact model results

from taking the cell label to be one of the 118 classes into which

White et al. (1986) divided the 302 neurons of the hermaphrodite

worm (a left/right attribute would also be necessary).

The cell types or classes of C. elegans neurons are structurally

defined, but it turns out that they also have functional signifi-

cance. Perusal of the online database http://www.wormatlas.

org/neuroimageinterface.htm shows that researchers have

successfully identified functions for many of the worm’s neurons.

The touch avoidance response is a good example. The worm

responds to a gentle touch near the head or tail by swimming in

the opposite direction. Motor neurons important for this behavior

were identified by their connections to the dorsal and ventral

body muscles used in swimming. Lesion studies using laser

ablation of neurons or their precursors showed that some moto-

neurons are required for backward swimming, and others are

required for forward swimming (Chalfie et al., 1985). Candidate

touch receptor neurons were identified by a genetic screen

and confirmed by laser ablation studies (Chalfie and Sulston,

1981). Interneurons were identified on the basis of their connec-

tions to both sensory and motor neurons. Laser ablation studies
Neuron 62, April 16, 2009 ª2009 Elsevier Inc. 19
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showed that some were specialized for forward motion, whereas

others were specialized for backward motion (Chalfie et al.,

1985).

In these studies, the researchers used the connectome to

formulate hypotheses about neuronal function, which were

then tested using laser ablation. This strategy for relating struc-

ture to function was later applied to work out the neural basis

of other behaviors, such as feeding (Avery and Horvitz, 1989)

and navigation (Gray et al., 2005).

An Invertebrate Retina
In more complex nervous systems than C. elegans, the number

of cell types is much less than the number of neurons. This is

especially the case in neural systems with a repeated, columnar

organization. For example, the compound eye of the horseshoe

crab Limulus polyphemus is composed of about 1000 repeated

units called ommatidia, each of which receives visual input from

a particular direction (reviewed by Ratliff, 1965; Hartline and

Ratliff, 1972). Most ommatidia contain a single eccentric cell

that sends action potentials through the optic nerve to the brain.

The axon collaterals of eccentric cells appear to form an inter-

connected plexus that mediates inhibitory interactions. Hartline,

Ratliff, and their collaborators devised a pairwise model of these

inhibitory connections, based on neurophysiological measure-

ments. According to the model, the interactions depend on the

separation between cells, but not on their absolute locations.

If we draw a coordinate system on the surface of the eye, then

the location of the ith cell is specified by a two-dimensional

vector xi. The average strength of the inhibition between cells i

and j is modeled as

E½Wij�= wðxi � xjÞ (2)

where w is a scalar-valued function of a vector argument, Wij is

the strength of the inhibitory i ) j coupling, and E denotes

a statistical average. The function w is maximal for separations

of a few hundred microns and vanishes for long distances

(Barlow, 1969). As is typical of biological systems, real eyes

only obey the idealized rule in a noisy or stochastic way. Real

interaction strengths fluctuate around the average value set by

the rule.

As mentioned earlier, cell type is generally considered to be

a discrete quantity. It includes the name of the brain area to

which the neuron belongs. However, the precise location of the

neuron within a brain area is generally not included, because

it varies continuously. By this convention, the locations in Equa-

tion 2 are cell labels, but they are not cell types. This is our first

example of a rule of connection that depends on an attribute

other than cell type.

The receptive fields of eccentric cells are composed of

a central region surrounded by an annular region, and these

two regions respond antagonistically to light. Hartline and Ratliff

constructed a computational model in which the width of the

surround is directly related to the spatial range of the inhibitory

interaction in the pairwise model of Equation 2. This is still one

of the most outstanding examples of relating the connectivity

of a neural network to its function.
20 Neuron 62, April 16, 2009 ª2009 Elsevier Inc.
The Vertebrate Retina
When Hartline and Ratliff modeled the Limulus retina, their task

was simplified by considering only a single cell type, the eccen-

tric cell. The vertebrate retina is more complex and has been

more difficult to understand. Its neurons are divided into five

broad classes: photoreceptor, horizontal, bipolar, amacrine,

and ganglion. A simple pairwise model of connectivity is based

on labeling each cell with its location and its membership in

one of the five classes. Cells connect to nearby cells, with

a spatial dependence as in Equation 2. In addition, connections

respect rules based on classes. Photoreceptors make chemical

synapses onto horizontal cells, horizontal cells make electrical

synapses onto each other, and so on. The rules of connection

between photoreceptors and horizontal cells were crucial for

understanding how the center-surround receptive fields of

photoreceptors are generated by the outer plexiform layer

(Naka and Rushton, 1967; Mahowald and Mead, 1988).

While this five-class model is useful, there is room for improve-

ment. The five classes have been further subdivided into a larger

number of cell types. Although everyone agrees that photore-

ceptors are divided into rods and cones, the proper division of

other broad classes into specific cell types is still not settled.

