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Effects of Charge on Osmotic Reflection Coefficients of Macromolecules
in Fibrous Membranes

Gaurav Bhalla and William M. Deen*
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT A model based on continuum hydrodynamics and electrostatics was developed to predict the combined effects of
molecular charge and size on the osmotic reflection coefficient (so) of a macromolecule in a fibrous membrane, such as a biolog-
ical hydrogel. The macromolecule was represented as a sphere with a constant surface charge density, and the membrane was
assumed to consist of an array of parallel fibers of like charge, also with a constant surface charge density. The flow was
assumed to be parallel to the fiber axes. The effects of charge were included by computing the electrostatic free energy for
a sphere interacting with an array of fibers. It was shown that this energy could be approximated using a pairwise additivity
assumption. Results for so were obtained for two types of negatively charged fibers, one with properties like those of glycosami-
noglycan chains, and the other for thicker fibers having a range of charge densities. Using physiologically reasonable fiber spac-
ings and charge densities, so for bovine serum albumin in either type of fiber array was shown to be much larger than that for an
uncharged system. Given the close correspondence between so and the reflection coefficient for filtration, the results suggest
that the negative charge of structures such as the endothelial surface glycocalyx is important in minimizing albumin loss from
the circulation.
INTRODUCTION

Polymeric hydrogels containing networks of proteins,

glycosaminoglycans (GAG), and other biopolymers, and

consisting mostly of water, are present throughout the

body. They can be viewed as arrays of fibers with fluid-filled

interstices. The fibers may be single polymeric chains or

multichain aggregates, and their arrangement may be highly

ordered or relatively random. Examples of such fibrous

materials include the glycocalyx coatings of cells, junctional

complexes in endothelia and epithelia, basement mem-

branes, and interstitial matrices. The resistances of fibrous

materials to the transport of water and solutes impact

numerous physiological functions, often controlling micro-

vascular and other permeability properties and generally

affecting the extracellular movement of nutrients, cytokines,

and therapeutic drugs. Often, the fibers have a net electrical

charge. We are concerned here with osmotic flow through

such materials and, less directly, the convective transport

of macromolecules. In particular, we are interested in the

effects of molecular charge, as well as molecular size, on

osmosis and convection through membranes consisting of

fibrous hydrogels. Our focus is on macromolecular solutes

(such as globular proteins), which are large enough and rigid

enough to be viewed as hydrodynamic particles.

The ability of a solute to induce an osmotic flow is

measured by its osmotic reflection coefficient (so). When a

single solute is present, the transmembrane volume flux (or

superficial fluid velocity, v) is related to the mechanical

(DP) and osmotic (DP) pressure differences as
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v ¼ KðDP� soDPÞ; (1)

where K is the hydraulic permeability. In a membrane with

pores or interfiber spaces small enough to completely

exclude the solute, so ¼ 1 and the full osmotic potential of

the solute is realized; if the spaces are so large that the

membrane does not discriminate between solute and water

molecules, so ¼ 0 and osmosis is absent. In general, there

is intermediate behavior, such that 0 % so % 1. For solutions

with multiple solutes, Eq. 1 can be generalized by replacing

soDP by a sum of such terms.

The ability of a membrane to sieve a solute in a filtration

process is measured by the reflection coefficient for filtration

(sf). If transmembrane convection is dominant and diffusion

is negligible (which requires that Pe, the Peclet number

based on membrane thickness, be large), the solute flux

(N) is given by

N ¼ C0v
�
1� sf

�
ðPe >> 1Þ; (2)

where C0 is the concentration at the upstream membrane

surface (1). As with the osmotic reflection coefficient, sf¼ 1

if the solute is completely excluded and sf ¼ 0 if the

membrane is unselective. The correspondence between so

and sf exists also for intermediate situations. That is, hydro-

dynamic models for osmosis and filtration in porous

membranes have shown that so y sf for all combinations

of solute and pore size, and solute and pore charge (2–5).

Although such theories for fibrous membranes are less well

developed, it is reasonable to assume that the two reflection

coefficients again will be equal, or nearly so. For flow

parallel to an array of regularly spaced fibers, and in the

absence of charge effects, the equality has been shown to

be exact, provided that the tendency of a confined, freely
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suspended sphere to lag somewhat behind the local fluid

velocity is ignored (6). Thus, although the theory developed

here is for so, the results provide insight also into the effects

of molecular charge on sf. Because the hydrodynamic prob-

lems that must be solved to predict sf tend to be much more

difficult than those needed to estimate so (7), computing so

is a logical first step in examining hindered convection in

complex geometries such as fiber arrays.

The objective of this work was to evaluate so for charged

spheres in membranes consisting of regular arrays of fibers

of like charge. As in the analysis of Zhang et al. (6) for

neutral spheres and fibers, the flow was assumed to be

parallel to the fiber axes. An important subproblem was

how to estimate the change in electrostatic energy associated

with placing a charged sphere inside a periodic array of

charged fibers. This energy was evaluated using continuum

double-layer calculations for a sphere interacting with a

single charged cylinder, together with a pairwise additivity

approximation. Pairwise additivity of energies was tested

using exact results generated for a sphere interacting with

two cylinders, and found to work reasonably well. The elec-

trostatic energies were combined with a viscous flow model

to compute so as a function of the fiber volume fraction, fiber

and sphere charge densities, and fiber and sphere size.

