
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-010 April 1, 2015

iBCM: Interactive Bayesian Case Model
Empowering Humans via Intuitive Interaction
Been Kim, Elena Glassman, Brittney Johnson, and
Julie Shah

iBCM: Interactive Bayesian Case Model
Empowering Humans via Intuitive Interaction

Been Kim, Elena Glassman, Brittney Johnson and Julie Shah
Massachusetts Institute of Technology

Cambridge, MA
{beenkim@csail, elg@mit, bjohns@mit, julie a shah@csail}.edu

Abstract

Clustering methods optimize the partitioning of
data points with respect to an internal metric,
such as likelihood, in order to approximate the
goodness of clustering. However, this inter-
nal metric does not necessarily translate into ef-
fective clustering from the user’s perspective.
This work presents the interactive Bayesian Case
Model (iBCM), a model that opens a communi-
cation channel between the clustering model and
the user. Users can provide direct input to iBCM
in order to achieve effective clustering results,
and iBCM optimizes the clustering by creating a
balance between what the data indicate and what
makes the most sense to the user. This model
provides feedback for users and does not assume
any prior knowledge of machine learning on their
part. We provide quantitative evidence that users
are able to obtain more satisfactory clustering
results through iBCM than without an interac-
tive model. We also demonstrate the use of this
method in a real-world setting where computer
language class teachers utilize iBCM to cluster
students’ coding assignments for grading.

1 Introduction

The ultimate goal of any clustering method is to partition
data points in the most effective and useful way for the user.
A number of existing methods [12] are able to group a large
number of data points according to certain internal met-
rics. Unlike classification methods where prediction accu-
racy often serves as an evaluation metric, clustering metrics
that directly optimize for a particular application are diffi-
cult to articulate and can be domain-specific. In clustering,
there might be multiple ways to cluster data points that are
equally good according to the internal metric of the given
model, but some of these methods may better align with
a user’s knowledge or preference. For example, if a user

in a retail setting wants to cluster customer data in order
to build a recommendation engine and pair sales staff with
appropriate customers using purchase records, clustering
with respect to item categories or region of residence could
yield equally good results. However, clustering with re-
spect to region may offer a more cost-effective implemen-
tation of the engine by matching the recommendation plans
with the existing team structure of the company; however,
hard-coding such information does not translate to other
domains, and also requires in-depth knowledge of machine
learning.

The interactive Bayesian Case Model (iBCM) empow-
ers users via direct, intuitive interaction with a clustering
model, in order to incorporate their expert domain knowl-
edge and preference while simultaneously optimizing the
internal goodness of clustering metric. Moreover, the com-
munication channel is bi-directional: iBCM communicates
back to its users by providing explanations in natural lan-
guage, offering insight into potential conflicts between user
feedback and data point patterns and allowing for more flu-
ent collaboration between the user and machine learning
models.

The communication channel does not assume that a user
has prior knowledge of machine learning. Instead, users
provide examples (i.e., data points) and features of these
examples in order to articulate their feedback. For example,
when building a recommendation engine for films, users
may think that the length of a specific movie is not an im-
portant feature for clustering, even if its use would yield
good results. Instead, the user may think that genre or the
number of awards each film has received are more impor-
tant features. iBCM incorporates the user’s feedback and
propagates it to the inference engine in order to achieve
better clustering. If incorporating user-suggested features
does not yield good clustering, iBCM then provides feed-
back using the examples the user provided.

Desiderata

Ultimately, iBCM aims to enable efficient and intuitive use
of clustering models, without requiring in-depth knowledge

about machine learning. However, establishing intuitive in-
teractions with a complex machine learning system while
assuming no prior user knowledge introduces a number of
challenges. Even if the interaction is simplified to the level
of performance metrics (confusion matrix) [19], it still re-
quires the user to understand the confusion matrix. Some
domains, such as computer vision, offer a readily intu-
itive interaction medium [31]; however, this is not typically
the case. iBCM combines Case-Based Reasoning (CBR)
approaches [1, 29] with a Bayesian generative model to
both generate effective clustering and provide an intuitive
medium for interaction. Specifically, iBCM uses exam-
ples (data points provided by the user) for communication,
enabling interaction between the model and any user with
some degree of familiarity with the data. The use of exam-
ples as a medium for interaction is well-grounded in several
cognitive science studies that demonstrated that exemplar-
based reasoning, involving various forms of matching and
prototyping, is fundamental to our most effective strate-
gies for tactical decision-making ([26, 11, 21]). In or-
der to assist user decision-making by leveraging large data
sources, we desire machine learning algorithms that com-
municate in forms that are easily incorporated into the hu-
man decision-making process.

Once intuitive interaction has been established, the next
challenge is to determine the correct way to incorporate
user feedback in order to achieve a balance between the
user’s input and solutions that optimize the internal metrics
of the clustering method. If there is a conflict between the
suggestions made by the user and the output from the clus-
tering model, there must be a way for the model to both
provide feedback to the user and intuitively explain its in-
ternal states. Communication with the user is essential to a
successful interactive system — it improves transparency,
which has been identified as a major factor in establishing
user trust in adaptive agents [28, 13] and improving system
acceptance [17, 30].