The task of cataloging retinal cell types is not trivial, given that

it is not even clear how to rigorously define a cell type. One

approach follows in the tradition of Cajal, which is to observe

and categorize the shapes of large numbers of neurons using

sparse reconstruction. Based on this approach, the number of

cell types in the mammalian retina has been placed at about

60 (Masland, 2001a). A newer approach is to define cell types

by gene expression and to fluorescently label them with genetic

markers (Kim et al., 2008).

The outer retina, containing the photoreceptors and horizontal

cells, has relatively few cell types and its connectivity is known. In

contrast, the inner retina is estimated to contain over two dozen

types of amacrine cell in mammals (Masland, 2001b), and little is

known of their connectivity. This could be investigated through

sparse reconstruction of connected pairs of neurons. The cell

types of each pair would be determined from their shapes.

Extensive sampling of connected pairs from many retinas would

eventually lead to a pairwise model of connectivity. Such statis-

tical sampling would require considerable labor, especially if

some types of connections are rare. The yield of connected pairs

per retina will be low, if cells are sparsely labeled at random, but

could potentially be increased by using transsynaptic tracers.

An alternative is to perform dense reconstruction of a single

retinal connectome. This would yield a complete set of recon-

structed single neurons, which could be used to build a catalog

of cell types. It would also provide a complete set of connected

pairs. Therefore, exhaustive analysis of a single retina by dense

reconstruction could potentially be more efficient than sampling

from many retinas by sparse reconstruction. Whether this

efficiency is realized will depend on emerging technological

advances in the methods of connectomics.

Functional Properties as Cell Labels
The idea that rules of connectivity should be based on cell type

dates back at least to Cajal (Masland, 2004; Bota and Swanson,

2007). Cell type and location may turn out to be sufficient for
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understanding most of the structure and function of the retina.

But in other neural circuits, and even in the retina to some extent,

it will also be essential to include functional properties in cell

labels.

Neurons of the same cell type may differ in their functional

properties, and in their connectivity too. In the retina, it is likely

that the connectivity of direction-selective ganglion cells will

depend on their preferred directions. If so, the cell label should

include the preferred direction, but this is impossible to predict

from the shape of the ganglion cell, at least so far (Oyster

et al., 1993). In the primary visual cortex, the connectivity of

orientation-selective neurons may depend on their preferred

orientations (Ben-Yishai et al., 1995; Somers et al., 1995). If so,

the cell label should include the preferred orientation, but this

seems impossible to predict from classical cell type.

Especially in sensory areas, neurons with similar functional

properties tend to have similar locations, a phenomenon some-

times known as topographic organization. For example, in the

retina and other visual areas of the brain, neighboring neurons

are responsive to similar locations in visual space. Also, neigh-

boring neurons have similar preferred orientations in the primary

visual cortex of cats and monkeys (although see Girman et al.,

1999; Ohki et al., 2005; concerning violation of this rule in

rodents). In these cases, it could be argued that the location of

a cell already subsumes its functional properties.

Areas involved in memory are better examples of the necessity

of including functional properties incell labels.Aswill be explained

below, in avian brain area HVC (Fee et al., 2004) and rodent hippo-

campal CA3 (Redish et al., 2001), functional properties of neurons

appear uncorrelated with location. This makes intuitive sense, as

connections based only on cell type and location would be too

inflexible to store memories. Furthermore, connections based

on functional properties would result naturally if memories are

stored in connections by activity-dependent synaptic plasticity,

which is a popular idea among neuroscientists.

The Synaptic Chain Model of HVC
Procedural memory is defined as the ability to store and

recall sequences of actions or thoughts, such as the long motor

sequences of a musical performance. The neural basis of motor

sequences has been studied in a songbird called the zebra finch.

Figure 1. Cartoon of Spike Trains of HVC
Neurons during a Song Motif
RA-projecting neurons generate a single burst of
spikes. Interneurons fire at many times. X-projec-
ting neurons generate a few bursts.

The zebra finch sings a single, highly

stereotyped song that consists of repeti-

tions of a motif, typically 0.5–1 s in dura-

tion. Lesion studies indicate that avian

brain area HVC plays an important role

in the production of birdsong (Nottebohm

et al., 1976). Of the several cell types

found in HVC (Dutar et al., 1998), the

one that projects to nucleus RA is of prime

importance for song production, because

RA drives the motor neurons that control vocalization (Notte-

bohm et al., 1976).