THEORY

Model geometry

Long fibers, aligned with the z axis, were assumed to be

arranged on a hexagonal lattice. Fig. 1 shows a central fiber

surrounded by an inner ring of six nearest neighbors and a

second ring of twelve next-nearest neighbors. Certain sym-

metry planes are indicated by dashed lines. The hexagonal

pattern was assumed to repeat indefinitely. Also shown

(solid circle) is a spherical macromolecule positioned within

the inner ring. The flow was assumed to be normal to the

plane of the figure (in the z direction).

Fig. 2 is an enlargement of the region near the central fiber,

with the key geometric parameters shown. The sphere radius

is a, the fiber radius is b, and the surface-to-surface fiber

separation is H. Cylindrical radial and angular coordinates,

based on the central fiber, are r and q. Because of the

symmetry, it was sufficient to consider only 0 % q % p/6.

Following Happel (8) and Zhang et al. (6), in the flow calcu-

lations the geometry was simplified to an annulus by replac-

ing the hexagonal boundary by a circle of radius R. This flow

radius was chosen to maintain the same open area per fiber.

The relationship among R, b, and H is

R ¼ 31=4ffiffiffiffiffiffi
2p
p ð2b þ HÞ: (3)

The largest sphere that will fit anywhere within such an array

has a radius
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am ¼
2b þ Hffiffiffi

3
p � b: (4)

Thus, so¼ 1 for a R am. A sphere with Hþ b – R < a < am

will fit at some positions, but will have its center limited to

angular positions such that 0 % q % qm, where

qm ¼
p

6
� cos�1

"
r2 þ ð2b þ HÞ2�ða þ bÞ2

2rð2b þ HÞ

#
: (5)

FIGURE 1 Parallel fibers arranged on a hexagonal lattice. The fibers are

shaded and certain symmetry planes are indicated by the dashed lines. A

spherical macromolecule (solid) is shown near the central fiber.

FIGURE 2 Enlargement of the hexagonal fiber lattice, showing a central

fiber and two nearest neighbors (shaded), a spherical macromolecule (solid),

local cylindrical coordinates, and key lengths. The surface r ¼ R is the outer

boundary of the annular region used in the osmotic flow calculations, with R

chosen to yield the same open area per fiber as in the hexagonal array.
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This maximum angle is affected, of course, by the radial

position of the sphere center (r). Smaller spheres (a < H þ
b – R) are restricted sterically only by the central fiber. To

fit, it is necessary only that their centers be positioned at

r > a þ b.

Physical assumptions

The membrane thickness (L, also the fiber length) was

assumed to greatly exceed R, which has two consequences.

First, the resistances to water and solute transport across

the interfaces at z ¼ 0 and z ¼ L will be negligible relative

to those within the fiber matrix, allowing thermodynamic

equilibrium to be assumed between the internal and external

solutions at those boundaries. This is the usual assumption

made in analyzing membrane transport processes. Second,

the lubrication approximation can be applied to the equations

of motion, as in the analogous problem involving long,

cylindrical pores (9). This greatly simplifies the hydrody-

namic problem.

The mobile macromolecules were modeled as spheres

with a specified surface charge density; the surface charge

density of the fibers was also constant. The electrolyte was

assumed to consist of univalent anions and cations, each of

negligible size relative to the macromolecule or fibers. The

macromolecule solutions were assumed to be dilute enough

to make solute-solute interactions negligible. The bulk elec-

trolyte concentrations on the two sides of the membrane were

taken to be equal, so that osmosis results only from an imbal-

ance in macromolecule concentrations. No restrictions were

placed on the Debye length or surface charge densities, but to

avoid situations where electrostatic interactions might cause

macromolecule adsorption, results were obtained only for

particles and fibers of like charge.

Following the approach in Anderson and Malone (9) and

subsequent models of osmotic flow through membranes

that permit solute entry (3–6), the macromolecule was

assumed to create (or influence) the flow only via its effect

on the time-averaged pressure profile inside the membrane.

As will be seen, steric or electrostatic exclusion of sphere

centers from the vicinity of a fiber leads to pressure varia-

tions within the r-q plane of Fig. 2. The magnitude of those

variations depends on the macromolecule concentration,

and if an external concentration difference is maintained,

the macromolecule concentration depends on z (as well as

r and q). In that manner, solute-fiber interactions, combined

with an imposed concentration difference, create the axial

gradients in mechanical pressure that are responsible for

the osmotic flow. Under the open-circuit conditions typical

of membrane filtration, a streaming potential must develop

to maintain zero net current. As shown for osmosis in

charged pores (5), the body force associated with this

potential gradient may reduce K significantly, but its effect

on so is negligible. Thus, only the pressure gradients are

important.
Momentum equation

Using the lubrication approximation and neglecting the elec-

trical body force, the axial momentum balance is given by

m

R2

�
1

r

v

vr

�
r

vvz

vr

�
þ 1

r2

v2vz

vq2

�
¼ vP

vz
; (6)

where r (¼ r/R) is the dimensionless radial coordinate,

vz(r, q) is the axial velocity component, m is the viscosity,

and P(r, q, z) is the pressure. At a fixed location in the fiber

matrix, momentum transfer will be time-dependent, accord-

ing to whether a particle (macromolecule) happens to be in

the vicinity. Thus, vz and P are interpreted as time-averaged

quantities.

