
SURGE: The Secure Cloud Storage and Collaboration Framework

By Adin R. Schmahmann

MASSACHUSETS WlTTi'GTE 1
OF TECHNOLOGY

JUL 15 2014

LIBRARI.ES
S.B., E.E.C.S. & Physics M.I.T., 2013

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

At the Massachusetts Institute of Technology

May 2014
C -1 Yj1 q 20:)

Copyright 2014 Adin R. Schmahmann. All rights reserved

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole and in part in any medium now known or hereafter
created. Signature redacted
Author:

Department of Electrical Engineering and Computer Science

May 27, 2014
Signature redacted

Certified by:

Nickolai Zeldovich, Associa' Professor of Electrical Engineering and Computer Science

Thesis Supervisor

May 27, 2014 Signature redacted
Accepted by:

Prof. Albert R. Meyer, Chairmani'sers of Engineering Thesis Committee



SURGE

THE SECURE CLOUD STORAGE AND COLLABORATION FRAMEWORK

BY: ADIN R. SCHMAHMANN

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ON MAY 27, 2014 IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ABSTRACT
SURGE is a Secure Cloud Storage and Collaboration Framework that is designed to be easy for

application developers to use. The motivation is to allow application developers to mimic existing cloud
based applications, but make them cryptographically secure, in addition to allowing application
developers to come up with entirely new secure cloud based applications. SURGE stores all of its data as
operations and as a result can leverage techniques like Operational Transforms to allow offline usage as
well as lowering network bandwidth consumption. Additionally, storing data as operations allows SURGE
to develop a rich permissions system. This permission system allows basic permissions such as read-
only, read-write, and administrator in addition to more advanced permissions such as write-only, group
read/write, and anonymous permissions. To evaluate the usability of SURGE a C# prototype was
constructed and used to create a collaborative text editor that performs well under real-world user
tests.

Thesis Supervisor: Nickolai Zeldovich

Title: Associate Professor of Electrical Engineering and Computer Science

Page 2 of 38



SECTION 1 INTRODUCTION
Storing and collaborating on data in "the cloud" offers many advantages to users over doing

work on client devices, or operating over a peer to peer network, and allows the possibility for new and

unique applications. While the last decade has seen many new applications make use of the cloud

paradigm, such as Dropbox and Google Docs, it has come at the expense of requiring the user to put

more trust in the application developer and cloud maintainer. For instance collaborating on a text

document using Google Docs requires the user to trust that sensitive data is not being read by Google

and trust that Google did not corrupt or modify the text document. However, many users would like to

be able to take the same cryptographic primitives that protect data privacy, integrity, and user

anonymity for standard applications and apply them to the cloud. As the cloud is a fairly simple, yet

broad, paradigm approximating a single server with vast resources, a simple and broad cryptographic

framework for the cloud that could be used effectively in many different situations would be extremely

useful.

The current state of the art in secure collaboration via "the cloud" is SPORC (Feldman, Zeller,

Freedman, & Felten, 2010). SPORC works by securely storing a log of the operations (i.e. changes) to the

object being collaborated on. The security aspects of SPORC's secure logging are guaranteed using

client-side encryption to protect operation confidentiality and having the clients perform signing and

verification on the operations to guarantee integrity. SPORC guarantees that modifications to the data

are performed only by approved users via an object Access Control List (ACL). This ACL is maintained

securely in a manner similar to the object data and is consulted by user devices before applying an

operation coming from "the cloud".

Page 3 of 38



Unfortunately, a major shortcoming of SPORC is that it does not provide enough functionality

for many real use cases. There are four major use cases detailed below that could be very useful to

application developers looking to create secure cloud-based collaboration applications. Briefly these use

cases are non-administrators updating their private keys, group access, granting anonymous access, and

an internal messaging system.

