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Let G be a nonabelian group of order pq, where p and q
are distinct odd primes. We analyze the minimum product set
cardinality μG (r, s) = min|AB|, where A and B range over all
subsets of G of cardinalities r and s, respectively. In this paper, we
completely determine μG (r, s) in the case where G has order 3p
and conjecture that this result can be extended to all nonabelian
groups of order pq. We also prove that for every nonabelian
group of order pq there exist 1 � r, s � pq such that μG (r, s) >

μZ/pqZ(r, s).
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a group. This paper is concerned with the cardinality of the product set AB = {ab | a ∈ A,

b ∈ B}, where A and B are finite subsets of G . In particular, given integers 1 � r, s � |G|, we want to
compute

μG(r, s) = min
{|AB|: A, B ⊂ G, |A| = r, |B| = s

}
as defined in [3]. The earliest such result is due independently to Cauchy [1] and Davenport [2], who
computed μG(r, s) in the case that G is cyclic of prime order.

Eliahou, Kervaire, and Plagne [8] have generalized the Cauchy–Davenport theorem to compute
μG(r, s) for all finite abelian groups G . In particular, they define a function κG(r, s) that depends
only on r, s, and the orders of subgroups of G , such that μG(r, s) = κG(r, s) for all finite abelian G .
We discuss the function κG formally later in this paper.
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In [6], Eliahou and Kervaire explore the extent to which the relationship μG(r, s) = κG(r, s) holds
for G finite but nonabelian. In many nonabelian groups, this relationship holds for all r and s. In [5],
Eliahou and Kervaire mention an unpublished result that μG(r, s) always equals κG(r, s) when G is
a dihedral group. However, they prove by computer search that μG(6,9) > κG(6,9) when G is the
nonabelian group of order 21 [6]. At the time, this was the only known group for which the relation
μG(r, s) = κG(r, s) does not always hold.

In this paper, we study μG(r, s) when G is a nonabelian group of order pq, where p and q are dis-
tinct odd primes. The smallest such group, the nonabelian group of order 21, is the group mentioned
in [6] for which the relation μG(r, s) = κG(r, s) does not always hold. We prove that for each non-
abelian group of order pq there exist 1 � r, s � pq such that μG(r, s) > κG(r, s), providing an infinite
family of finite groups for which μG(r, s) does not always equal κG(r, s). Furthermore, we completely
determine μG(r, s) in the case that G is a nonabelian group of order 3p. In this case,

μG(r, s) =
{

min{ fd(r, s) | d ∈ {1, p,3p}}, if r, s > 3 and � r
3 � + � s

3 � < p;

min{ fd(r, s) | d ∈ {1,3, p,3p}}, otherwise,

where

fd(r, s) = d

(⌈
r

d

⌉
+

⌈
s

d

⌉
− 1

)
.

We believe that our methods can be extended to completely determine μG(r, s) for all nonabelian
groups G of order pq.

2. Definitions and supporting results

We begin with a formal definition of the product set of two subsets of a group.

Definition. Let G be a group, and let A and B be finite subsets of G . Then their product set is

AB = {ab | a ∈ A, b ∈ B}.

If G is abelian and written additively, we may also use the notation

A + B = {a + b | a ∈ A, b ∈ B}

and call it the sumset of A and B .

We are concerned with the minimum cardinality of the product set AB given the sizes of A and B .
As mentioned in the introduction, we use the following definition from [3].

Definition. Let G be a group, and let r and s be integers with 1 � r, s � |G|. We define

μG(r, s) = min
{|AB|: A, B ⊂ G, |A| = r, |B| = s

}
and say that A, B ⊂ G realize μG(r, s) if |A| = r, |B| = s, and |AB| = μG(r, s).

The function μG(r, s) has been extensively studied for certain groups. One of the earliest such
results, the Cauchy–Davenport theorem, provides the minimum sumset size when G is cyclic of prime
order. Written in terms of μG , the Cauchy–Davenport theorem can be stated as follows.

Theorem 1. (Cauchy [1], Davenport [2].) Let G be the cyclic group of order p, where p is prime. Let r and s be
integers with 1 � r, s � p. Then μG(r, s) = min{r + s − 1, p}.
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A later result due to Vosper [10] characterizes many of the cases where |A + B| = |A| + |B| − 1 in
cyclic groups of prime order. In our study of nonabelian groups of order pq, we will have frequent
occasion to make use of Vosper’s theorem, as all proper subgroups of groups of order pq are cyclic.

Theorem 2. (Vosper [10].) Let p be a prime, and let A and B be subsets of Z/pZ. Assume that |A| � 2, |B| � 2,
and |A| + |B| < p. Furthermore, suppose |A + B| = |A| + |B| − 1. Then A and B are arithmetic progressions
with the same common difference.