The reason that vz and P depend on q, even for the simpli-

fied annular geometry, is that the macromolecule interacts

electrostatically not just with the central fiber, but also the

surrounding ones. Those interactions, especially with the

first ring of fibers, make the macromolecule concentration

strongly dependent on angular position. In an uncharged

system, as in Zhang et al. (6), the q-dependence can be ne-

glected to good approximation. In the present problem, the

annular symmetry can still be exploited if each term in

Eq. 6 is averaged over the relevant range of angles (0 % q %
p/6). This removes the q-dependent viscous term, giving

m

R2r

v

vr

�
r

v�vz

vr

�
¼ v�P

vz
: (7)

The overbars denote averages over q. For example,

�Pðr; zÞ ¼ 6

p

Zp=6

0

Pðr; q; zÞdq: (8)

The boundary conditions for �vz are the usual no-slip and

symmetry conditions for the annular approximation (6,8),

namely, �vz ¼ 0 at r ¼ b and v�vz=vr ¼ 0 at r ¼ R.

Pressure distribution

By analogy with the situation for long pores (4), it is

assumed that P�P is constant within any r-q plane. Letting

PR and PR denote values at r ¼ R, it follows that

�Pðr; zÞ ¼ �PRðzÞ þ �Pðr; zÞ � �PRðzÞ: (9)

The osmotic pressure includes contributions from the small

ions as well as the macromolecule, and is given by

�Pðr; zÞ ¼ RgT½�cþ ðrÞ þ �c�ðrÞ þ �Cðr; zÞ�; (10)

where cþ, c�, and C are the molar concentrations of the small

cation, small anion, and macromolecule, respectively, and Rg

is the gas constant. For macromolecules, the concentration at

a particular point is defined as that of the sphere centers.

Although Eqs. 9 and 10 then imply a physically unrealistic

discontinuity in pressure at a distance a (one sphere radius)
Biophysical Journal 97(6) 1595–1605



1598 Bhalla and Deen
from any fiber surface, the corresponding error in the calcu-

lation of so appears to be negligible (4). Implicit in Eq. 10 is

that the solution is ideal.

Macromolecule concentration

As for long pores (1), the time-averaged macromolecule

concentration will be a separable function, such that

Cðr; q; zÞ ¼ f ðzÞgðr; qÞ ¼ f ðzÞexp½ � Eðr; qÞ=kT�; (11)

where E is the solute-fiber interaction energy per molecule

and g is the corresponding Boltzmann factor. Steric exclu-

sion was modeled by setting E¼N within one sphere radius

of a fiber, so that C ¼ 0 for either r < a þ b or q > qm.

The dimensionless sphere and fiber radii are a ¼ a/R and

b ¼ b/R, respectively. The evaluation of E for accessible

sphere positions is described later. To calculate so, it is

unnecessary to evaluate f(z). As will be seen, it is sufficient

to require that f(0) � f(L) ¼ C1 � C2 ¼ DC, where C1 and

C2 are the external concentrations at the two sides of the

membrane.

Velocity profile

Because of the discontinuity in C at r ¼ aþ b, Eq. 7 was

integrated separately for b < r < a þ b (the core region

near the central fiber, where �vz h w) and a þ b < r < 1

(the periphery, where �vz h u). With pressures and concentra-

tions evaluated as just described, the differential equation for

the periphery is

1

r

v

vr

�
r

vu

vr

�
¼ R2

m

�
d�PR

dz
þ RgT

df

dz
ð�gðrÞ � �gð1ÞÞ

�
(12)

Integrating once, and applying the symmetry condition at

r ¼ 1, gives

r
vu

vr
¼ R2

2m

�
d�PR

dz
� RgT

df

dz
�gð1Þ

��
r2 � 1

�

� R2RgT

m

df

dz

Z1

r

x�gðxÞdx: (13)

The differential equation for the core is the same as Eq. 12,

except without the �gðrÞ term. A first integration there yields

r
vw

vr
¼ R2

2m

�
d�PR

dz
� RgT

df

dz
�gð1Þ

� �
r2 � 1

�

� R2RgT

m

df

dz

Z1

aþ b

x�gðxÞdx; (14)

where Eq. 13 was used to ensure that the shear stress is

continuous at r ¼ a þ b.

A second integration for the core, and application of the

no-slip condition at the fiber, gives

Biophysical Journal 97(6) 1595–1605
wðr; zÞ ¼ �R2

4m

�
d�PR

dz
� RgT

df

dz
�gð1Þ

��
b2 � r2 þ 2lnðr=bÞ

�

� R2RgT

m

df

dz
lnðr=bÞ

Z1

aþ b

x�gðxÞdx:

(15)

Another integration for the periphery, and matching the

velocities at r ¼ a þ b, completes the solution for the

velocity profile:

uðr; zÞ ¼ �R2

4m

�
d�PR

dz
� RgT

df

dz
�gð1Þ

��
b2 � r2 þ 2lnðr=bÞ

�

� R2RgT

m

df

dz

Zr

aþ b

dy

y

Z1

y

x�gðxÞdx

� R2RgT

m

df

dz
ln

�
a þ b

b

� Z1

aþ b

x�gðxÞdx:

(16)

Although the concentrations of the small ions do not appear

in either velocity expression, the electrolyte concentration

influences the electrostatic energy (via the Debye length),

and therefore affects the function �gðrÞ.
The integrals in Eqs. 15 and 16 were evaluated numeri-

cally, using a shape-preserving spline interpolation to

approximate the integrands. After the integrands were tabu-

lated, the MATLAB function ‘‘Fit’’ was employed (The

MathWorks, Natick, MA), using the ‘‘spline interpolant’’

option. The integration was done then using Simpson’s

Rule, typically with 100 intervals.