Contributions

The key contribution of this paper is to introduce a unified
framework for clustering, user interaction and explanation
generation — a principled [22] interactive machine learn-
ing system. The principled approach is defined in [22] as
follows: “The output representation is directly related to
the parameters of the model without loss of information.
The output that is presented to users is thus directly inter-
pretable in terms of the generative process of the model.”
iBCM not only offers principled output as depicted in [22],
but also principled input — users interact directly with a
representation that maps to parameters of the model with-
out loss of information. Principled interactive machine
learning enables the model to incorporate user feedback
and articulate its internal states — principled explanations
generation — without a loss of information. While ex-
planations using highly sophisticated language of statis-

tics may offer in-depth understanding for expert users [24],
iBCM provides intuitive and consistent explanations for
non-expert users.

2 Related work

Types of prior art that are relevant to the described ap-
proach include interface designs intended to aid user work-
flow [27], the interactive visualization of clustering re-
sults [23, 16, 5] and interactive machine learning sys-
tems [2, 6, 4]. Interfaces that improve user workflow when
modifying model settings are intended to reduce the burden
of repeated processes to achieve the desired clustering re-
sults [27]. Instead of modifying model settings, some sys-
tems aim to improve the user’s internalization of the current
clustering through visualization [23, 16, 5].

One of the most commonly used methods of improving
clustering is to explore multiple model parameter settings.
To better support this iterative workflow, there are inter-
faces that allow for the tracking of model changes or com-
paring different models of machine learning [27]. There
have also been works with the goal of designing a smart
interface that can adjust to user behavior during highly dy-
namic tasks [5]. Although these systems can improve the
efficiency of users’ iterative workflows, indirect interaction
with models is time-consuming. Also, this approach re-
quires users to have in-depth knowledge of machine learn-
ing or only offers domain-specific solutions.

Another way to help users better understand clustering re-
sults is through visualization, rather than changing the clus-
tering itself. Visualization techniques are often developed
for specific domains (e.g., topic model visualization [10]
or geographical data visualization [16]). Some also intro-
duce new metrics to help users internalize and conceptual-
ize clustering results [15]. Some of these combine their
functionalities to change model parameters in the inter-
face [16]. However, this approach assumes that the current
clustering is somewhat aligned with effective clustering re-
sults from the user’s perspective.

In order to overcome the limitations of indirect interaction
with machine learning methods, there has been growing in-
terest in the development of interactive machine learning
systems [2], ranging from studying the theoretical aspect of
interactive clustering [6] to building systems for use in spe-
cific domains [31, 23]. Some works simplified the medium
of interaction to the level of performance metrics. For ex-
ample, in classification tasks, [19] users specified their pre-
ferred confusion matrix for classifications. However, even
this simplified method of interaction requires the user to
understand the performance metrics and to know how to
assign a numerical score between 0 and 1 to their input.
For some domains, such as computer vision, the medium
for intuitive interaction is naturally available — users can
directly manipulate decision boundaries in pictures [31],

for example. However, this is not typically true for high-
dimensional complex data points. In more complex do-
mains, such as clustering documents, interactive clustering
systems are available [7, 23]; however, the medium of in-
teraction assumes an expert level of user knowledge, such
as n-grams for machine learning systems [7] or keyword
weights for topic clusters [23]. Some works had users com-
municate their feedback through data points [4, 3], such as
by providing positive and negative examples to train a clas-
sifier [3]. However, the difference between machine rep-
resentation (e.g., the averaged features of data points) and
representation of information obtained from human feed-
back (i.e., the examples) may lead to inconsistencies in how
user feedback is incorporated into the machine.

iBCM’s principled interactive machine learning addresses
the challenges listed above by incorporating user feedback
and articulating its internal states without the loss of infor-
mation [22].

3 Interactive Bayesian Case Models (iBCM)

iBCM is an interactive version of the Bayesian Case
Model (BCM), which combines case-based reasoning and
a Bayesian generative model to perform accurate cluster-
ing, and has been shown to yield statistically significant im-
provements to objective measures of interpretability [20].
The interpretability of BCM is one of the essential ingredi-
ents for building an intuitive interactive machine learning
system, especially with regard to a bi-directional commu-
nication channel between the user and the model. This sec-
tion reviews BCM and presents the internal mechanisms
that allow for principled interactive machine learning.

3.1 Bayesian Case Model

BCM, as introduced in [20], begins with a standard discrete
mixture model [18, 9] in order to represent the underlying
structure of the observations. It augments the standard mix-
ture model with prototypes and subspace feature indicators
that characterize the clusters. A graphical model of BCM
is depicted in Figure 1a.

BCM begins with N observations, denoted by x =
{x1, x2, . . . , xN}, with each xi represented as a random
mixture over clusters. There are S clusters, where S is as-
sumed to be known in advance. (This assumption can eas-
ily be relaxed through extension to a non-parametric mix-
ture model, such as [8].) Vector πi are the mixture weights
over these clusters for the ith observation xi, πi ∈ RS+.
Each observation has P features, and we denote the jth

feature of the ith observation as xij . Each feature j of the
observation xi comes from one of the clusters, the index of
the cluster for xij is denoted by zij and the full set of clus-
ter assignments for observation-feature pairs is denoted by
z. Each zij takes on the value of a cluster index between

N q

ps ωs

φs

λ, c

xijzijπiα

N
F

S

(a) Bayesian Case Model (BCM)

qs

ωsps

φs

λ, c

N

q0

xijzijπiα

N
F

S

(b) interactive Bayesian Case Model (iBCM)

Figure 1: Graphical model depicting the BCM and iBCM.
Double circle nodes represent interacted latent variables.