In real systems cryptographic private keys tend to get compromised. Whether a user loses

his/her smart card, a user's laptop is stolen or the user's machine is hacked into, systems must be able

to deal with this reality of key compromise. Additionally, once a key is compromised it should be

replaced as soon as possible in order to minimize the usability of the compromised key. As a result

replacing a key should not require the user waiting for an administrator of the object to replace the key

for him/her; the user should be able to replace the key by him/herself.

Additionally, in many real systems users tend to collaborate with the same group of people on

multiple documents. As a result, the ability for a user to be able to share an object with the people in

his/her team at work is important. Not to mention that if one of the people on the team leaves it would

be great if some administrator in charge of the team could revoke all of that user's access instead of

relying on the administrators of every shared object to revoke the user leaving the team (which would

be an administrative nightmare). Similarly, adding a new member to the team should be a quick and

painless procedure for the team administrator and not require tracking down the administrators for

every object intended to be shared with the group.

In large organizations anonymity may be a real security concern. For instance if a department

head is working with auditors about the productivity of his/her department he/she may not want the

employees of the department to know who they are being audited by and possibly not even know that

Page 4 of 38



they are being audited at all. Therefore, if the department head/administrator could anonymously grant

the auditor/s access to files this would help remedy this concern.

The method through which users of a cloud-based sharing system communicate tends to be an

overlooked, but important part of the system as a whole. Whether it's a secure cloud storage system

like Tresorium (Lam, Szebeni, & Buttyan, 2012), a non-cryptographically secure cloud storage system like

Dropbox, or a secure collaboration system like SPORC, somehow users need to find out that data has

been shared with them. In systems like Dropbox and Tresorit (the commercial implementation of

Tresorium) the method of communication is via email, and in SPORC this method is left completely

undefined. However, secure email has its own set of problems and it would be great if the system that

was being designed for secure collaboration could also deal with secure communication of, at the very

least, information related to the system. This secure communication could be used by anything from a

tool for resolving internal system messages, to a kind of internal email system, even to a chat system,

but having none of these be part of a secure collaboration system is appalling.

The contribution of this thesis is the design and implementation of the SURGE framework and

library. SURGE is a secure collaboration and storage framework that can run on untrusted resources

such as a commercial "cloud". Additionally, SURGE is designed to resolve the shortcomings of SPORC

mentioned above and to do so in a way that is both easily usable by application developers and also

easily extensible by security-minded developers.

The key idea that SURGE makes use of to implement the extra functionality it has over SPORC is

that verifying operations can be more than just checking cryptographic signatures. In particular, an

application developer can define an operation 0 and a corresponding permission for a user that is "User

can perform operation 0". Then when an operation is being verified the verifier checks both that the

operation has not been tampered with (via cryptographic signatures) and that the user can perform the

Page 5 of 38



particular operation (via Boolean check). In this way the application developer can tailor the types of

permissions grantable to users to fit the application model and not simply use a single type of

permission for all operations. Additionally, despite the fact that this change affects only

modifications/operations it is sufficient to cover all of the cases mentioned above. This is true because

SURGE uses operations not just to modify the data being stored, but also to modify the ACL controlling

access to the data. As a result, many kinds of new ACL permissions and operations can be created to

help solve these and similar problems.

To evaluate SURGE, a prototype framework and library was built in C#, and a collaborative text

editor application was built leveraging SURGE. The SURGE framework and library prototype is roughly

1000 LoC, and the application code particular to SURGE is a measly 50 LoC. The collaborative text editor

performs efficiently enough that a few qualitative user tests showed no problems with application

performance.

This rest of the paper is structured as follows: Section 2 will explain some of the background

necessary to understanding how SURGE works, notably Operational Transformation. Section 3 will move

on to explain the design of the SURGE framework. After going through the SURGE framework Section 4

will detail the SURGE API and give some examples and detail about how important SURGE concepts are

used/implemented. Section 5 will delve into SURGE's Operations and Permissions Library, which

contains the insights necessary to leverage the SURGE framework to achieve some of the important

features (such as anonymous and group-based permissions) that are unavailable in current systems like

SPORC. In Section 6 SURGE is evaluated and put into use in creating a secure collaborative text-editor

application. Section 7 describes some of the work related to SURGE, before concluding in Section 8.