To calculate so, the velocity given by Eqs. 15 and 16 was

integrated piecewise over r to find the mean velocity (U),

which is independent of z. This integration was done numer-

ically, as just described. The mean velocity is a linear func-

tion of the gradients d�PR=dz and df/dz. Thus, integration over

z relates U to the differences in �PR and f between z ¼ 0 and

z ¼ L. When those differences are expressed in terms of the

external pressure differences (DP and DP), the velocity-

pressure relationship is of the same form as Eq. 1, permitting

identification of so. The changes in �PR and f are related to the

external pressure differences by

�PRð0Þ � �PRðLÞ ¼ DP� DP½1� �gð1Þ�; (17)

RgT½f ð0Þ � f ðLÞ� ¼ DP: (18)

Equations 17 and 18 follow from the choice of r ¼ 1 (or

r ¼ R) as the reference point for radial pressure variations

(Eq. 9), along with the separable form of the concentration

profile (Eq. 11). They are analogous to relationships used

previously for charged, cylindrical pores (5). The one

unknown function remaining to be discussed is �gðrÞ.



Osmotic Reflection Coefficients 1599
Electrostatic potential energy

The energy E(r,q) was needed to compute �gðrÞ. This is the

electrostatic free energy associated with moving a charged

sphere from bulk solution to a specified position in the fiber

matrix. In a continuum double-layer model, it will be

obtained most accurately by solving the nonlinear Poisson

Boltzmann equation. However, for analogous calculations

in cylindrical pores, the Boltzmann factors obtained from

nonlinear and linearized formulations were found to be

nearly identical (5). This was true even for maximum values

of jJj exceeding unity, where J is the electrical potential

scaled by the thermal voltage (RgT/F, where F is Faraday’s

constant) . Because the linearized (or Debye-Hückel) form

of the Poisson-Boltzmann equation yields much simpler

results, it was used in this work. Energies were obtained

for a system consisting of a sphere and a single fiber, and

a pairwise additivity approximation was invoked to estimate

the energy for the actual multifiber system. That approxima-

tion was tested by computing exact results for a sphere inter-

acting with two fibers in either of two configurations, as will

be described.

In each of the energy calculations the dimensionless

potential was assumed to be governed by the linearized

Poisson Boltzmann equation,

V2J ¼ t2J; (19)

where V2 is the dimensionless Laplacian operator and t is

the geometric length scale divided by the Debye length. If

R is chosen as the geometric length scale, then

t ¼ R

�
2F2cN

3RgT

�1=2

¼ kR; (20)

where 3 is the permittivity of the solution and k is the inverse

of the Debye length. For a system consisting of a sphere and

one or more fibers, each at constant surface charge density,

the boundary conditions are

�n , VJ ¼ qs ¼
QsRF

3RgT
; (21)

�n , VJ ¼ qf ¼
QfRF

3RgT
; (22)

where n is a unit normal pointing into the solution, qs and qf

are the dimensionless surface charge densities of the sphere

and fiber, respectively, and Qs and Qf are the corresponding

dimensional values (in C/m2). The permittivities of the

sphere and fiber have been neglected and R has been used

again as the geometric length scale. Of course, R is the

length scale only for the osmotic flow problem (Fig. 2).

In the various electrostatic problems it was replaced by

another length, as appropriate, depending on the particular

geometry (isolated sphere, isolated fiber, sphere with one

fiber, etc.).
Once the potential was computed, the electrostatic energy

associated with a given object or collection of objects was

calculated as

Ei ¼
RgT

2F

Z
Si

QiJdS; (23)

where the integration is over all surfaces (10). Then, E was

computed as an energy difference. For a sphere and a single

fiber,

E ¼ Esf � Es � Ef ; (24)

where Esf, Es, and Ef are obtained by applying Eq. 23 to the

two-body problem, an isolated sphere, and an isolated fiber,

respectively. For a sphere and two fibers,

E ¼ Esff � Es � Eff ; (25)

where Esff is the energy for the three-body problem and Eff is

that for a pair of fibers. In each case, E is the energy change

associated with placing a sphere among a prepositioned set

of fibers.

Energies for a sphere and a single fiber were obtained

previously using three-dimensional finite element solutions

of Eq. 19, and the results summarized in a correlation (11).

To obtain more accurate results for certain conditions, we

computed additional sphere-fiber energies. This was done

with COMSOL (COMSOL, Stockholm, Sweden), using

Lagrange quadratic basis functions and a stationary direct

solver (UMFPACK). The adaptive mesh refinement feature

was used. In this work the half-length of the fiber was trun-

cated at six Debye lengths. This yielded values of E for ta

< 0.6 which are significantly more accurate than those

obtained previously, where the half-length was fixed at five

sphere radii. The reason for the improvement is that, if the De-

bye length is large enough (t small enough), five sphere radii

will not include the entire length of fiber where the surface

potential is perturbed noticeably. For ta > 0.6, the accuracy

of the previous results for E was confirmed. The point of

transition (ta ¼ 0.6) corresponds to a cylinder half-length

in the previous study equal to three Debye lengths; to be

conservative, six Debye lengths were used in this work.