The function μG(r, s) has been studied in [3–8]. The authors of these papers introduce an arith-
metic function κG(r, s) that depends only on r, s, and the orders of subgroups of G . They then
compare μG(r, s) to κG(r, s) and describe several cases where these quantities are equal. We now
define κG(r, s) and two variants of this function, following the papers referenced above.

Definition. Let d, r, and s be positive integers. We define

fd(r, s) = d

(⌈
r

d

⌉
+

⌈
s

d

⌉
− 1

)
.

The functions κG(r, s), N κG(r, s), and DκG(r, s) are defined as the minimum value of fd(r, s),
where d ranges over certain sets of values that depend on the structure of G . (See [5] for a brief
overview of these functions.)

Definition. Let G be a finite group. Let D(G) be the set of divisors of |G|, let H(G) be the set of
orders of subgroups of G , and let N (G) be the set of orders of normal subgroups of G . Let r and s be
integers between 1 and |G|, inclusive. We define

κG(r, s) = min
d∈H(G)

fd(r, s),

N κG(r, s) = min
d∈N (G)

fd(r, s), and

DκG(r, s) = min
d∈D(G)

fd(r, s).

Notice that for all finite groups G and all 1 � r, s � |G|, we have

DκG(r, s) � κG(r, s) � N κG(r, s),

since N (G) ⊆ H(G) ⊆ D(G).
In [8], Eliahou, Kervaire, and Plagne use the function κG(r, s) to give a formula for μG(r, s) when

G is finite abelian.

Theorem 3. (Eliahou, Kervaire, Plagne [8].) Let G be a finite abelian group, and let 1 � r, s � |G|. Then
μG(r, s) = κG(r, s).

Eliahou and Kervaire have recently shown that when G is finite nonabelian, the above result does
not always hold. (See [6] for a survey of μG(r, s) for arbitrary finite nonabelian groups.) They have
also obtained bounds on μG(r, s) when G is finite and solvable. We will make frequent use of these
bounds in our study of nonabelian groups of order pq, as all groups of order pq are solvable.

Theorem 4. (Eliahou, Kervaire [5].) Let G be a finite solvable group, and let 1 � r, s � |G|. Then

DκG(r, s) � μG(r, s) � N κG(r, s).
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While the relation μG(r, s) = κG(r, s) does not hold for all finite groups, under certain conditions
on r and s one can show that μG(r, s) = κG(r, s) regardless of the structure of G . For instance, we
have the following theorem.

Theorem 5. (Eliahou, Kervaire [6].) Let G be a finite group. Let 1 � r, s � |G| such that r + s = |G|. Then
μG(r, s) = κG(r, s).

In this paper, we study the structure of groups of order pq in order to analyze small product sets.
The main tool for this approach is the following theorem of Zemor, which restricts the subsets that
we must consider when examining small product sets.

Theorem 6. (Zemor [11].) Let G be a finite group and A a subset of G. If for every proper subgroup K of G

|AK | � |A| + |K | − 1

and

|K A| � |A| + |K | − 1,

then for every subset B for which either AB �= G or B A �= G, we have

|AB| � |A| + |B| − 1

and

|B A| � |A| + |B| − 1.

Zemor’s theorem provides information about the structure of sets A and B that realize μG(r, s).
The following theorem, due to Kemperman, gives us information about the structure of the product
set AB given that |AB| is small. In particular, it formalizes the notion that in order for AB to have
low cardinality, each element of AB must be representable in many different ways as a product of an
element of A and an element of B .

Theorem 7. (Kemperman [9].) Let C = AB be the product of two finite sets in G. If there exists an element
c ∈ C which can be written uniquely as c = ab with a ∈ A and b ∈ B, then

|C | � |A| + |B| − 1.

We now use the above theorems to analyze μG(r, s) for G a nonabelian group of order pq.

3. Nonabelian groups of order pq

We begin with a description of nonabelian groups of order pq, where p > q are distinct odd
primes. Such a group exists if and only if p ≡ 1 (mod q). There is only one nonabelian group of this
order, up to isomorphism. It has the following presentation:

G = 〈
x, y

∣∣ xq = yp = 1, xyx−1 = yn〉
,

where n is a fixed integer such that n �≡ 1 (mod p) and nq ≡ 1 (mod p). (While there might be more
than one choice for n, all groups of order pq formed by this construction are isomorphic.) We notice
that G is solvable, and that it contains p subgroups of order q. Let H be the subgroup of order q
generated by x. All subgroups H ′ of order q are conjugate to H and are of the form yl H y−l where
0 � l � p − 1. Furthermore, G contains a single subgroup of order p, the normal subgroup N = 〈y〉.
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Notation. For the rest of this paper, we will assume G is a nonabelian group of order pq. We will
continue to use n for the integer in the definition of G such that n �≡ 1 (mod p), nq ≡ 1 (mod p),
and xyx−1 = yn . We will let H refer to the subgroup of G generated by x, and we will let N be the
subgroup generated by y.