The spiking of RA-projecting HVC neurons has been recorded

during song in zebra finches (Figure 1). An RA-projecting neuron

emits exactly one burst of several spikes during a song motif (Fee

et al., 2004; Hahnloser et al., 2002). The timing of the burst is

remarkably precise, with a jitter of less than a millisecond relative

to the song. The activation times of the neurons are distributed

throughout the motif. This means that the population of RA-pro-

jecting neurons generate a highly stereotyped, precisely timed

sequence of bursts. This burst sequence drives activity in RA,

which in turn drives the motor neurons that control vocalization

(Fee et al., 2004; Hahnloser et al., 2002; Leonardo and Fee, 2005).

Projection neurons are known to send out axon collaterals

within HVC (Katz and Gurney, 1981; Mooney, 2000), so they

are thought to make excitatory connections with each other.

It has been hypothesized that the connections between RA-

projecting neurons are sequentially organized into a chain and

that this connectivity is the cause of sequential activation (Li

and Greenside, 2006; Jin et al., 2007). Some examples of

chain-like networks are shown in Figure 2.

Suppose that the neurons of the chain are excitatory. If

neurons at the left end are activated, the activity can propagate

from left to right. The neurons will be activated sequentially, like

a chain of falling dominoes. The synaptic chain has been

proposed as an explanation for how humans are able to produce

long sequences of movements, as in playing a piano or singing

a song. It was first proposed by associationist philosophers

over a century ago and later was mathematically formalized by

neural network theorists (Amari, 1972; Abeles, 1991).

The synaptic chain can be formulated as a pairwise model by

letting the activation time of a neuron be its cell label. There

should be a high probability of connection only between pairs

with a small and positive time difference. In other words, the

probability of an i ) j connection is expected to be

Pr½Cij = 1�= fðti � tjÞ (3)

where f has a form like that shown in Figure 3 and Cij is a binary

random variable that indicates the presence of absence of an
Neuron 62, April 16, 2009 ª2009 Elsevier Inc. 21
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i ) j connection. If the chain were ideal, like those shown in

Figure 2, the function f would vanish completely for a time differ-

ence that is either negative or large and positive. But f does not

vanish in Figure 3, which is intended to simulate the ‘‘sloppiness’’

of biology. It is realistic to expect that a chain-like structure

would be corrupted by some ‘‘wrong’’ connections that either

go backward in time or jump too far forward in time.

One-Dimensional Directed Graph Layout
If the RA-projecting neurons were arranged along the length of

HVC so that their activation times increase in an orderly fashion,

then the cell label would be reducible to location. The synaptic

chain model could be tested in vitro, because it predicts that

connected pairs of RA-projecting neurons would be near each

other in a brain slice preparation, and the direction of the connec-

tion would be the same as that of the increasing activation times.

But in fact the activation times of RA-projecting neurons during

song are apparently uncorrelated with their location in HVC

(Fee et al., 2004).

The synaptic chain model could be tested by determining the

cell labels directly through measurements of activation time

during song. In the method of sparse reconstruction, one could

use a transsynaptic tracer to mark the presynaptic partners of

a single postsynaptic neuron and then measure the activation

times of the marked neurons by optical imaging during song.

The pairwise model predicts that the activation times of the

presynaptic partners would typically be just a bit less than the

activation time of the postsynaptic neuron. In the method of

dense reconstruction, the activation time of each neuron could

be measured by optical imaging prior to connectomic analysis.

For every connected pair i ) j, compute the time difference

A

B

C

Figure 2. Examples of Synaptic Chains
(A) Each neuron makes a synapse onto a single neighbor on the right.
(B) Neurons are divided into groups, and each group makes synapses onto the
next group.
(C) Each neuron makes a synapse onto three neighbors to the right (Amari,
1972; Abeles, 1991).
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ti – tj and check whether the histogram of the time differences

resembles the function of Figure 3.

Less obvious is the fact that the synaptic chain model is test-

able by dense measurements of connectivity, even with no

measurements of activity. If the activation times of the neurons

are unknown, whether the network contains a chain is not

obvious because the order of the neurons is scrambled. To

find out whether there is a chain, we must try to unscramble

the ordering. The activation times ti are no longer directly observ-

able but are hidden variables to be discovered through analysis.

Finding the activation times is an example of a problem known

by computer scientists as graph layout, or drawing (Dı́az et al.,

2002), where ‘‘graph’’ is a mathematician’s term for the connec-

tivity of a network. The problem typically arises when a user would

like to visualize a network as a low-dimensional picture. Most

commonly, the nodes and connections are drawn as points and

lines in two-dimensional space. An objective function is formu-

lated that quantifies some notion of how ‘‘good’’ the graph looks.

The locations of the nodes are chosen by optimizing the objective

function. Many objective functions and optimization algorithms

have been proposed for graph layout. Related algorithms have

been applied to infer the spatial location of neurons in the C. ele-

gans nervous system from their connectivity (Chen et al., 2006).