For the multifiber osmotic flow geometry, the electrostatic

interactions between the sphere and the fiber matrix were

assumed to be pairwise-additive. That is, E was approxi-

mated as the sum of the energies for individual sphere-fiber

interactions. To test this assumption, exact values of E were

computed for the arrangements in Fig. 3, each involving a

sphere and two fibers. In what we term the perpendicular

geometry (Fig. 3 A), the plane passing though the center of

the sphere and the nearer fiber is perpendicular to that

through the two fiber centers. The sphere-fiber separations

are H1 and H2 and the fiber-fiber separation is H. Results

were obtained for various values of the dimensionless sepa-

rations (kH1, kH2, and kH) and dimensionless sphere radius

(a/b). In the other geometry (Fig. 3 B), the sphere is
Biophysical Journal 97(6) 1595–1605
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equidistant from the two fibers. The fiber separation again is

H, and the sphere center is a distance H3 from the plane

passing through the fiber centers. Results were obtained for

various values of kH, kH3, kb, and a/b. A distinction was

made between collinear arrangements (H3 ¼ 0) and those

forming an isosceles triangle (H3 s 0). For all the cases in

Fig. 3, the computational domain was bounded by a cylin-

drical surface of radius R, at which the potential was set to

zero. That radius was chosen so that the bounding surface

was at least six Debye lengths from that of any object. Like-

wise, normal to the plane of Fig. 3, the half-length of the

domain was chosen as six Debye lengths. This yielded ener-

gies that were independent of both the outer radius and half-

length, to within 2%. The energies for the two geometries

were obtained using COMSOL, as described above. Those

exact results were compared with values of E calculated

using pairwise additivity.

When applying pairwise additivity to the periodic arrange-

ment in Fig. 1, it turned out to be sufficient to consider only

seven fibers (the central one and the six nearest neighbors).

Including the second layer of 12 fibers altered the value of

E by no more than 1%. Referring to the coordinates in

Fig. 2, the angular-average Boltzmann factor needed for

the flow problem was calculated as

�gðrÞ ¼ 6

p

Zp=6

0

exp½ � Eðr; qÞ=kT�dq: (26)

Parameters

Whereas the hydraulic permeability (K in Eq. 1) scales as

R2/mL, the reflection coefficient is determined by the shape

of the velocity profile (i.e., the dimensionless functions

that multiply either d�PR=dz or RgTdf/dz in Eqs. 15 and 16).

The form of the velocity profile depends on a (sphere

radius/flow radius), b (fiber radius/flow radius), and the

parameters that influence �gðrÞ. Those include t (flow

radius/Debye length, Eq. 20), qs (dimensionless sphere

FIGURE 3 Sphere-fiber systems used to test pairwise additivity of ener-

gies: (A) one fiber nearer the sphere; (B) fibers equidistant from the sphere.

The dashed circles represent the outer boundaries of the cylindrical domains

used in the three-dimensional finite element calculations.
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charge density, Eq. 21), and qf (dimensionless fiber charge

density, Eq. 22). Also involved is

x ¼
�
RgT=F

�2
3R

kT
; (27)

which arises when E is made dimensionless using the

thermal energy. Because the fiber volume fraction (f) is

often known experimentally, it is desirable to adopt it as

a parameter, replacing b (since f ¼ b2). Thus, the form of

the velocity solution, together with dimensional analysis of

E, indicates that

so ¼ so

�
a;f; t; qs; qf ; x

�
: (28)

In other words, so depends on six dimensionless groups,

as compared with just two for an uncharged system, where

so ¼ so(a,f) (6).

Given the number of dimensionless groups, a complete

exploration of the parameter space was impractical. Accord-

ingly, we focused on certain conditions which are of physio-

logical interest. Two kinds of fiber matrices were considered.

The first (Model 1) is a hypothetical array of GAG chains of

varying f. In modeling a GAG chain as a charged fiber, repre-

sentative values are b ¼ 0.5 nm and Qf ¼ �0.10 C/m2 (12).

From Eqs. 3, 4, and 29, a sphere the size of serum albumin

(a ¼ 3.6 nm) will be completely excluded by such an array

if f > 0.018. Accordingly, with Model 1 we considered

only 0 % f % 0.020. The other fiber matrix (Model 2) is

the endothelial glycocalyx structure of Zhang et al. (6), which

has fibers much thicker than GAG chains. In this case the

geometry is specified rather precisely (b ¼ 6 nm, H ¼ 8 nm,

R ¼ 10.5 nm, and f ¼ 0.33), but the surface charge density

is unknown. Thus, with Model 2 we viewed Qf as a variable.

A range of solute sizes was considered with each model, with

bovine serum albumin (BSA) used as a benchmark for charge

density. Modeling BSA as a sphere with a¼ 3.6 nm and a net

charge of �20 (13) gives Qs ¼ �0.020 C/m2. Except where

noted otherwise, cN ¼ 0.15 M.