Since all proper nontrivial subgroups of G are cyclic of prime order, we will frequently apply
Theorem 2 in our analysis, and thus we will need to examine arithmetic progressions in cyclic groups
of prime order. The following lemma proves that most arithmetic progressions in Z/pZ have a unique
common difference up to negation.

Lemma 8. Let p be an odd prime, and let S ⊂ Z/pZ be an arithmetic progression of length 2 � |S| � p − 2
with common difference d. Then S cannot also be an arithmetic progression of any common difference other
than d and −d modulo p.

Proof. We may assume that S = {0,1,2, . . . , |S| − 1} by shifting the elements of S appropriately and
then factoring out a common difference. We know that S is an arithmetic progression of difference
d if and only if the equation s ≡ t + d (mod p) has exactly one solution with s ∈ S and t /∈ S . Our
goal is to show that 2 � |S| � p − 2 implies d ≡ ±1. We see that s and t also satisfy the equation
(s + 1) ≡ (t + 1) + d. However, due to the uniqueness of s and t , it must be the case that either
s + 1 /∈ S or t + 1 ∈ S . Similarly, we look at the equation (s − 1) ≡ (t − 1) + d to conclude that either
s − 1 /∈ S or t − 1 ∈ S .

We now have four cases. If s + 1 /∈ S and s − 1 /∈ S , then |S| = 1 (as S is a set of consecutive
elements of Z/pZ and s ∈ S). If t + 1 ∈ S and t − 1 ∈ S , then |S| = p − 1 since t /∈ S . If s + 1 /∈ S and
t − 1 ∈ S , then it must be the case that s is the largest member of S (in other words, S = {0,1, . . . , s})
and furthermore t ≡ s + 1 (as this is the only possibility for t /∈ S and t − 1 ∈ S). Thus, d ≡ −1.
Similarly, if t + 1 ∈ S and s − 1 /∈ S , then s ≡ 0 (by the construction of S) and t ≡ p − 1. Therefore
d ≡ 1.

We therefore see that if 2 � |S| � p − 2, then S has a unique common difference (up to negation)
in Z/pZ. �

When we analyze product sets in groups of order pq, we will need to obtain lower bounds on
the sizes of particular sumsets in cyclic groups. Lemma 9 uses Theorem 6 and Lemma 8 to obtain a
lower bound on a particular sumset in Z/pZ, which is stronger than the bound obtained by using the
Cauchy–Davenport theorem alone.

Lemma 9. Let p and q be odd primes. Let A0, A1, . . . , Aq−1, and B be subsets of Z/pZ such that |A0|+ |A1|+
· · · + |Aq−1| = u and |B| = v > 1. Assume that u > q, u �≡ 1 (mod q), and � u

q � + v < p. Let n �≡ 1 (mod p)

be such that nq ≡ 1 (mod p). Then

∣∣(A0 + B) ∪ (A1 + nB) ∪ (
A2 + n2 B

) ∪ · · · ∪ (
Aq−1 + nq−1 B

)∣∣ �
⌈

u

q

⌉
+ v.

Proof. We may assume that (A0 + B)∪· · ·∪(Aq−1 +nq−1 B) �= Z/pZ since � u
q �+ v < p. Choose Ai with

maximum cardinality. By the Cauchy–Davenport theorem, |Ai +ni B| � |Ai |+ |ni B|−1 = |Ai |+ v −1. If
|Ai | � � u

q �+ 1, then |Ai +ni B| � � u
q �+ v , and we are done. We may therefore assume that |Ai | = � u

q �
and that |Ai +ni B| = � u

q �+ v −1. Since |Ai| �= 1 (as u > q) and |Ai |+ v < p, we conclude by Theorem 2

that Ai and ni B must be arithmetic progressions with the same common difference. As ni B is an
arithmetic progression, so is B . Let the common difference of B be d. Then the common difference of
the arithmetic progressions ni B , Ai , and Ai + ni B is nid.
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Since u �≡ 1 (mod q), we can find A j , j �= i, with |A j | = |Ai | = � u
q �. By a similar argument to that

above, we are done unless A j + n j B is an arithmetic progression with common difference n jd. Notice
that nid �≡ ±n jd (mod p), since no power of n is congruent to −1 modulo p. However, since