1 and S. Hyperparameters q, λ, c, and α are assumed to be
fixed.

The explanatory power of BCM results from how the clus-
ters are characterized. While a standard mixture model as-
sumes that each cluster takes the form of a predefined para-
metric distribution (e.g., normal), BCM characterizes each
cluster by a prototype, ps, and a subspace feature indica-
tor, ωs. Intuitively, the subspace feature indicator selects
only a few number of features that play an important role
in identifying the cluster and prototype (hence, BCM clus-
ters are subspace clusters). BCM intuitively defines these
latent variables as follows:

Prototype, ps: The prototype ps for cluster s is defined as
one observation in x that maximizes p(ps|ωs, z,x), with
the probability density and ωs as defined below. The nota-
tion for element j of ps is psj . Since ps is a prototype, it
is equal to one of the observations, such that psj = xij for
some i.

Subspace feature indicator ωs: Intuitively, ωs ‘turns on’ the
features that are important for characterizing cluster s and
selecting the prototype, ps. Here, ωs ∈ {0, 1}P is an indi-
cator variable that is 1 on the subset of features that maxi-
mizes p(ωs|ps, z,x), with the probability for ωs as defined

below. Here, ωs is a binary vector of size P , where each
element is an indicator of whether or not feature j belongs
to subspace s.

Kim et al. [20] show that BCM produces prediction ac-
curacy comparable to or better than prior art for standard
datasets. They also verify through human subject experi-
ments that the prototypes and subspaces present as mean-
ingful feedback for the characterization of important as-
pects of a dataset. In these experiments, the exemplar-
based output of BCM resulted in statistically significant
improvements to participants’ performance of a task that
required an understanding of clusters within a dataset, as
compared to outputs produced by prior art.

3.2 Interactive Bayesian Case Model (iBCM)

The main difference between iBCM and BCM is that iBCM
introduces interacted latent variables that represent a vari-
able inferred through both user feedback and the data –
p, ω and q (Figure 1b). Here, we introduce a new nota-
tion (double-circled nodes) for graphical models in order
to represent human-interacted latent variables. Interacted
latent variables are learned through user feedback and in-
formation obtained from data points. These variables dif-
fer from observed variables (shaded nodes) because they
may change their value dynamically through interaction.
We also distinguish them from pure latent variables (un-
filled nodes) because we may want to incorporate high-
confidence user feedback, even if it conflicts with inference
results obtained without user interaction. Figure 1 shows
the graphical models of BCM and the iBCM side-by-side.
In addition to interacted latent variables, q in iBCM is a ma-
trix, where, as in BCM, q is a scalar hyperparameter. The
benefit of this augmentation is explained in Section 3.2.2.

One of the challenges of incorporating user feedback into a
machine leaning system is balancing this feedback with in-
formation obtained from the data. For example, there may
be a way to cluster data points that is not ideal according
to the model’s internal metric, but is more useful to a user.
However, incorporating user feedback must be done cau-
tiously — we must inform users when their feedback con-
flicts with information obtained from the data, while still
maintaining a positive user experience.

This section presents two mechanisms of iBCM designed
to address these challenges: confidence-based user feed-
back and the explanation given to users by the machine
upon receiving this feedback.

3.2.1 Intuitive interaction medium

Principled interaction allows direct use of the internal rep-
resentation of the model as the medium for interaction.
Users interact with iBCM using a set of data points that
they have provided: representative data points from each

cluster (i.e., prototypes) and a set of their important fea-
tures (i.e., subspaces). The only assumption this interac-
tion makes on users is some degree of familiarity with the
data points that they provide. This type of medium mimics
the way that humans develop effective strategies for tactical
decision-making ([26, 11, 21]).

Using data points and their features as a medium for in-
teraction is particularly beneficial when operating within
a domain that incorporates high-dimensional complex data
points; for example, patent documentation, where inves-
tigating a single data point can become a daunting, time-
consuming task. The iBCM interaction medium makes this
simple. For example, if a user is more familiar with a par-
ticular data point or considers it to be especially important
(such as a milestone patent), they can incorporate their do-
main knowledge by suggesting that data point as a proto-
type, thereby anchoring clustering with this point. The user
can then suggest which features are important within that
prototypical document. The ability to control prototypes
and subspaces together allows for a simple yet atomic level
of user control.

Communication from iBCM to users also benefits from
this intuitive interaction medium. iBCM can use the same
method of representation for its communication with users
upon receiving feedback. (Section 3.2.3).

3.2.2 Incorporating user feedback into iBCM

The inference pipeline for incorporating user feedback in-
volves the following three steps: 1) listening to users —
updating cluster information variables ω or q according to
user feedback; 2) propagating user feedback — rearranging
cluster label variables z; and 3) listening to data — resam-
pling cluster labels z and/or w.

iBCM uses a simple mechanism to appropriately incorpo-
rate user feedback: asking the user about the degree of
confidence they have in their feedback. This extra infor-
mation is simple enough to not burden the interaction, yet
provides additional granularity for user control. Internally,
the confidence-specific inference pipeline enables iBCM to
appropriately adjust the impact of the feedback on the clus-
tering results.