Finding the values of the ti in Equation 3 is equivalent to laying

out a directed graph in one dimension (Carmel et al., 2004). The

problem is to arrange the RA-projecting neurons along a one-

dimensional line so that these constraints are well-satisfied:

1. Connected neurons are close to each other.

2. Connections are pointed in the same direction.

If the neurons can be laid out in one dimension so that these

constraints are well-satisfied, then it can be regarded as

a synaptic chain. Furthermore, the resulting locations of the

neurons could serve as predictions of their activation times.

The above two constraints correspond to the assumption that

the function f in Equation 3 is large only for small positive argu-

ments. Note that the one-dimensional line, the layout space, is

parametrized by activation time. This is an abstract space of

functional properties, not a physical space of brain locations,

since activation time is uncorrelated with location in HVC, as

mentioned earlier (Fee et al., 2004).

Figure 3. Connection Probability versus Difference of Activation
Times in the Synaptic Chain Model of Equation 3
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Figure 4. Finding Chain Structure in
a Network
The connectivity matrices shown in the top panels
are all of the same network, but with different
orderings of the neurons.
(A) This ordering of the neurons makes the chain
structure obvious in the connectivity matrix.
Almost all the connections are i ) j pairs in which
i – j is a small positive integer.
(B) With a random permutation of the neurons, the
chain structure is hidden in the connectivity matrix.
(C) After sorting the neurons with the graph layout
algorithm described in the Experimental Proce-
dures, the chain structure is visible again.
(D–F) Histograms of i – j for the connections corre-
sponding to the three orderings of the neurons. If
turned into probability distributions by normaliza-
tion, they would represent the estimates of the
probability of connection in Equation 3, given an
ordering of the neurons. For the leftmost and right-
most orderings, the probability of connection is
large only for small positive i – j. If no such ordering
existed, there would be no chain structure in the
network.
One-dimensional graph layout is an easy computational

problem for an ideal chain like those shown in Figure 2, but diffi-

cult if the chain is corrupted by ‘‘inappropriate’’ connections.

Many approaches are possible, and which approach eventually

turns out to be best will depend on the exact nature of the HVC

connectome data. Here I present a simple artificial example, just

to illustrate how graph layout could be applied to connectomes.

A network with chain structure was generated by using the prob-

abilistic model of Equation 3. The exact procedure is described

in the Experimental Procedures. For simplicity, it’s assumed

that the variables t1 through tn are a permutation of the integers

1 through n, where n is the number of neurons. Then any set of

values for the ti is equivalent to an ordering of the neurons.

The chain structure is obvious in the connectivity matrix of the

network (Figure 4a) but becomes hidden if the neurons are

randomly permuted (Figure 4b). A reordering of the neurons

can be obtained by applying a graph layout algorithm based

on a convex objective function described in the Experimental

Procedures. This reordering is not as good as the original one

because the algorithm is so naive, but it is good enough to

make the chain structure evident in the connectivity matrix

(Figure 4c).

The best estimate of the connection function f in Equation 3 is

also shown in the figure. With the ‘‘good’’ orderings on the left

and right, f is only large for small positive i – j. The existence of

orderings with this property is evidence that the graph has chain

structure.

The same analysis can be applied to a network with the same

number of connections as the chain network, but with the

connections placed completely randomly. In this case, the graph

layout algorithm is unable to come up with a good ordering, i.e.,

one for which the estimated connection function is only large for

small positive i – j (data not shown).

The graph layout approach is possible only if a substantial

fraction of the connections are known. Suppose some inappro-

priate connections are added to the ideal chains of Figure 2, to

simulate the ‘‘sloppiness’’ of biology. Suppose also that some

connections are randomly deleted, to simulate partial knowledge
of the connectome. If the fraction of deleted connections

becomes large, it will become impossible to detect chain-like

structure, due to the noise from the sloppy connections. There-

fore, the HVC example demonstrates the utility of dense informa-

tion about connectivity.

Strengths of Connection
Connectivity is generally defined as a binary property. Two

neurons are either connected or they are not. But synaptic

connections also have analog strengths, which brings us to

a potential weakness of connectivity analysis. Consider the

worst-case scenario of a network in which all pairs of neurons

are connected, but most connections are so weak that they

are nonfunctional. In this scenario, connectivity would provide

almost no information about function. Let’s reexamine the

synaptic chain with this idea in mind.

I proposed a test of the synaptic chain hypothesis through

an analysis of the connectivity between RA-projecting neurons

in HVC. If graph layout algorithms fail to identify a chain structure,

I asserted that the synaptic chain hypothesis will be falsified. In

fact, that conclusion is a bit hasty. Imagine a chain of strong

connections. Now add many weak connections in the ‘‘back-

ward’’ direction. In this network there is a chain, but it cannot

be identified by a pure connectivity analysis.