2 �
⌈

u

q

⌉
+ v − 1 � p − 2,

we apply Lemma 8 to conclude that Ai + ni B �= A j + n j B . Since these sets have the same cardinality
of � u

q � + v − 1 yet are not equal, we conclude that |(Ai + ni B) ∪ (A j + n j B)| � � u
q � + v . �

In order to determine μG(r, s) for nonabelian groups of order pq, we will analyze several possible
scenarios. One such case is slightly more involved than the others, so we discuss this scenario in the
lemma below. (Recall the notation established earlier which we will use when referring to nonabelian
groups of order pq.) In particular, we analyze the possibility that A and B each have the form of
a union of cosets of N with at most p − 2 elements removed from these cosets. In other words,
|AN| � |A| + p − 2 and |BN| � |B| + p − 2. (Since N is normal, it does not matter whether we discuss
left or right cosets.)

Lemma 10. Let A and B be subsets of G such that |AN| � |A| + |N| − 2 and |BN| � |B| + |N| − 2. Then
|AB| � min{ f1(|A|, |B|), f p(|A|, |B|), pq}.

Proof. Since N is normal, we see that |BN| = |N B|. Therefore, there exist N1, . . . , Nu ⊆ N and
N ′

1, . . . , N ′
v ⊆ N with

∑u
i=1 |N\Ni | � p − 2 and

∑v
j=1 |N\N ′

j | � p − 2 such that

A = xm1 N1 ∪ xm2 N2 ∪ · · · ∪ xmu Nu and B = N ′
1xm′

1 ∪ N ′
2xm′

2 ∪ · · · ∪ N ′
v xm′

v ,

where |A| = r, |B| = s, u = � r
p �, and v = � s

p �. (All mi are distinct modulo q and all m′
j are distinct

modulo q.) Our goal is to show that |AB| � min{ f1(r, s), f p(r, s), pq}.
We first examine the case u = 1. If all 1 � j � v satisfy N1N ′

j = N , then AB is a union of v = � s
p �

cosets of N . Hence

|AB| = p

⌈
s

p

⌉
= p

(⌈
s

p

⌉
+

⌈
r

p

⌉
− 1

)
= f p(r, s).

Assume that for some 1 � w � v it is the case that N1N ′
w �= N . Without loss of generality, say

N1N ′
v �= N . Then (by applying the Cauchy–Davenport theorem to N1N ′

v , where N1 and N ′
v are viewed

as subsets of N ∼= Z/pZ) we obtain

|AB| =
v∑

j=1

∣∣N1N ′
j

∣∣ �
(

v−1∑
j=1

∣∣N ′
j

∣∣) + ∣∣N1N ′
v

∣∣ �
(

v−1∑
j=1

∣∣N ′
j

∣∣) + (|N1| +
∣∣N ′

v

∣∣ − 1
) = r + s − 1 = f1(r, s).

This concludes the case u = 1. The case v = 1 is analogous.
We now consider the case u, v � 2. Without loss of generality, assume that Nu has minimum

cardinality among all Ni and N ′
j . Let

Ā = xm1 N1 ∪ xm2 N2 ∪ · · · ∪ xmu−1 Nu−1.

We now claim that ĀB is a union of cosets of N . It suffices to show that for all 1 � i � u − 1 and for
all 1 � j � v , it is true that Ni N ′

j = N . Notice that

|Ni| +
∣∣N ′

j

∣∣ � |Ni | + |Nu | � 2p − (p − 2) = p + 2,
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where |Ni| + |Nu| � p + 2 follows from the formula
∑u

k=1 |N\Nk| � p − 2. Since |Ni | + |N ′
j | � p + 2,

we conclude by the Cauchy–Davenport theorem that Ni N ′
j = N . Therefore, ĀB is a union of cosets

of N .
From the Cauchy–Davenport theorem applied to G/N ∼= Z/qZ, we see that | ĀB/N| � min{(u −1)+

v − 1,q}. If | ĀB/N| = q, then (as ĀB is a union of cosets of N) we have

|AB| � | ĀB| = pq,

and we are done. Therefore, we may assume | ĀB/N| < q. Furthermore, if | ĀB/N| � u + v − 1, then

|AB| � | ĀB| � p(u + v − 1) = p

(⌈
r

p

⌉
+

⌈
s

p

⌉
− 1

)
= f p(r, s).

Therefore the only remaining possibility is that | ĀB/N| = u + v −2 and that u + v −2 < q. By applying
the Cauchy–Davenport theorem to AB/N , we conclude

|AB/N| � min{u + v − 1,q} = u + v − 1 > | ĀB/N|.

Thus, there is some N ′
j x

m′
j ⊂ B such that (xmu Nu)(N ′

j x
m′

j ) �⊂ ĀB , and thus (xmu Nu)(N ′
j x

m′
j ) ∩ ĀB = ∅.