RESULTS

Sphere-fiber electrostatic energy

In using pairwise additivity to calculate E for the multifiber

system it was necessary to have results for a sphere interact-

ing with a single fiber. When Eqs. 19 and 23 are valid, E is

a quadratic function of the surface charge densities (11). This

may be expressed as

E

xkT
¼ A1qsqf þ A2q2

s þ A3q2
f ; (29)

where the coefficients Ai are each functions of a, t, and the

surface-to-surface separation, but are independent of x and

the charge densities. For this system, the characteristic length

used in a, t, qs, qf, and x is b (rather than R). The dimensional
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separation is denoted as h and the dimensionless separation

is h ¼ kh. There are nonzero energies for a charged sphere

interacting with an uncharged fiber (A2 > 0) and for an

uncharged sphere interacting with a charged fiber (A3 > 0),

because a nearby uncharged object of low dielectric constant

will distort the diffuse double layer around a charged object.

That will affect its surface potential at constant charge

density. However, the additional energy contribution when

both objects are charged tends to be dominant (A1 > A2 or

A3).

It was shown previously that the results of some 900 three-

dimensional finite element calculations for various combina-

tions of inputs could be correlated as

Aiða; t; hÞ ¼ aia
bi t�ci expð�hdiÞ; (30)

where ai, bi, ci, and di are constants obtained from a least-

squares fit (11). The constants reported before are accurate

for ta > 0.6, as already mentioned. To improve the results

for ta < 0.6, we computed energies for an additional 60

cases with 0.5 < t < 2, 0.2 < a < 0.6, and 0.1< h < 0.5.

A new set of constants for Eq. 30 was obtained by nonlinear

least-squares fitting using MATLAB. Those constants repre-

sented E well enough to give a root-mean-square error in the

Boltzmann factor [exp(�E/kT)] of 10% for ta < 0.6. Both

sets of constants are given in Table 1.

Pairwise additivity

The assumption that the sphere-fiber energies are pairwise-

additive was tested using 60 perpendicular cases (Fig. 3 A),

20 collinear (Fig. 3 B with H3¼ 0), and 18 isosceles (Fig. 3 B
with H3 s 0). In each, the exact Boltzmann factor from the

finite element calculation for a sphere and two fibers was

compared with that from pairwise additivity. To avoid any

errors introduced by Eq. 30, each two-body energy was

generated using the same finite element procedure as with

the three-body problem. As shown in Fig. 4, for the perpen-

dicular arrangement the agreement between the exact and

pairwise Boltzmann factors was remarkably good. The

agreement was usually good also for the equidistant config-

urations (collinear or isosceles), although there were large

errors in some cases. When significant errors occurred the

TABLE 1 Constants for sphere-fiber energy correlation

Range of ta Index (i) ai bi ci di

<0.6 1 3.9006 0.7367 0.7814 1.2076

2 0.276 0.8094 0.4518 2.7655

3 0.5641 0.9322 0.1699 2.9824

>0.6 1 2.3523 �0.0071 1.2472 1.0956

2 0.357 0.5436 0.9512 3.7684

3 0.4473 �0.0822 1.1512 2.4987

When used in Eq. 30, these constants give the electrostatic free energy for

double-layer interactions between a sphere and a single fiber (cylinder of

indefinite length), each with a constant surface charge density. The results

for ta < 0.6 are from this work, whereas those for ta > 0.6 are based on

previous results (11).
pairwise additivity assumption overestimated the Boltzmann

factor. By overestimating the ability of a macromolecule to

enter the fiber array, this will tend to underestimate so.

These results suggest that if one fiber is nearest the sphere

(which is always true for the perpendicular arrangement in

Fig. 3 A), pairwise additivity is a reliable way to correct E
for the effects of more distant fibers. Having two or more

fibers equidistant from the sphere (as in Fig. 3 B) probably

is a worst case, in that no single interaction is dominant.

Because a sphere placed randomly within a hexagonal lattice

is likely to have only one nearest-neighbor fiber, we

conclude that pairwise additivity is a reasonable approxima-

tion, at least until a practical alternative can be developed.

Incidentally, when the pairwise Boltzmann factors were

computed using Eq. 30, the results (not shown) were nearly

identical to those in Fig. 4. This indicates that the correlation

itself does not introduce significant error in the energy calcu-

lations, and that the main concern is the pairwise-additivity

assumption.

Osmotic reflection coefficient

We begin with Model 1, which is based on GAG properties.

Fig. 5 shows so for BSA as a function of fiber volume frac-

tion (f) for three bulk electrolyte concentrations (cN).

Higher volume fractions correspond to smaller interfiber

spaces, so that in each case so increases with increasing f.

For the BSA and GAG radii, complete solute exclusion

does not occur until f ¼ 0.018, but so / 1 well before

that, depending on the salt concentration. Decreasing the

ionic strength (as might be done with biological hydrogels

FIGURE 4 Comparison of exact and pairwise-additive Boltzmann factors

[exp(�E/kT)] for a charged sphere interacting with two charged fibers.

‘‘Perpendicular’’ refers to the arrangement in Fig. 3 A, and ‘‘collinear’’

and ‘‘isosceles’’ are the configurations in Fig. 3 B with H3 ¼ 0 and H3 s 0,

respectively.
Biophysical Journal 97(6) 1595–1605
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in vitro) increases the Debye length and therefore amplifies

the repulsive sphere-fiber electrostatic interactions. Accord-

ingly, at a given f, decreases in cN elevate so. Also shown

is a curve for uncharged spheres and fibers with the same

radii as BSA and GAG, respectively. The increase in so

due to the charge of BSA and GAG is quite significant.