A. Listen to users: update interacted latent variables
This section describes the different inference pipelines that
iBCM applies depending on the user’s confidence in their
feedback. Lower-confidence feedback influences the inter-
acted latent variable, q, which then impacts its child inter-
acted latent variables (i.e., prototypes, p and subspaces ω)
when they are resampled. Higher-confidence feedback di-
rectly influences the child interacted latent variables.

When a user provides feedback with low confidence (i.e., a
user reports the he/she is ‘somewhat confident’ about their
feedback), iBCM propagates this information to the prior

level of interacted latent variable, q, as follows:

qs,f =

{
min(1, Hq0) if low-confidence feedback on ωs,f
q0 otherwise,

where H is a constant greater than 1, representing higher
probability for qs,f , and q0 represents a constant hyperpa-
rameter (set to 0.8 in this work). Note that for BCM [20],
this q variable is a scalar hyperparameter that governs the
sparsity of the subspaces (e.g., the proportion of important
features of a prototype). In the iBCM, q is a matrix and
represents the sparsity of the subspaces of each prototype
within a cluster. In the generative story, qs,f represents user
feedback about how likely it is for feature f of cluster s to
be important — and, therefore, contained within subspaces.
During the inference step, variables qs,f , once updated by
user feedback, become the pseudo counts when updating
the multinomial distribution, which then makes ωs,f more
likely to be part of subspaces.

In the case of high-confidence user feedback (i.e., a user re-
ports that he/she is ‘very confident’ about their feedback),
iBCM honors feedback completely by updating the ω in-
teracted latent variable in Figure 1b as follows:

ωs,f =

{
user specified value if high confidence
ωs,f else.

In BCM, ωs,f is 1 if feature f is an important feature
for cluster s, and 0 otherwise. In iBCM, ωs,f is updated
to be identical to high-confidence feedback submitted by
the user. Doing so updates the characteristics of cluster
s, and therefore the clustering labels, z, in the inference
pipeline. In combination with re-inferring the z variable
(as described in Section C), this enables iBCM to learn a
new clustering based on features that have been identified
as important by the user.

Note that if a user is overconfident or provides careless
feedback, a hard reset of the interacted latent variable ω
may result in poor clustering results. In this case, iBCM
provides an explanation as to why the re-inferred cluster-
ing labels, z, are inconsistent with the user’s feedback (de-
scribed in Section 3.2.3). This explanation is intended to
offer insight for users and to improve future interaction.

B. Propagate user feedback to accelerate inference
One way to propagate user feedback is to update the in-
teracted latent variables and re-infer all other variables in
the model. However, unless the inference technique guar-
antees a globally optimal solution, doing so only offers lo-
cally minimal solutions that may not reflect the user’s feed-
back. In order to make sure that the new solution reflects
the feedback, we require a way to quickly move the current
solution to a solution space closer to the local minimum
that reflects the user’s feedback.

In order to move to a solution space closer to the user’s
feedback, iBCM propagates the feedback to the cluster la-
bels, z. In sampling-based inference, doing so effectively
moves solutions for all latent and interacted latent variables
to a more favorable solution space for the user. The ratio-
nale behind this procedure is that, unlike with an inference
procedure with a random start, we are not hoping for a ran-
dom walk through the solution space — we know where in
the solution space we want to be. Therefore, we can simu-
late the process of restarting Gibbs sampling multiple times
with random initialization and choosing the most favorable
instance with regard to the user’s feedback.

To do this, iBCM updates cluster labels, z, as follows:

zi,f =

{
s if xi,f = ps,f for interacted ωs,f
Uniform(1, S) otherwise,

where ps,f is the value of feature f of the prototype of
cluster s. For example, if user feedback indicates that fea-
ture 1 of cluster A is important (i.e., ωs,f is interacted),
then iBCM propagates this information by setting zi,f to
be s for all xi,f that has the same value of ps,f . All other
zi,f are sampled uniformly over all possible cluster labels,
1, . . . , S.

Note that this step serves to create a balance between user
feedback and patterns within the data. When re-inferring
variables (as described in Section C), iBCM starts from
a solution space that is closer to what the user wants, but
moves toward a solution that also reflects the data patterns.

C. Listen to data: re-infer all other variables When
a user provides low-confidence feedback, iBCM re-infers
subspaces, ω, and clustering labels, z, by performing Gibbs
sampling for only these variables. When the re-inferred in-
teracted variable, ω, is different from what users indicated
in a low-confidence case, iBCM points out where the in-
consistency comes from. For example, the model might
display:“You suggested that feature 1 is not important, but
I think it is important. If you feel strongly about this feed-
back, please provide the same feedback with high confi-
dence”.

For high-confidence user feedback, iBCM only re-infers
the clustering labels and completely honors the subspaces
specified by users.

Note that the above approach is one of many possible ways
to update interacted latent variables and re-infer other vari-
ables, and the approach can be customized. In Section 4,
we show that this approach successfully incorporates user
feedback.