Therefore

|AB| � | ĀB| + ∣∣Nu N ′
j

∣∣ � p(u + v − 2) + min
{|Nu| + ∣∣N ′

j

∣∣ − 1, p
}
.

Assume without loss of generality that N ′
v has minimum cardinality among the N ′

j . Let m(r) and
m(s) be the smallest positive integers congruent to r and s modulo p, respectively. In particular, we
notice that |Nu | � m(r) and |N ′

v | � m(s) (with equality only when |Ni | = p for all i �= u and |N ′
j| = p

for all j �= v). We have the identity

p

(⌈
r

p

⌉
+

⌈
s

p

⌉)
= r + s + 2p − m(r) − m(s).

We now obtain the bound

|AB| � p(u + v − 2) + min
{|Nu| + ∣∣N ′

v

∣∣ − 1, p
}

� p

(⌈
r

p

⌉
+

⌈
s

p

⌉
− 2

)
+ min

{
m(r) + m(s) − 1, p

}
= min

{
f1(r, s), f p(r, s)

}
.

We therefore conclude that |AB| � min{ f1(r, s), f p(r, s), pq}. �
We are now ready to begin computing μG(r, s) in nonabelian groups of order pq. We first obtain

a lower bound on μG(r, s), using the results of [5].

Lemma 11. For all 1 � r, s � pq, μG(r, s) � κG(r, s).

Proof. The only divisors of pq are 1, q, p, and pq. We know that G contains a subgroup of each
of these cardinalities, and thus DκG(r, s) = κG(r, s). From Theorem 4, we conclude that κG(r, s) �
μG(r, s). �
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We are now at the main theorem of this paper. We will prove that μG(r, s) = N κG(r, s) for r and
s that satisfy several conditions. The proof centers on obtaining a stronger lower bound on μG(r, s)
than that of Lemma 11. In particular, we perform a careful case analysis to prove that when r and s
meet specified criteria, the inequality μG(r, s) � N κG(r, s) always holds.

Theorem 12. Let G be a nonabelian group of order pq, where p > q are odd primes with p ≡ 1 (mod q). Let
q + 1 � r, s � pq such that � r

q � + � s
q � < p. Furthermore, suppose r and s are both congruent to either 0 or

q − 1 modulo q, with at least one of them 0 modulo q. Then μG(r, s) = N κG(r, s).

Proof. We know from Theorem 4 that μG(r, s) � N κG(r, s). All that remains is to prove that
μG(r, s) � N κG(r, s). If μG(r, s) � f1(r, s), then we are done since f1(r, s) � N κG(r, s), so assume
μG(r, s) < r + s − 1. Similarly, assume μG(r, s) < pq.

Let A and B be subsets of G that realize μG(r, s). By Theorem 6 there exists a proper subgroup
K A of G such that either |K A A| < |K A | + r − 1 or |AK A | < |K A | + r − 1. Similarly, there is a proper
subgroup K B of G such that either |K B B| < |K B | + s − 1 or |B K B | < |K B | + s − 1. Each of K A and K B

have order either p or q.
Consider first the case K A = K B = N . Since |AN| = |N A| and |BN| = |N B|, we have |AN| < p +r −1

and |BN| < p + s − 1. We then apply Lemma 10 to conclude that μG(r, s) � min{ f1(r, s), f p(r, s), pq}.
The remainder of this proof will show that K B �= N implies |AB| � N κG(r, s). By the symmetries

|AB| = |B−1 A−1| and μG(r, s) = μG(s, r), the same arguments can be used to show that K A �= N
implies |AB| � N κG(r, s). Therefore, it suffices to show that if there exists a subgroup H ′ of order
q such that either |B H ′| < q + s − 1 or |H ′B| < q + s − 1, then it follows that |AB| � N κG(r, s). By
conjugating A and B by an appropriate power of y, we may assume without loss of generality that
H ′ = H .

We first examine the possibility that |B H| < q + s − 1. Since s ≡ 0 (mod q) or s ≡ q − 1 (mod q),
we see that by inserting at most one element to B we can obtain a union of left cosets of H . Thus,
for some H̄ ⊆ H with |H̄| � q − 1, it is the case that