For example, at a physiological salt concentration (cN ¼
0.15 M) and f ¼ 0.005, charge effects are predicted to

increase so from 0.30 to 0.87.

The effects of charge vanish as f / 0, and the curves

in Fig. 5 all converge at so ¼ 0. With the fiber radius fixed,

f / 0 corresponds to a fiber-fiber separation increasing

without bound. As the interfiber separation increases, so

does the average sphere-fiber separation, and therefore

E / 0 for a progressively larger fraction of the possible

sphere positions. Thus, electrostatic interactions become

unimportant. Likewise, as the sphere centers are excluded

from smaller and smaller fractions of the liquid volume,

steric effects vanish. As shown by Zhang et al. (6), for

a neutral system so / a2 as f / 0. For a constant sphere

radius, a vanishes along with f, making so zero in that limit.

Over most of the range of f in Fig. 5, our numerical results

for the neutral case are within 1% of those obtained from the

analytical expression of Zhang et al. (6) (not shown). Notice-

able deviations occur only for f > 0.014, the most tightly

fitting cases. The analytical expression predicts that so ¼ 1

at f¼ 0.015, and yields unrealistic values (so > 1) if applied

at larger volume fractions; the numerical results for so

approach unity asymptotically as f / 0.018 (the absolute

FIGURE 5 Osmotic reflection coefficient (so) as a function of fiber

volume fraction (f) for Model 1 (GAG parameters) and BSA. Results are

shown for BSA and GAG at three electrolyte concentrations, and for an

uncharged system with the same solute and fiber radii.
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steric cutoff). Accounting for the limits on sphere angular

position (Eq. 5) is what enables the numerical results to be

more realistic for the tightly fitting cases.

Fig. 6 shows the effects of solute radius, again for Model

1. Here, so is plotted as a function of a for several values of

f. In each case, the sphere surface charge density is assumed

to be that of BSA. As expected, for any constant fiber volume

fraction, increasing the solute radius increases so. For a given

solute radius, increasing the fiber volume fraction increases

so, as shown already for BSA in Fig. 5.

The effects of solute radius are illustrated again in Fig. 7,

this time for Model 2, the endothelial glycocalyx structure of

Zhang et al. (6). In this plot the surface charge density is the

additional parameter varied, and for each curve it is assumed

that Qs ¼ Qf¼ Q. The upper bound chosen for jQj is that for

a GAG fiber. (The absolute value is used because the fibers

and solutes are each negatively charged.) It is seen that so

increases with a when Q is fixed, and that it increases with

jQj when a is held constant.

An aspect of Model 2 mentioned earlier is that the fiber

charge density is unknown. Fig. 8 shows so for this model

as a function of jQfj for several values of jQsj, with the solute

size fixed at a ¼ 3.6 nm (as for BSA). Whether jQfj and jQsj
are elevated separately or in combination, so is increased

above its fully neutral value of 0.68. The different so inter-

cepts at jQfj ¼ 0, and the increasing trend seen in the curve

for jQsj ¼ 0, each reflect the fact that electrostatic interac-

tions exist even if only one object is charged (Eq. 29).

The largest solute charge density shown in Fig. 8 corre-

sponds to that of BSA. Serum albumins are highly retained

FIGURE 6 Osmotic reflection coefficient as a function of solute radius (a)

for Model 1 (GAG parameters). Curves are shown for four fiber volume frac-

tions, with Qs¼�0.020 C/m2 (surface charge density of BSA) in each case.
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in the circulation, with so> 0.9 typically. Such high selectivity

is not predicted for BSA and neutral fibers, where so¼ 0.75 in

Fig. 8 (somewhat above the fully neutral value of 0.68). It is

seen that a fiber charge density of only�0.01 C/m2 is required

to make so > 0.9. This is only one-half the charge density of

BSA or one-tenth that of a GAG chain. This suggests that,

with realistic fiber charge densities, the endothelial glycocalyx

FIGURE 7 Osmotic reflection coefficient as a function of solute radius for

Model 2 (endothelial glycocalyx parameters). Results are shown for four

sphere and fiber charge densities, with Qs ¼ Qf ¼ Q.

FIGURE 8 Osmotic reflection coefficient as a function of fiber charge

density (jQfj) for Model 2 (endothelial glycocalyx parameters). Curves are

shown for four sphere charge densities (jQsj).
alone might be capable of retaining albumin with the efficiency

typically observed in normal capillaries.

DISCUSSION

A computational model was developed to predict the osmotic

reflection coefficient for charged, spherical, macromolecules

in membranes consisting of regular arrays of charged fibers.

To obtain a tractable problem, we assumed that the fibers are

arranged in a hexagonal array and that flow is parallel to the

fiber axes, as in the analysis in Zhang et al. (6) of osmosis in

an uncharged system. Whether charge is present or not, the

underlying mechanism for osmotic flow in these models is

that proposed by Anderson and Malone (9) for porous

membranes. That is, steric and/or electrostatic exclusion

of solute centers from the vicinity of fiber surfaces (or

pore walls) creates concentration-dependent variations in

mechanical pressure in the transverse direction. When there

is a concentration difference imposed across the membrane,

this leads to axial gradients in mechanical pressure that result

in osmotic flow. When solutes and fibers are of like charge

and have constant surface charge densities, solute-fiber elec-

trostatic interactions are always repulsive. These electrostatic

interactions are longer range than purely steric ones. Hence,

there is increased exclusion of macromolecular solutes from

the membrane, and so with charge effects always exceeds

that for an otherwise identical, neutral system. The osmotic

reflection coefficient becomes a function then not only of

solute size, fiber size, and fiber volume fraction, but also

solute charge density, fiber charge density, and electrolyte

concentration. The factors that affect so are stated more

precisely in Eq. 28, which lists all the pertinent dimension-

less groups.