3.2.3 Delivering feedback from the iBCM to users

The goal of providing explanations is to allow iBCM to
give feedback to users when the information from patterns

in the data conflicts with user-submitted feedback. Deliver-
ing these explanations opens up a communication channel
between iBCM and the user, allowing for more fluent col-
laboration.

iBCM generates explanations using information from two
sources: 1) cluster labels, z, and 2) the likelihood of pro-
totypes and subspaces. Both types of explanation are trig-
gered by the same condition: inconsistency between user
feedback, the resulting subspaces and cluster memberships.

Explanations using cluster labels One way to generate
explanations is to base them on the cluster assignments,
z, where zi,f represents the cluster assignment of feature
f of i-th data point. Note that in a mixture model, one
data point may have multiple cluster assignments for each
feature. This distribution of assignments is represented by
πi, a vector of length S.

Explanations are generated by analyzing data points with
the same maximum element of πi, as well as commonly
shared or not shared features among those points. For ex-
ample, if all assessed data points have the same value for
feature B, but different values for feature A, then the ex-
planation generated could read as follows: “101 items in
group 1 have different feature A values. However, most
of the items in this group have the same feature B value”.
This type of explanation provides common characteristics
of each cluster using data points within that cluster in a
“feed-forward” fashion, and represents how user input has
propagated to clustering labels. However, this method does
not directly offer “feedback” from iBCM — representa-
tions of internal states of the model indicating why certain
data points are assigned to certain clusters.

Explanations using examples and important features
In order to provide deeper insight into the internal state of
iBCM, explanations can also be provided using interacted
latent variables (i.e., prototypes and subspaces). Utilizing
variables from the model to generate explanations offers
more sophisticated information about the internal states of
the model and the clustering results. These interacted vari-
ables have been shown to be effective when communicat-
ing clustering results to humans [20]. To generate expla-
nations in this fashion, likelihoods are used as “scores” to
indicate how likely each feature is to belong to the sub-
space. For example: “In group 1, important features are
currently marked as feature A and feature B. However, fea-
ture C seems to be more important in this group”. Likeli-
hoods are defined as follows (directly from iBCM):

p(ωsj = b|qsj , psj , λ, φ,x, z, α)

∝

qsj ×

B(g(psj , 1, λ) + n(s,·,j,·))
B(g(psj , 1, λ))

b = 1

1− qsj ×
B(g(psj , 0, λ) + n(s,·,j,·))

B(g(psj , 0, λ))
b = 0,

Figure 2: A subset of data points. Each data point has two
features (top) or three features (bottom): shape, color and
pattern.

where gpsj ,ωsj ,λ(v) = λ(1 + c1[wsj=1 and psj=Θv]), Θv is a
particular feature value and B is the Beta function. n(s,·,j,v)

is the number of times that the jth feature of an observation
takes feature value v and that observation is assigned to
subspace cluster s (i.e., n(s,·,j,v) =

∑
i 1(zij = s, xij =

v)). Hyperparameter λ, c and α are assumed to be fixed.
These definitions follow BCM [20].

Note that providing this type of explanation is only pos-
sible with principled interactive machine learning, where
internal clustering, user interaction and explanations are all
done in the same representation without loss of informa-
tion [22]. This enables iBCM to articulate its internal states
to users in the same intuitive and consistent way.

4 Evaluation

We performed a human experiment, along with a proof-
of-concept study, to validate our approach. The experiment
was designed to measure quantifiable improvements in how
well final clustering performed with iBCM matches the in-
tent of the subject compared with clustering with BCM.
The proof-of-concept study was a demonstration of iBCM
in a real-world setting (computer science education).

4.1 Human subject experiment

The goal of this experiment is to obtain objective mea-
sures of iBCM’s performance. We designed an experiment
such that the quality of clustering obtained through interac-
tion can be evaluated while controlling for data character-
istics that can affect clustering results. In order to do this,
we constructed datasets that could be clustered in multiple
ways, all of which were equal in terms of likelihoods, with
the optimal ways to cluster according to internal metrics
also known a priori.

There were eight conditions in the experiment (shown in
Table 1), each of which had three variables: the number of
features, number of clusters and balance. The number of
features reflects the complexity of the domain. The data
points in the first four conditions had two features (shape

Question 1 2 3 4 5 6 7 8
of features 2 2 2 2 3 3 3 3
is balanced T F T F T F T F
of clusters 2 2 3 3 4 4 5 5

Table 1: Experiment design. Participants were randomly
assigned to one of four groups, with four participants per
group. “Is balanced” was identified as true (T) when there
were an equal number of data points with each feature, and
false (F) when there were more data points with a partic-
ular feature value than others (e.g., more red squares then
yellow squares).

and pattern, shown on the top of Figure 2), while points
in the remaining four conditions each had three features
(shape, pattern and color, depicted on the bottom of Fig-
ure 2). Each feature had two possible values; for exam-
ple, the color could be either red or yellow. The number
of clusters reflects the complexity of interaction between
iBCM and the user. When the number of clusters is even,
clustering can be performed such that the number of data
points falling into each cluster is exactly the same. If the
number of clusters is odd, some clusters must contain fewer
data points than others. The phrase “is balanced” was de-
fined as the presence of an equal number of data points
with the same feature values. For example, if there are an
equal number of red circles, yellow circles, red triangles
and yellow triangles, then “is balanced” is true. This factor
was intended to test how subjects’ interaction with iBCM
is influenced by the complexity of a dataset. Note that a
balanced dataset can have a different number of data points
that fall into an individual cluster due to the number of clus-
ters.