B = yk1 H̄ ∪ yk2 H ∪ · · · ∪ yku H,

where u = � s
q � � 2 and all ki are distinct modulo p. We will first argue that AB must be a union of

left cosets of H . This is obvious if H̄ = H , so we assume for the moment that |H̄| = q − 1. Pick an
element yi x j ∈ A arbitrarily. It suffices to show that yi x j · yk1 H ⊂ AB . Consider the possibility that
yi x j is the unique element a0 ∈ A such that a0 B ∩ yi x j yk1 H �= ∅. Then each element in yi x j yk1 H̄ ⊂ AB
is written uniquely as a0b0 with a0 ∈ A, b0 ∈ B , which implies |AB| � r + s − 1 by Theorem 7 and
contradicts our assumption about the size of AB . Therefore, there exists a y f xg ∈ A with y f xg �= yi x j

such that y f xg B ∩ yi x j yk1 H �= ∅. Thus, for some coset ykc H with ykc H ∩ B �= ∅ we have y f xg ykc H ∩
yi x j yk1 H �= ∅. Since distinct left cosets are disjoint, this implies y f xg ykc H = yi x j yk1 H . If ykc H ⊂ B ,
then clearly yi x j yk1 H = y f xg ykc H ⊂ AB . Therefore, the only remaining possibility is that ykc H =
yk1 H and hence y f xg yk1 H = yi x j yk1 H . Let h be the element in H which is not in H̄ . Then yi x j yk1 H̄
contains all of yi x j yk1 H except for yi x j yk1 h. Similarly, y f xg yk1 H̄ contains all of yi x j yk1 H except for
y f xg yk1 h. As y f xg �= yi x j , we see that y f xg yk1 h �= yi x j yk1 h, and therefore AB contains yi x j yk1 H̄ ∪
y f xg yk1 H̄ = yi x j yk1 H . Thus, AB is a union of left cosets of H .

We now count the number of left cosets of H that are contained in AB . We define sets
C0, C1, . . . , Cq−1, and D , which are subsets of Z/pZ:

C j = {
i
∣∣ yi x j ∈ A

}
, D = {

w
∣∣ yw H ∩ B �= ∅}

.

Notice that yi x j · yw H = yi+n j w H . Thus, the number of left cosets of H which are contained in AB is
the number of distinct values of i + n j w (mod p), where i ∈ C j and w ∈ D , which is

∣∣(C0 + D) ∪ (C1 + nD) ∪ (
C2 + n2 D

) ∪ · · · ∪ (
Cq−1 + nq−1 D

)∣∣.
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We see that |D| = � s
q � � 2. Also, |C0| + |C1| + · · · + |Cq−1| = r. We recall our assumption in the

statement of the theorem that � r
q � + � s

q � < p. Furthermore, since r is either 0 or q − 1 modulo q and
q is odd, we observe that r �≡ 1 (mod q). We now apply Lemma 9 to conclude that AB contains at
least � r

q � + � s
q � cosets of H . Thus,

|AB| � q

(⌈
r

q

⌉
+

⌈
s

q

⌉)
� r + s > f1(r, s) � N κG(r, s).

We now analyze the case |H B| < q + s − 1. Since s is either 0 or q − 1 modulo q, it is possible to
insert at most one additional element to B and obtain a union of right cosets of H . Thus, for some
H̄ ⊆ H with |H̄| � q − 1, it is the case that

B = H̄ yb1 ∪ H yb2 ∪ H yb3 ∪ · · · ∪ H ybv ,

where all bi are distinct modulo p and v = � s
q � � 2. We will write all of the elements of A in the

form yaxm . We observe

(
yaxm)(

H yb) = ya H yb = {
ya+b, ya+nbx, ya+n2bx2, . . . , ya+nq−1bxq−1}.

We now define the following two subsets of Z/pZ:

C = {
a

∣∣ yaxm ∈ A for some m ∈ Z/qZ
}
, D = {

b
∣∣ H yb ⊂ B

}
.

Consider first the case s ≡ 0 (mod q). Then H̄ = H , and hence

|AB| = |C + D| + |C + nD| + ∣∣C + n2 D
∣∣ + · · · + ∣∣C + nq−1 D

∣∣,
which is obtained by counting the number of elements of the form yi x0 ∈ AB , then elements of the
form yi x1 ∈ AB , and so on.

We notice |C | � � r
q � � 2 and |D| = � s

q � � 2. We assume |C | + |D| � p, since otherwise |AB| = pq.

By the hypothesis in the statement of the theorem, we recall that � r
q �+� s

q �− 1 � p − 2. In particular,

by the Cauchy–Davenport theorem we conclude that |C +ni D| � � r
q �+� s

q �− 1, with equality possible

(by Vosper’s Theorem) only if C and ni D have sizes � r
q � and � s

q �, respectively, and are arithmetic pro-
gressions with the same common difference. However, by Lemma 8, C can have a common difference
with at most one of the sets ni D , since |C | � p − |D| � p − 2. Therefore

|AB| �
(⌈

r

q

⌉
+

⌈
s

q

⌉
− 1

)
+ (q − 1)

(⌈
r

q

⌉
+

⌈
s

q

⌉)
= q

(⌈
r

q

⌉
+

⌈
s

q

⌉)
− 1 � r + s − 1 = f1(r, s).