Perfectly selective exclusion of solute molecules is the

defining feature of an ideal, semipermeable membrane,

where so ¼ 1; failure to discriminate between solute and

solvent molecules precludes osmosis, in which case so ¼ 0.

Accordingly, so is related to the partition coefficient (F),

which is the solute concentration in the membrane relative

to that in bulk solution, at equilibrium. For hydrogels or

other fibrous media, it is conventional to base the intramem-

brane concentration on total volume (solid plus liquid).

Accordingly, for the fiber array modeled here (Fig. 2),

F ¼ 12

p

Zp=6

0

Z1

aþ b

exp½ � Eðr; qÞ=kT�r dr dq: (31)

The relationship between so and F is examined in Fig. 9,

where each point represents a combination of parameter

values considered in Figs. 5–8. The abscissa, F/(1 � f),

corresponds to a partition coefficient in which intramembrane

concentrations are based on liquid volume, as for porous

membranes. Even with this adjustment for fiber volume

fraction, the results follow two different relationships, one
Biophysical Journal 97(6) 1595–1605
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corresponding to Model 1 (f << 1) and the other Model 2

(f ¼ 0.33). This is in contrast to what has been found for

porous membranes, where all results for a given pore shape

tend to scatter about a single curve (3–5,9). (The relationships

differ somewhat depending on pore shape, and the scatter for

a given shape is much less if charge effects are absent.) If the

abscissa had been F (partitioning based on total volume), the

two sets of points in Fig. 9 would have been separated much

more.

We conclude from Fig. 9 that, for charged solutes and

charged fibrous membranes, there is not a universal relation-

ship between so and F. The absence of such a relationship is

evident also in the analytical results of Zhang et al. (6) for

neutral solutes and fibers, where F depends only on a þ b,

but so is a complicated function of a and b separately. (The

neutral result, F ¼ 1 – (a þ b)2, follows from Eq. 31 by

setting E ¼ 0 and ignoring the angular restriction expressed

in Eq. 5.)

The main difficulty encountered was how to evaluate the

electrostatic free energy (E) for a sphere interacting with a

hexagonal array of fibers of indefinite extent. Because of the

three-dimensional geometry and the need to resolve details

of the potential over distances often much smaller than the

fiber-fiber separation, direct finite element solutions of

Eq. 19 for a sphere interacting with many fibers were not

feasible. In preliminary calculations we explored the singu-

larity method of Phillips (14), which is well suited for solving

FIGURE 9 Relationship between osmotic reflection coefficient and equi-

librium partition coefficient (F). The abscissa corresponds to a partition

coefficient that has been adjusted using the fiber volume fraction (f) to

base intramembrane concentrations on liquid volume. Each point corre-

sponds to a set of parameter values from Figs. 5–8, with solid symbols

from Model 1 and open symbols from Model 2.
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Eq. 19 in settings where boundary conditions must be

imposed on the surfaces of multiple objects. Although we

found this method to work well for certain test cases (e.g.,

a pair of spheres), our ability to satisfy the constant charge

density boundary conditions turned out to be very sensitive

to the placement of the internal singularities and the selection

of surface points. Because it was impractical to optimize the

singularity method for each of the many asymmetrical sphere

positions we had to consider, we abandoned it in favor of

a pairwise-additivity assumption for the energies.

Pairwise additivity, when combined with a correlation for

the interaction energy between a sphere and a single fiber

(Eq. 30), was straightforward to implement. As shown

in Fig. 4, Boltzmann factors calculated using pairwise

additivity, although imperfect, were usually reliable in tests

involving a sphere and two fibers. When significant errors

occurred, there was a tendency to overestimate the Boltz-

mann factor, which in turn would overestimate F and under-

estimate so. In that sense, the predicted increases in so due to

charge are conservative. Although the accuracy of the so

results would be improved if E could be computed more

precisely, we think it unlikely that any of the plots would

change a great deal.

For both types of fiber arrays considered, one based on the

properties of GAG chains and the other corresponding to the

endothelial surface glycocalyx model of Zhang et al. (6), so

for BSA was predicted to be much larger than that for

a neutral system (Figs. 5 and 8). Thus, whether one envisions

a capillary wall as having a barrier like that of Model 1 or

Model 2, this suggests that charge is important in minimizing

albumin loss from the circulation. This conclusion is based

on the equality (or near equality) of so and sf and the

assumption that minimizing convective transport through

capillary walls is important for retaining albumin.

Of course, an array of GAG chains is unlikely to be as

highly ordered as assumed in Fig. 1, and even so, the flow

may not be parallel to the fibers. It would be worthwhile to

extend this type of model to flow that is perpendicular to

an array of fibers. The results for the parallel and perpendic-

ular problems might then be combined to predict so for

arrays of randomly oriented fibers, perhaps using mixing

rules analogous to those used to estimate the hydraulic

permeability of such arrays (12).

We thank Professor Ronald J. Phillips of the University of California at
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