If HVC turns out to be like this, it will be important to distinguish

between strong and weak connections. This could be possible in

sparse and dense reconstruction. When a neuron makes

multiple synaptic contacts onto another neuron, the strength of

interaction is correlated with the number of synapses. Further-

more, synaptic strength as estimated by amplitude of postsyn-

aptic calcium transients has been correlated with synapse size

in vitro (Mackenzie et al., 1999; Matsuzaki et al., 2001). There

is evidence that all components of synapses (spine, bouton,

active zone, postsynaptic density) are correlated in size and

are also correlated with properties like total vesicle number

and docked vesicle number, which are thought to be related to

release probability (Harris and Stevens, 1989; Pierce and Lewin,

1994; Schikorski and Stevens, 1997; Murthy et al., 2001). In
Neuron 62, April 16, 2009 ª2009 Elsevier Inc. 23
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short, it should be possible to estimate synaptic strength from

the same light or electron microscopic images used to determine

connectivity.

Is Inhibition Less Specific than Excitation?
So far our discussion of HVC has focused on the RA-projecting

neurons and how the excitatory synapses between them could

be organized like a chain. But HVC also contains other neuron

types (Dutar et al., 1998). There are X-projecting neurons, which

send axons to area X in the anterior forebrain pathway, as well as

inhibitory interneurons, which do not project out of HVC. Here

we’ll discuss the possible roles of inhibition.

Historically, many theories of neural networks have assumed

that inhibitory connections are less selective than excitatory

connections (see Orban [1984] for review). Inhibitory synapses

are hypothesized to play a supporting role in a variety of ways

Worgotter and Koch (1991), such as preventing runaway activity

by holding excitation in check (Douglas et al., 1995), or sharp-

ening a feature selectivity that is created by excitation (Somers

et al., 1995; Ben-Yishai et al., 1995). Along the same lines,

many theories of learning in neural networks focus on plasticity

at excitatory synapses. The assumption is that inhibitory

synapses are less specific, because they are not adjusted by

plasticity.

In particular, network theories of sequence generation have

taken different views of the interplay between excitation and

inhibition. The excitatory chain model actually fell out of favor

long ago in psychology, after the critique of Lashley (1951).

Rumelhart and Norman (1982), following a suggestion by Estes

(1972), modeled human sequence generation using a network

with precisely organized inhibitory connections and a ‘‘fatigue’’

mechanism that limits how long a neuron can be active.

Sequences were generated by the orderly release of neurons

from inhibition. A related idea was used by Drew and Abbott

(2003) in their disinhibitory chain model of HVC.

The validity of such models for human sequence generation

remains untested by neuroscientific methods. But in zebra finch

HVC, the neurophysiological evidence is against specificity of

inhibition. As shown in Figure 1, the spiking of interneurons

during song is very different from that of projection neurons.

Interneurons are temporally unselective in their song-related

activity, firing at many times during a song motif (Hahnloser

et al., 2002). Therefore it seems implausible that inhibition plays

an important role in determining the sequence in which RA-pro-

jecting neurons are activated.

It’s known that interneurons receive synaptic input from

RA-projecting neurons, based on paired recordings in vitro

(Mooney and Prather, 2005). The lack of temporal selectivity

could be explained if each interneuron receives synaptic input

from a large number of randomly chosen RA-projecting neurons.

This excitatory synaptic drive would cause each interneuron to

fire throughout the song motif. While the connections from

RA-projecting neurons to interneurons are likely to be nonspe-

cific, the nature of the connections in the other direction is less

clear. According to the paired recordings of Mooney and Prather

(2005) random pairs of RA-projecting neurons are coupled with

high probability by disynaptic inhibition, suggesting that the

connections from interneurons to projection neurons are also
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nonspecific. It seems likely that inhibition plays a supporting

rather than starring role in sequence generation. Perhaps inhibi-

tion might serve to help prevent instability to runaway excitation

(Jin et al., 2007).

Such global or unstructured inhibition is assumed by another

model of sequence generation in which the memory of

a sequence is stored in the afferent inputs to the network

(Burgess and Hitch, 1999). The inhibitory connections lead to

winner-take-all behavior, so that only one neuron or group of

neurons can be active at a time. The order of activation in the

sequence is not defined by local connections, but rather by

a gradient in the strength of afferent input from outside the

network. While active, each neuron or group of neurons

suppresses the others. Eventually it fatigues, and the next

neuron or group of neurons takes over. Although this model is

not so robust for long sequences, it could become more plau-

sible if analysis of the HVC connectome fails to find sequential

structure in the local excitatory connections.

There are other network models of sequence generation;

space does not permit an exhaustive discussion. The main point

is that all models make assumptions about the organization of

excitation and inhibition, and these assumptions could be tested

by connectivity analysis.

Cognitive Maps and Hippocampal Connectivity
While birdsong may seem like a very specialized behavior, it can

be viewed more generally as an example of procedural memory.