Page 6 of 38



SECTION 2 BACKGROUND
While it is possible for a developer to use SURGE without any need for Operational

Transformation (OT), for instance by requiring clients to check out objects from some server, for those

truly interested in cloud-based collaboration or allowing asynchronous usage understanding OT is a

must.

SECTION 2.1 OPERATIONAL TRANSFORMATION
Operational Transform (OT) is a technology designed to allow many users to work on some

shared object. OT assumes that instead of storing this shared object in its entirety the object is stored as

a sequence of the operations that comprise it. Given that we are storing objects as a sequence of

operations OT allows users to a) work offline/disconnected and b) minimize bandwidth usage by sending

only small operations to/from the clients as opposed to the entire object. OT allows users to locally

commit changes and then properly synchronize state with the other users at a later time. For instance

say we have a data object that is a list of characters that start off with the letters ['A', 'B', 'C'] and Alice

and Bob download the object before heading out on vacation. Alice decides to remove the 'B' from the

list by performing the operation remove(2). Similarly Bob decides to remove 'C' from the list by

performing the operation remove(3). When Alice and Bob get back from vacation they send each other

their operations. Realistically we would like both Alice and Bob to get ['A'] as their result after they apply

each other's operations. However, while in this case Bob can naively apply Alice's remove(2) operation

to his copy of the list (['A', 'B']) were Alice to naively apply Bob's remove(3) operation most

programming languages would crash or throw an exception since Alice does not even have 3 elements in

her copy of the list. Instead, Alice needs to realize that since she has already deleted one element from

the list that she really needs to transform Bob's operation to be remove(3-1)=remove(2) which will

remove the 'C' from Alice's ['A','C'] list and then both Alice and Bob will end up with the list ['A'].

Page 7 of 38



However, while this particular example is very nice and clear cut many other examples are not,

especially when the application is unaware of the user's intended semantics. For example, say Alice and

Bob are sharing a String "Stop" and as before Alice and Bob go on vacation. Alice decides to perform the

operation insert(5,"!") while Bob performs the operation insert(5, " Now!!!!"). When Alice and Bob send

their operations to each other it is unclear whetherthe combined String should be "Stop! Now!!!!" or

"Stop Now!!!!!". Instead really all that matters is that Alice and Bob agree on the same result and

hopefully it's not too much work for them to fix the result to be what they intend. Therefore, in order to

deal with these types of situations we need an arbiter to give some priority to Alice's or Bob's operation,

so that in the event of a "tie" Alice and Bob know how to correctly resolve their operations. For instance

if the arbiter decides that Alice's operation should get precedence then both Alice and Bob will end up

with the String "Stop! Now!!!!".

SECTION 3 SYSTEM DESIGN
The major design choice was to make all changes to object data or metadata an operation as

opposed to simply storing the entire updated object, as described in the OT section above. This choice

was made in order to be able to allow users to grant other users permission to perform arbitrary

application specific operations to both an object's data and its metadata. This section is outlined as

follows: It will start by describing the fundamentals of Read and Write Permissions, give an overview of

SURGE, explain the various possibilities for OT arbiters, and finally end with an overview of how an

application developer might use SURGE.

SECTION 3.1 SURGE SYSTEM OVERVIEW
Fundamentally the SURGE framework is designed to make it easy for application developers to

make secure cloud-based collaboration applications. To ensure the data stored via SURGE is secure,

SURGE makes use of standard cryptographic primitives. Additionally, as described above SURGE makes

use of OT to allow asynchronous collaboration. To package the cryptography and OT together SURGE

Page 8 of 38



uses the concept of a Box. A SURGE Box is the container and manager for a data object stored in the

cloud as well as its associated ACL. These Boxes manage everything from sending/retrieving operations

to/from the cloud to performing all of the cryptographic processes required to ensure that the

operations are sent/received securely. Finally these Boxes compile the operations into the current state

of the data so that application developers can easily gain access to the state of the data stored in the

Box without having to deal with OT, cryptography, or any of the mechanisms internal to the SURGE

framework.