The experiment was designed using a Latin square to assign
the conditions to the 24 participants in a balanced manner.
Each subject answered nine questions, with the first consid-
ered a practice question that was not included in the analy-
sis.

The subjects performed the following steps for each ques-
tion: First, subjects were asked how they wanted to cluster
the data; for example, according to shape or color. Ran-
domly ordered data points were shown to the subjects at
this point. This step collected the ground truth for subjects’
intent, which would later be compared with the clustering
results following interaction with iBCM. We then showed
the clustering results of BCM, which essentially selects one
of the optimal ways to cluster the data points, as the dataset
was designed to have multiple, equally likely optimal solu-
tions. At the third step, subjects rated how well the clus-
tering they had been shown matched their preferred clus-
tering on a five-point Likert scale, with 1 indicating they
strongly disagreed and 5 that they strongly agreed that the
two clustering attempts matched. Next, subjects interacted
with iBCM to provide their feedback and customize the

Figure 3: Graphical user interface for interaction. Each row
represents a cluster. Prototypes of each cluster are shown
on the left. The numbers below them are data ID. Sub-
spaces are marked as stars. Each data point has three fea-
tures: shape, color and pattern.

clustering. Finally, when subjects indicated that they were
done, they were asked to rate how well the final clustering
matched with their preferred clustering on the same five-
point Likert scale. All participants took mandatory breaks
after every other question in order to manage fatigue. The
goal of iBCM is to achieve stronger subject agreement that
their clustering results matched their preference following
interaction with the model. Note that according to the
model’s internal metric, the quality of clustering at step 2
is likely to be equal to that of the final clustering.

Figure 3 shows the interface used for this experiment. In
this interface, each row represents a cluster, where the ex-
ample that best represents the cluster (i.e., prototype) is
shown on the left of each row. The name of each data point
is simply a number depicted below each point. Features
(denoted with a check mark) and important features (de-
noted with a check mark and star) are depicted to the right
of each prototype. For example, on the second row, the data
number 74 has the ‘round pattern’, ‘triangle’ and ‘yellow’
features, but the important features for characterizing this
cluster are ‘yellow’ and ‘triangle.’

Subjects were able to provide feedback using this interface
in two ways: by clicking a check mark to designate a fea-
ture as important (when clicked, a check mark changed to
a check mark with a star) or unimportant, and by clicking
one of the items marked as “other items in the group” in or-
der to promote it to become a prototype of a cluster. When
an item was clicked, subjects were prompted with options
to designate it as a prototype of any of the clusters.

When subjects provided either type of feedback, the inter-
face asked them to indicate their degree of confidence in
that feedback (i.e., ‘somewhat confident’ or ‘very confi-
dent’). All feedback was cached in iBCM, which incor-
porated and recomputed clustering data points only when
subjects clicked the ‘rerun’ button. Subjects were allowed

to provide as much feedback as they wanted before hitting
‘rerun.’ They were able to click the ’rerun’ button a maxi-
mum of 50 times; however, all subjects were satisfied with
their clustering results before reaching this number of in-
teractions.

Question 1 z = 6.10, p < .001
Question 2 z = 6.09, p < .001
Question 3 z = 6.13, p < .001
Question 4 z = 6.08, p < .001
Question 5 z = 6.09, p < .001
Question 6 z = 6.08, p < .001
Question 7 z = 6.11, p < .001
Question 8 z = 6.11, p < .001

Table 2: Human subject experiment results

For all conditions, regardless of the number of features,
number of clusters or whether the dataset was identified as
balanced or not, iBCM achieved significantly better agree-
ment with the users’ intentions, as shown in Table 2. The
complexity of the domain, the interaction with iBCM or of
the dataset did not influence the effectiveness of the model.
We used the two-sided Wilcoxon signed rank test for paired
observations to assess the statistical significance of the ob-
served differences in agreement before and after interac-
tion with iBCM. Unlike a t-test, the Wilcoxon signed rank
test does not assume normal data distribution. This experi-
ment validates that the subjects achieved significantly more
satisfying results using iBCM compared with BCM, even
though the results from BCM provided equally good solu-
tions according to the model’s internal metric. In the next
section, we present a real-world implementation of a sys-
tem utilizing iBCM for further validation.

4.2 A demonstration of the iBCM system for online
education

Here, we present a proof-of-concept implementation of
iBCM for a real-world application: introductory program-
ming education. Our institute, for example, offers several
courses that teach basic programming to hundreds of stu-
dents simultaneously. It can take hours for teachers to grade
exams for courses of this size, and many teachers generate
grading rubrics for each problem based on a small random
sample of student solutions. Rather than depend on such a
sample, we implemented a system for introductory Python
programming teachers that uses iBCM as the main compu-
tational engine for grouping. The system utilizes iBCM to
help teachers group their students’ assignments for grading
and provide helpful comments for the students. We invited
teachers of introductory Python computer language classes
(i.e., domain experts) to interact with the system to clus-
ter students’ assignment submissions, to show that using
iBCM allows the users to easily explore variations across
hundreds of student solutions before designing a grading

(a) The raw data

(b) iBCM with features extracted from using OverCode

Figure 4: Interface combining iBCM and OverCode to help
teachers grade and provide useful feedback for students

rubric or composing feedback for students.