The memory is laid down while a juvenile bird learns to imitate the

song of its adult tutor. After learning is complete, each bout of

song is recall of the memory, and sequential activity in HVC is

the neural basis of memory recall.

From this viewpoint, the synaptic chain model of HVC is

a specific example of a classic theory in neuroscience. It has

long been hypothesized that memories are stored as synaptic

connections, but experimental tests have been difficult. If the

HVC connectome is obtained by dense reconstruction, and

a chain structure is discovered through hidden variable infer-

ence, this would amount to a kind of ‘‘mind-reading.’’ Predicting

the sequential order of activation of HVC neurons from connec-

tivity would be impressive, because it would be an example of

reading out a memory stored in the connections of a network.

Could this approach be extended to other kinds of memory?

The hippocampus has been of great interest to memory

researchers. In humans it has been implicated in declarative

memory (Eichenbaum, 2004). In rodents, the hippocampus

appears to be dedicated to spatial memory (O’Keefe and Nadel,

1978). Neurophysiologists have recorded neural activity in the

hippocampus in freely moving rats and found neurons called

‘‘place cells.’’ For each of these neurons, there is a particular

location in the environment at which spikes are generated. This

location is called a ‘‘place field.’’ The place fields of different

neurons are distributed over many locations, so it has been

hypothesized that the place cells constitute a cognitive map of

the environment. If the rat is put into a novel environment, then

the neurons again have place fields, but the locations of the

new place fields appear to have no relationship with those in

the previous environment. This has been taken as evidence

that multiple cognitive maps are stored in the hippocampus.
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How could these memories be stored? One possibility is the

connections between excitatory neurons in the CA3 region of

the hippocampus. In one proposal, neurons with nearby place

fields insome cognitive map tend to be connected witheach other

(Tsodyks and Sejnowski, 1995). This is justified by invoking Heb-

bian plasticity and the fact that neurons with overlapping place

fields tend to be coactive. In the formal model, the strength Wij

of the i ) j synapse between excitatory neurons is given by (Sam-

sonovich and McNaughton, 1997; Battaglia and Treves, 1998)

Wijf Cij

XP

m = 1

Kðjxm

i � xm

j jÞ: (4)

The argument of the function K is the distance between the

two-dimensional vectors xi
m and xj

m, which are the locations of

the place fields of neurons i and j in cognitive map m. The function

K decreases with distance, and the sum over m includes P cogni-

tive maps. The cell label of neuron i consists of the set of locations

{xi
m}m = 1

P of its place fields in the cognitive maps. These place

field locations appear to be uncorrelated with the physical loca-

tion of the neuron within the hippocampus (Redish et al., 2001).

The elements of the connectivity matrix Cij are either 0 or 1 and

are generated by tossing a biased coin. Here the connectivity of

the network is assumed to be completely random and static, an

assumption about the hippocampus that dates back at least to

Marr (1971). Only the strengths of synapses change during

learning, and they store the cognitive maps. While this model is

intriguing, it has been difficult to test experimentally. In the future,

direct tests could become possible through sparse or dense

reconstruction.

In the sparse reconstruction approach, one could mark

connected neurons with transsynaptic tracers, measure the

locations of their place fields, and compare with the model of

Equation 4. This would be more challenging than the HVC exper-

iments, because the hippocampus is a deep brain structure,

making intracellular injection of tracers and optical imaging of

activity more difficult.

The dense reconstruction approach would require not only the

connectivity of CA3, but also the strengths of synapses as

described previously. Computational analysis would be simpli-

fied by raising the rat in a limited number of environments, or

even just a single one. In the case of a single cognitive map

(p = 1), the model of Equation 4 would be tested by attempting

to lay out the neurons in two dimensional space so that nearby

neurons are more strongly connected to each other. Note that

‘‘nearby’’ refers to distance in an abstract functional space,

rather than physical space, as locations of place fields in an

environment seem uncorrelated with locations in the hippo-

campus (Redish et al., 2001). Solving this graph layout problem

would yield predictions for the locations of the place fields of the

neurons. This is almost the same as the graph layout problem for

HVC, except for two differences. Here the layout is in two spatial

dimensions instead of one temporal dimension. Also, the layout

is not directional. The case of a single cognitive map could be

relevant for a rat that has been kept in the same environment

for an extremely long time.

If there are many (p > 1) cognitive maps stored in CA3 (Samso-

novich and McNaughton, 1997; Battaglia and Treves, 1998),
then analyzing the connectome would be more complex. The

problem could be formulated as the minimization of the cost

function

fðtÞ=
1;
0;
0:01;

t = 1 to 5;
t = 0;
otherwise

8<
: (5)

with respect to the place field locations xi
m and the scale param-

eter a. Finding a good way of solving this optimization problem

would be an excellent topic of future research.