The basic usage of a Box, as illustrated in Figure 1, is to be the intermediary between the

application using SURGE and the location of the data stored via SURGE. Therefore, since Boxes are such

an important way for application developers interface with SURGE, they should be further explained

before going into the rest of the SURGE framework. In particular, the entire processes illustrated in

Figures 2 and 3 take place inside of SURGE Boxes. The process in Figure 2 takes incoming secured

operations (called OpCapsules) from the cloud and:

Encrypted
Changes/Operations Changes/Operations

Encrypted

Local Data Encrypted Operation Log
Changes/Operations

FIGURE 1 SURGE BOXES: THE INTERMEDIARIES BETWEEN CLIENTS AND THE CLOUD

Page 9 of 38



4

Qujeue Cm
Operati ns

Quu

V

L2 Receive
Operation

Compiled Local
Data

FIGURE 2 THE PROCESS AN OPERATION GOES THROUGH FROM WHEN THE CLIENT'S BOX RECEIVES AN OPERATION

UNTIL IT IS READ BY THE USER. NOTE THAT D=DECRYPT, AND V=VERIFY.

L5]

Send
Operation

Perform
Ooeration

31

Queued
Operations pet

[2]

Compiled Local
Data

FIGURE 3 THE PROCESS AN OPERATION GOES THROUGH FROM WHEN THE CLIENT PERFORMS IT UNTIL IT REACHES
THE CLOUD. NOTE THAT E=ENCRYPT, AND S=SIGN.

a) Verifies the operations are allowed to be performed by the signer of the operation

Page 10 of 38

Get Data

w

I



b) Appends the OpCapsule to the local list of approved committed operations

c)

a. If the operation is encrypted then the Box will attempt to decrypt it

b. If the operation can be retrieved (i.e. it was not encrypted, or the user making use

of the Box had the decryption keys required to read the operation) it is transformed

using OT across all of the operations in the Box's queue of operations that have not

been committed to the cloud yet. This transformed operation is then applied to the

current local state of the Box

Similarly, when (as in Figure 3) an application makes a modification to the data or ACL stored in a Box it

goes through the following process:

a) The operation is added to the Box's queue of operations waiting to be sent

b) If applicable the operation is applied to the current local state of the Box. (An example

where this would not be applicable was if the user making use of the Box only had

permission to add content to the Box. In this case the user cannot even read the current

state of the data in the Box)

c) When the operation is ready to be sent off to the cloud it is put into an appropriate

OpCapsule, meaning that, if necessary, the operation is encrypted and the result is signed.

There are only two types of OpCapsules that SURGE deals with PublicOpCapsules and

PrivateOpCapsules. As expected PublicOpCapsules are used to guarantee that an operation has been

committed by a user permitted by the corresponding Box's ACL, but does not encrypt the contents of

the operation. On the other hand PrivateOpCapsules also encrypt the contents of their encapsulated

operations. While all SURGE Boxes have their ACL operations stored in PublicOpCapsules, SURGE makes

use of three types of Boxes. The first is PrivateBoxes that encrypt their data, the second is PublicBoxes

Page 11 of 38



that do not encrypt their data, and finally SURGE even makes use of PrivateAndPublicBoxes that have

two compartments, one for encrypted data and one for non-encrypted'data.