Now consider the case s ≡ q − 1 (mod q). Then r ≡ 0 (mod q) by a hypothesis of the theorem. We
therefore have two possibilities: either |C | = r

q and A is a union of left cosets of H , or instead |C | > r
q .

If A is a union of left cosets of H , then the same argument as when B is a union of right cosets of
H can be applied to conclude that |AB| � f1(r, s). We will therefore consider the case |C | � � r

q � + 1.

Notice that |D| = � s
q � − 1. We have the inequality

|AB| � |C + D| + |C + nD| + ∣∣C + n2 D
∣∣ + · · · + ∣∣C + nq−1 D

∣∣.
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If |C | � � r
q � + 2, then

|AB| � min

{
q

(⌈
r

q

⌉
+ 2 +

⌈
s

q

⌉
− 1 − 1

)
,qp

}

� min{r + s, pq}
� min

{
f1(r, s), pq

}
.

The only remaining possibility is |C | = � r
q �+ 1. Thus, r is congruent to 0 modulo q, and A contains

elements from exactly r
q + 1 left cosets of H . We have

A = yc1 H1 ∪ yc2 H2 ∪ · · · ∪ ycu Hu,

where Hi ⊆ H ,
∑u

i=1 |Hi | = r, 1 � |Hi | � q, and u = � r
q � + 1. In particular, we notice that at most one

Hi can have size exactly 1. Without loss of generality, assume |Hi| � 2 for all i � 2. Thus, for all i � 2
we have Hi H̄ = H , since |H̄| = q − 1. Therefore, we let

D ′ = {
b

∣∣ H̄ yb ⊂ B
}

and notice that

|AB| � |C + D ′| + |C + nD ′| + · · · + ∣∣C + nq−1 D ′∣∣ − 1,

with the −1 term to account for the fact that |H1 H̄| might have size q − 1 instead of q. Since |D ′| =
� s

q �, we compute

|AB| � min
{

q
(|C | + |D ′| − 1

) − 1,qp − 1
}

� min

{
q

(⌈
r

q

⌉
+ 1 +

⌈
s

q

⌉
− 1

)
− 1, pq − 1

}

� min{r + s − 1, pq − 1}.

Since � r
q �+� s

q � < p, we have that q(� r
q �+� s

q �) < qp, and hence r + s < qp. Thus, f1(r, s) = r + s − 1 <

qp − 1. We therefore see that |AB| � f1(r, s). �
Theorem 12 provides the value of μG(r, s) for many r and s. In particular, these values suffice

to demonstrate that in all nonabelian groups of order pq there exist 1 � r, s � pq with μG(r, s) >

κG(r, s). This improves upon the calculations in [6], where Eliahou and Kervaire use a computer search
to provide a single example of a group G where μG(r, s) does not always equal κG(r, s).

Theorem 13. Let G be a nonabelian group of order pq, where p > q are odd primes and p ≡ 1 (mod q). Then
there exist 1 � r, s � pq such that μG(r, s) > κG(r, s).

Proof. From Theorem 12, it suffices to find q +1 � r, s � pq such that r, s ≡ 0 (mod q), � r
q �+� s

q � < p,

and N κG(r, s) > κG(r, s). Set r = 2q and s = 3q. Then � r
q �+� s

q � = 5 < p. Furthermore, fq(2q,3q) = 4q,
which is strictly less than f1(2q,3q) = 5q − 1 and f pq(2q,3q) = pq. All that remains is to show that
fq(r, s) < f p(r, s). Since p ≡ 1 (mod q), we know that p = mq + 1, where m is even. If m = 2, then
f p(2q,3q) = p + 2p − p = 4q + 2 > fq(2q,3q). If m > 2, then p � 4q + 1, and hence f p(2q,3q) = p �
4q + 1 > fq(2q,3q). Therefore N κG(2q,3q) > κG(2q,3q), and thus μG(2q,3q) > κG(2q,3q). �
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Theorem 12 is our main tool for completely determining μG(r, s) when G is a nonabelian group
of order 3p. Before we can do this, however, it remains to calculate μG(r, s) in the cases where
Theorem 12 does not apply. In particular, it is straightforward to calculate μG(r, s) when either � r

q �+
� s

q � � p or when min{r, s} � q. We begin by considering the possibility that � r
q � + � s

q � � p.

Lemma 14. Let q + 1 � r, s � pq such that � r
q � + � s

q � � p. Then μG(r, s) = κG(r, s).