Model Selection
In my definition of pairwise models, I wrote that the cell label

should contain attributes of a neuron that can be measured inde-

pendently from its connectivity. Later on I explained that one can

also infer cell labels instead of measure them directly. Taking one

more step in this direction, one can even build pairwise models in

which direct measurement of cell labels is impossible. The cell

labels have no independent existence apart from the model;

they are only invoked to help explain the observed connectivity.

In this approach, the cell label of a neuron would effectively be

defined by its connectivity, emerging from computational analysis

of a connectome. This idea would not be foreign to the classical

neuroanatomists, who viewed morphological cell type as a proxy

for connectivity (Masland, 2004). The shapeof a neuron constrains

its possibilities for connection, since the dendritic and axonal

arbors of a neuron define a spatial region that other neurons

must enter, if they are to be connected. One can go as far to say

that morphological cell types have functional significance

precisely because they are indirect measures of connectivity.

When cell labels are not grounded on independent measure-

ments, there is a danger of ‘‘overfitting’’ a pairwise model to

connectivity data. Any connectome could be modeled by giving

each neuron its own unique cell label, and then encoding the

entire connectome in the function F. The resulting model would

trivially fit the data perfectly, but would not be any more compact

than the connectome itself. This violates Occam’s Razor, the

principle that a theory or model should be a compact description

of the data. According to modern statistical learning theory,

compactness of a model is not an end in itself, but rather a means

to accurate predictions (Vapnik, 2000). Overfitting is avoided by

selecting a model with good validation performance on a test set.

To apply this cross-validation method, divide the pairs of

neurons in a connectome into distinct subsets for training and

testing. After fitting a pairwise model to the data in the training

set, use it to predict the data in the test set. The best model is

the one with the best prediction performance on the test set.

Discussion
New neuroanatomical methods offer the promise of finally testing

pairwise models of connectivity. The sparse reconstruction

approach repeatedly identifies connected pairs of neurons and

then measures their cell labels. Dense reconstruction reveals

the entire connectome, from which the values of cell labels can

be inferred if direct measurements are not available.
Neuron 62, April 16, 2009 ª2009 Elsevier Inc. 25



Neuron

Perspective
Which approach is better? Both approaches are viable;

ultimately the question boils down to efficiency. In the short

run, I expect that more scientific findings will come from sparse

reconstruction. Dense reconstruction is still very laborious, as

shown by the example of C. elegans. However, the efficiency

of dense reconstruction will improve over the coming years. In

genomics, the cost of DNA sequencing has dropped exponen-

tially over the past three decades, at a rate similar to Moore’s

Law of the semiconductor industry (Shendure et al., 2004). If

neuroscience is fortunate, there will also be exponential progress

in connectomics.

Although sparse reconstruction will also improve in efficiency,

I see less upside potential. Because the approach obtains a small

amount of information from each specimen, it depends on

processing a large number of specimens. Large sample sizes

may be required to find the connectivity of rare cell types.

Sampling will be even more problematic if staining methods

undersample or miss some cell types altogether. For these

reasons, sparse reconstruction will always be a laborious

endeavor.

Using the HVC and CA3 examples, I argued that connectomes

will be useful even if they are accompanied with no information

about activity from the same sample. This extreme case was

considered for the sake of argument, but a connectome could

also be accompanied by sparse information about activity.

This extra information would only enhance the ability of the

hidden variable approach to ‘‘fill in the blanks,’’ i.e., infer the

rest of the information in cell labels. In this way, dense informa-

tion about connectivity could be used to amplify the utility of

sparse information about activity.

It should be kept in mind that pairwise models of connectivity

are the most amenable to testing by the sparse reconstruction

approach. Only one connection per connectome need be

sampled, which is very sparse indeed. But one can imagine

higher-order models in which connections are no longer inde-

pendent when conditioned on cell labels. To test such models

by sparse reconstruction, larger groups of connected neurons

would have to be sampled, which would become more difficult.

For testing sufficiently complex models of connectivity, dense

reconstruction would become the only practical method.

In restricting the discussion to specific pairwise models of

connectivity, I have described a more hypothesis-driven style

of research. But dense reconstruction would also allow a more

exploratory style, with fewer preconceptions constraining the

connectivity models that are investigated. Sparse reconstruction

has an important advantage: the activity of neurons can be

measured after finding their connectivity, rather than before. In

some cases, knowing connectivity in advance could be impor-

tant for designing the right experiment involving activity.

Experimental Procedures
In Figure 4, a network with 50 neurons was generated using

Equation 3. The values of the cell labels were set at ti = i, running

from 1 to 50. The connection function was set to

fðtÞ=
1;
0;
0:01;

t = 1 to 5;
t = 0;
otherwise:

8<
:
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In words, there were rightward connections for pairs of

neurons up to a distance five apart on the chain. Other random

connections were added with 1% probability to model the kind

of ‘‘sloppiness’’ that might exist in a biological network. There

were no self-connections.