Education is one of the many domains for which iBCM
could be useful — domains where clustering results must
reflect both patterns within data and the knowledge of do-
main experts. These experts — in this case, teachers —
have accumulated years of knowledge that the clustering
algorithm can leverage to make the clustering results more
effective. For example, each teacher may have a different
style of grading and providing feedback — some may fo-
cus on the key concepts presented in the class, while others
may focus on students’ coding practices, such as the use
of good variable names and comments, as much as under-
standing the key concepts. Systems that can simplify the
grouping of assignments are particularly useful for mas-
sive open online courses (MOOCs). Reviewing thousands
of students’ assignments is a very time-consuming task, es-
pecially when also trying to provide constructive feedback
on an individual level. iBCM allows teachers to incorporate
their domain knowledge in order to achieve the grouping of
assignments that is most effective for their task.

However, building a complete system for use in engineer-
ing education introduces an additional challenge into the
interactive machine learning system: processing raw data.
If keywords within the raw code data are simply used as

features, they may lose important functional similarities
and differences. For example, a small feature difference
in keywords may not change the functionality of a state-
ment, as would be the case with the use of different vari-
able names. However, another small difference in features,
such as using for versus while in Python, may result in
potentially large differences in functionality depending on
the context. Processing raw data requires an understanding
of the structure of the code, as well as language-specific
knowledge.

We use a method called OverCode [14] to extract rele-
vant features for iBCM. OverCode uses both static and
dynamic analysis to combine similar solutions that per-
form the same computations, but may use different vari-
able names or statement order. OverCode was developed
to help MOOC instructors explore variations among stu-
dent solutions and provide appropriate feedback to a large
number of students. It has been shown to allow teachers
to more quickly develop a high-level view of students’ un-
derstanding and misconceptions, as well as provide feed-
back that is relevant for more students [14]. Note that the
output codes from OverCode are both human-readable and
executable (snippets are shown in Figure 4b). OverCode
renames variables to reflect their behavior. It find com-
mon variables that behave the same way in many solutions
run on the same test case, and then renames those common
variables to most popular name. Inputs to iBCM are binary
vectors indicating the existence of the keywords, including
renamed variables and language-specific keywords, such as
listA, assert, while.

Figure 4b depicts the interface that subjects used to inter-
act with iBCM. On the left, it shows prototypical examples
(one of the students’ submissions) for each cluster. The
parts surrounded by red rectangles indicate subspaces (im-
portant features). When a prototype is selected — high-
lighted in blue, as in the last row in Figure4 — assignments
that fall into that cluster are depicted on the right.

We conducted a pilot study to gather more qualitative
feedback about iBCM. In this study, subjects were given
three conditions: raw code submissions (static interface, as
shown in Figure 4a), submissions processed using Over-
Code (static interface) and OverCode utilizing iBCM (in-
teractive interface, shown in Figure 4b). The different con-
ditions served as reference points for the subjects to give
more qualitative feedback about iBCM. Each subject re-
ceived four different domains (problem sets), with the first
domain considered just for practice and not included in
analysis. Three introductory Python classes teachers were
invited to participate and functioned as domain experts.
The order in which conditions were shown to a participant
was randomly selected. The teachers were asked to cre-
ate a grading rubric and provide helpful comments for the
students.

The strength of iBCM particularly stood out in providing
a better exploration tool for the teachers to discover sub-
missions with different approaches to solve assignments.
In a post-experiment questionnaire, subjects reported that
they were able to provide feedback for a larger portion
of students’ submissions using iBCM than with the other
two conditions. One participant noted that, “Prototype 1 is
a good example. Now I found someone who uses [some
other feature]...”. Subjects also said that using iBCM pro-
vided a good starting point and that the ability to interact
with the model allowed them to modify a cluster as they
chose. “This is cool,” one commenter said. ”A lot of these
people are consistent with the prototype. I think this is actu-
ally a pretty good prototype, so I’ll keep it.” Another noted
that, “Given three prototypes to start off with gave me a
starting point, instead of endless stream. And if I didn’t
like one of the prototypes I can go search for another one”.
The usefulness of examples rather than keywords as a com-
munication tool was also noted by some subjects. One par-
ticipant said that the keyword given in the context of the
code enabled her to process what students were trying to
do, which in turn helped her to select a keyword from that
code. Another commented, “I enjoyed being able to rapidly
pick keywords and update clusters to see how common
they were”. One participant who observed iBCM before
the other two conditions said that “In other conditions [raw
data and OverCode], I did find myself sometimes wishing I
could click on a keyword to see how common it was, after
being able to do that in condition 1 [iBCM]”.