Proof. Consider first the case � r
q � + � s

q � = p. Then fq(r, s) = pq − q. Let r′ = q� r
q � and s′ = q� s

q �. We
have r′ � r, s′ � s, and fq(r, s) = fq(r′, s′). Furthermore, r′ + s′ = pq. By Theorem 5, there exist subsets
A′ and B ′ of G with |A′| = r′ , |B ′| = s′ , and |A′B ′| � fq(r′, s′). We pick A to be an arbitrary subset of
A′ of size r and B to be an arbitrary subset of B ′ of size s. Then |AB| � |A′B ′| � fq(r′, s′) = fq(r, s).
Thus, μG(r, s) � fq(r, s). Since μG(r, s) � N κG(r, s) by Theorem 4, we have

μG(r, s) � min
{

fq(r, s), N κG(r, s)
} = κG(r, s).

Since μG(r, s) � κG(r, s) by Lemma 11, we conclude μG(r, s) = κG(r, s).
Finally, consider the case � r

q � + � s
q � > p. Then fq(r, s) � pq = f pq(r, s), and hence κG(r, s) =

N κG(r, s). By Theorem 4 and Lemma 11, we conclude μG(r, s) = κG(r, s). �
We now show that if either r or s is at most q then μG(r, s) = κG(r, s).

Lemma 15. Let 1 � r, s � pq such that at least one of r or s is at most q. Then μG(r, s) = κG(r, s).

Proof. By Theorem 4 and Lemma 11, it suffices to find sets A and B with |A| = r, |B| = s, and |AB| �
fq(r, s). Without loss of generality, assume r � q. Take A to be a subset of H with |A| = r. Let B be a
set of s elements contained in the union of no more than � s

q � right cosets of H , so B ⊆ H yk1 ∪ H yk2 ∪
· · · ∪ H ykv where v = � s

q �. Then AB ⊆ H yk1 ∪ H yk2 ∪ · · · ∪ H ykv , so

|AB| � q

⌈
s

q

⌉
= q

(⌈
r

q

⌉
+

⌈
s

q

⌉
− 1

)
= fq(r, s)

and therefore μG(r, s) = κG(r, s). �
The combination of Theorem 12, Lemma 14, and Lemma 15 enables us to compute μG(r, s) for

many values of r and s. In particular, these three results allow us to completely determine μG(r, s) in
the case that G is a nonabelian group of order 3p. This provides a complete description of μG(r, s) for
an infinite family of finite groups G for which the relation μG(r, s) = κG(r, s) does not always hold.
Previously, only a single such group G was known for which μG(r, s) is not always equal to κG(r, s).

Theorem 16. Let G be a nonabelian group of order 3p, where p > 3 is prime. Let 1 � r, s � 3p. Then

μG(r, s) =
{

N κG(r, s), if r, s > 3 and � r
3 � + � s

3 � < p;
κG(r, s), otherwise.

Proof. The second case follows from Lemma 14 and Lemma 15. When r, s > 3 and � r
3 � + � s

3 � < p, if
one of r or s is congruent to 0 modulo 3 and the other is congruent to either 0 or 2 modulo 3, then
the equation μG(r, s) = N κG(r, s) follows from Theorem 12. Otherwise,

f3(r, s) = 3

(⌈
r

3

⌉
+

⌈
s

3

⌉
− 1

)
� r + s + 2 − 3 = f1(r, s),
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and hence κG(r, s) = N κG(r, s). The equality μG(r, s) = N κG(r, s) then follows from Theorem 4 and
Lemma 11. �
4. Future work

The techniques employed in Theorem 12 led to a complete determination of μG(r, s) when G is a
nonabelian group of order 3p. In this theorem, we placed a restriction on r and s, namely that one
of the values was 0 modulo q and the other was either 0 or q − 1 modulo q. We conjecture that
Theorem 12 can be extended to remove this condition. Specifically, we believe that Theorem 12 can
be extended to prove the following analogue of Theorem 16:

Conjecture 17. Let G be a nonabelian group of order pq, where p > q are odd primes. Let 1 � r, s � pq. Then

μG(r, s) =
{ N κG(r, s), if r, s > q and � r

q � + � s
q � < p;

κG(r, s), otherwise.

We notice that in nonabelian groups of order 3p, μG(r, s) is always equal to either κG(r, s) or
N κG(r, s). This leads us to two further open questions:

(1) For all finite solvable groups G and all 1 � r, s � |G|, is it the case that μG(r, s) = fd(r, s) for
some d ∈ H(G)? (This was previously conjectured in [6].)

(2) Are there examples of finite solvable groups G and 1 � r, s � |G| where μG(r, s) is equal to
neither κG(r, s) nor N κG(r, s)?
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