Graph layout algorithms are often based on convex optimiza-

tions (Carmel et al., 2004). These simple algorithms require little

computation time, but may produce inferior results. They can be

used as initial conditions for more sophisticated algorithms, if

better results are needed. To produce the ordering used to

display the connectivity matrix in Figure 4C, the cost function

Q =
1

2

X
i;j

Cijðti � tj � 1Þ2 (6)

was minimized (Carmel et al., 2004). Assuming that Cii = 0, the

minimum of this quadratic function can be found by setting its

derivatives

vQ

vti

=
X

j

Cijðti � tj � 1Þ �
X

j

Cijðtj � ti � 1Þ

to zero. The derivatives can be rewritten as

vQ

vti

=
X

j

Lijtj �
X

j

ðCij � CjiÞ

where

Lij = dij

X
k

ðCik + CkiÞ � Cij � Cji

is the symmetrized graph Laplacian. So the minimum of

Equation 6 satisfies the linear equations

Lt = din � dout

where di
in and di

out are the indegree and outdegree of neuron i.

Solving these equations produces a set of real values for ti, up

to a degeneracy corresponding to translating all times by the

same amount. These real values were sorted to produce the

ordering of the neurons used in Figure 4C.

This algorithm works reasonably well when there are fewer

‘‘sloppy’’ connections that corrupt the chain organization.

However, it fails when these connections become more frequent

(results not shown). The graph layout problem can be formulated

as maximum likelihood inference of the cell labels in the proba-

bilistic model (1). The connections are assumed to be indepen-

dent when conditioned on the variables li, so the log-likelihood

of a connectivity matrix Cij is simply the sum of the log-likeli-

hoods for the connections,

log PðCjfligÞ=
X

i; j

ðCij log Fðli; ljÞ+ ð1� CijÞ log ½1�Fðli; ljÞ�Þ: (7)

Optimizing this objective function should give superior results,

but will be technically difficult because it is typically nonconvex.

More research on the graph layout problem is clearly in order.
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Application to real connectomes will require better algorithms

that use nonconvex cost functions like Equation 7, rather than

the convex cost function of Equation 6.

Hidden Variables and Dependencies between
Connections
A pairwise model of connectivity contains a strong assumption

called conditional independence. Suppose that your task is to

predict whether a pair of neurons is connected, and you know

nothing other than their cell labels. By a pairwise model, your

prediction will not be helped by knowledge of the rest of the

connections in the network. This might seem inconsistent with

studies of C. elegans and visual cortex, which have found statis-

tical dependencies between connections (Reigl et al., 2004;

Song et al., 2005; Yoshimura et al., 2005). However, it turns

out that the pairwise model can generate dependencies between

connections, if some information in the labels is unknown. If the

cell labels are allowed to be random variables, then they induce

statistical dependencies between connections. In general, it is

well-known in probabilistic modeling that hidden or latent vari-

ables can induce dependencies between observable variables.

For a specific example, consider the chain-like connectivity

shown in Figure 5A. The connectivity can be modeled using

Equation 1, if a label ti is assigned to each neuron to represent

its location on the chain. The labels take on the values

1 through 8 for the particular chain shown in Figure 5A. Neurons

are connected from left to right if their separation is no greater

than three. This is modeled by making the connection probability

of Equation 3 depend only on the difference between the chain

locations,

fðtÞ= 1;
0;

t = 1; 2; 3
otherwise:

�

A

B C

Figure 5. Hidden Variables Can Induce Statistical Dependencies
between Connections Generated by the Pairwise Model
of Equation 1
(A) The neurons are arranged in a chain and labeled from 1 to 8, indicating their
locations. There is a rightward connection between two neurons if their labels
differ by three or less.
(B) If the labels of the neurons are unknown, the connection probability is
18/56.
(C) If the neurons are known to both receive connections from a third neuron,
then the connection probability rises to 1/2.
If the labels of all neurons are known, then all connections are

statistically independent. Knowing whether one connection

exists is irrelevant for knowing whether another one exists. On

the other hand, suppose that the labels are unknown. Given

a pair of neurons, there is no way to know where they are located

in the chain. Then the connection probability for an arbitrary pair

of neuron is 18/56, which is the ratio of the number of connec-

tions to the number of ordered pairs. But if both neurons in

a pair are known to receive connections from a third node,

then the separation between the pair must be no more than

two. This implies that there must be an connection in one direc-

tion or the other. So the connection probability for a given direc-

tion rises to 1/2.

Here the connection probability changed when information

about other connections was provided. This dependency arose

because information about the labels was missing. Information

about the connections from the third neuron changed the

connection probability by reducing ignorance about the labels.
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