Over the course of our experiment, we also encountered
challenges that should be addressed when making a sys-
tem for use in this complex domain. First, there is a need
to communicate the probabilistic nature of the clustering
method; even a single outlier within the cluster caused con-
fusion for subjects. This could be addressed by establish-
ing the appropriate expectations about the benefits of the
randomness of the tool for exploration — in other words,
introducing the model as a tool for ‘discovery’ rather than
‘organization’. Subjects also asked for richer features: In-
stead of keywords, they wanted to interact with higher-level
features, such as the structure of the code. Extracting such
features is an area of active research [25], and doing so
would increase the productivity of the tool.

5 Conclusion

In this work, we introduced an interactive clustering model
that can provide effective results for the user. iBCM com-
municates with users to incorporate their feedback into the
clustering model and share its internal states. We showed
that users were statistically significantly more in agreement
that the final clustering matches with their preferred way to
cluster data points when using iBCM during human exper-
iments. We also demonstrated iBCM’s potential real-world
use by implementing a system to help computer science

teachers to grade and provide feedback to their students.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. AI communications, 1994.

[2] S. Amershi, M. Cakmak, B. Knox, and T. Kulesza.
Power to the people: The role of humans in interactive
machine learning. AI Magazine.

[3] S. Amershi, J. Fogarty, A. Kapoor, and D.S. Tan. Ef-
fective end-user interaction with machine learning. In
AAAI, 2011.

[4] S. Amershi, J. Fogarty, and D. Weld. Regroup: In-
teractive machine learning for on-demand group cre-
ation in social networks. In SIGCHI. ACM, 2012.

[5] S. Amershi, B. Lee, A. Kapoor, R. Mahajan, and
B. Christian. CueT: human-guided fast and accurate
network alarm triage. In SIGCHI. ACM, 2011.

[6] M.F. Balcan and V. Blum. Clustering with interactive
feedback. In Algorithmic Learning Theory. Springer,
2008.

[7] R. Bekkerman, H. Raghavan, J. Allan, and K. Eguchi.
Interactive clustering of text collections according to
a user-specified criterion.

[8] D.M. Blei, T.L. Griffiths, and M.I. Jordan. The nested
chinese restaurant process and bayesian nonparamet-
ric inference of topic hierarchies. JACM, 2010.

[9] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet
allocation. JMLR, 2003.

[10] A.J. Chaney and D.M. Blei. Visualizing topic models.
In ICWSM.

[11] M.S. Cohen, J.T. Freeman, and S. Wolf. Metarecogni-
tion in time-stressed decision making: Recognizing,
critiquing, and correcting. Human Factors, 1996.

[12] C. Fraley and A.E. Raftery. How many clusters?
which clustering method? answers via model-based
cluster analysis. The Computer Journal, 1998.

[13] A. Glass, D.L. McGuinness, and M. Wolverton. To-
ward establishing trust in adaptive agents. In IUI.
ACM, 2008.

[14] E.L. Glassman, J. Scott, R. Singh, and R.C. Miller.
OverCode: visualizing variation in student solutions
to programming problems at scale.

[15] J. Grimmer and G. King. General purpose computer-
assisted clustering and conceptualization. PNAS,
2011.

[16] D. Guo, D.J. Peuquet, and M. Gahegan. ICEAGE: In-
teractive clustering and exploration of large and high-
dimensional geodata. GeoInformatica, 2003.

[17] J.L. Herlocker, J.A. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. In CSCW,
2000.

[18] T. Hofmann. Probabilistic latent semantic indexing.
In ACM SIGIR, 1999.

[19] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive
optimization for steering machine classification. In
Human Factors in Computing Systems. ACM, 2010.

[20] B. Kim, C. Rudin, and J.A. Shah. The Bayesian Case
Model: A generative approach for case-based reason-
ing and prototype classification. In NIPS, 2014.

[21] G.A. Klein. Do decision biases explain too much.
HFES, 1989.

[22] P. Krafft, J. Moore, B. Desmarais, and H.M. Wal-
lach. Topic-partitioned multinetwork embeddings. In
NIPS, 2012.

[23] H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park. iVis-
Clustering: An interactive visual document clustering
via topic modeling. In Computer Graphics Forum.
Wiley Online Library, 2012.

[24] J.R. Lloyd, D. Duvenaud, R. Grosse, J.B. Tenen-
baum, and Z. Ghahramani. Automatic construction
and natural-language description of nonparametric re-
gression models. In AAAI, 2014.

[25] G.C. Murphy and D. Notkin. Lightweight lexical
source model extraction. TOSEM, 1996.

[26] A. Newell and H.A. Simon. Human problem solving.
Prentice-Hall Englewood Cliffs, 1972.

[27] K. Patel, N. Bancroft, S.M. Drucker, J. Fogarty, A.J.
Ko, and J. Landay. Gestalt: integrated support for
implementation and analysis in machine learning. In
UIST. ACM, 2010.

[28] P. Pu and L. Chen. Trust building with explanation
interfaces. In IUI. ACM Press, 2006.

[29] S. Slade. Case-based reasoning: A research
paradigm. AI magazine, 1991.

[30] N. Tintarev and J. Masthoff. Designing and evaluat-
ing explanations for recommender systems. In Rec-
ommender Systems Handbook. Springer, 2011.

[31] M. Ware, E. Frank, G. Holmes, M. Hall, and I.H.
Witten. Interactive machine learning: letting users
build classifiers. International Journal of Human-
Computer Studies, 2001.