SECTION 3.2 READ AND WRITE PERMISSIONS
Before continuing on with the details of how SURGE is implemented, it is important to

understand Read and Write Permissions and their basic cryptographic underpinnings. To start,

determining access to an object inherently involves two types of permissions, those regarding reading

the content and those regarding modifying the content. These permissions are inherently tied to the

cryptographic notions of confidentiality (reading the content) and integrity (modifying the content). Just

as these two types of permissions are distinct, modern cryptography uses separate mechanisms to

enforce them. Encryption/Decryption is used for reading, while Signing/Verification is used for

modification. Read Permissions, enforced via encryption and decryption, rely solely on cryptographic

mechanisms on behalf of the content owner for security, since as long as the client encrypting the data

is working properly there is nothing any other client can do to violate the confidentiality implied by the

encryption. On the other hand Write Permissions, enforced via signing and verification, rely on both the

signer and verifier to be working correctly. For instance, an incorrect verifier could end up accepting

invalid modifications and an incorrect signer could also end up allowing malicious users to make invalid

modifications that a correct verifier would accept. While it is in some ways unfortunate the Write

Permissions inherently require more trust than Read Permissions they also allow additional flexibility.

For instance, since Write Permissions in the end are Boolean checks it is easy to define an arbitrary list

of possible actions and as long as there is an ACL listing which users are allowed to perform which

actions, all of these arbitrary actions are doable. On the other hand having an arbitrary list of possible

Read Permissions is much harder since the developer must work with the cryptography by either

creating a new cryptosystem for the desired set of permissions or having many different encryptions of

the same data under different permissions. As a result SURGE allows granting arbitrary Write

Page 12 of 38



Permissions on an object or its ACL, but only allows a standard Read Permission for entire SURGE

objects.

SECTION 3.3 VERIFYING OPERATIONS
Assuming an unchanging ACL, when a user performs an operation on an object he applies it

locally immediately and then puts it in a queue to be sent to an untrusted managing server later (this

may be a long time if the user is disconnected/in offline mode). The operation sent to the server

contains a signed OpCapsule. For the purpose of illustration say the operation being committed is in a

PrivateOpCapsule, as described in Figure 4.

The PrivateOpCapsule contains:

a) The operation information encrypted with an asymmetric public key (e.g. an RSA key)

belonging to the object

b) The identity of the client and the number operation this is for that client (i.e. it is Client

ABC's 5* operation on this object)

c) The global number corresponding to the latest operation on this object received from the

server (as discussed in the OT section above OT needs some sort of arbiter and SURGE can

PrivateOpCapsule<T>

- EncryptedOperation<T> EncryptedOp
- ID ClientID
- int ClientOpNumber
- Hash PreviousHashChainValue
- int PrevousGobalSequenceNumber
- int GlobalSequenceNumber

FIGURE 4 A CAPSULE CONTAINING THE OPERATION AND INFORMATION REQUIRED FOR SECURITY CONCERNS. NOTE THAT

WHEN THE PRIVATEOPCAPSULE IS SIGNED THE SIGNATURE DOES NOT COVER THE GLOBALSEQUENCENUMBER WHICH

COMES FROM THE UNTRUSTED SERVER.

Page 13 of 38



have an untrusted server be an arbiter that simply labels the incoming operations with

increasing numbers1 )

d) The global number of this operation. This number will be set by the server once the

operation is received, and as a result is not included in the signature of the

PrivateOpCapsule.

e) The hash chain value of the latest operation seen from the server (i.e. the hash chain of all

of the operations from the server up until the latest)

After the operation has been committed to the server when clients request the operation they check

that it is valid (by checking if it is really the n+11 operation committed by the client specified, really is in

the correct place in the hash chain, has a valid signature, the signature belongs to someone specified in

the ACL as being allowed to perform the operation, etc.). If it is valid they transform the operation

across all of the operations committed locally but yet to be sent to the server, they then perform the

transformed operation.

SECTION 3.4 MODIFYING THE ACL
The above discusses SURGE with an unchanging ACL, but changing ACLs is a very important part

of the system. An ACL, as used in SURGE, has the properties described in Figure 6.

1 Note that the untrusted server cannot really do anything malicious with this labeling ability without the clients
detecting the malicious activity. This scheme is explained in detail in the SPORC paper.

Page 14 of 38



BoxKeys

PublicReadPermission PublicBoxReadKey
EncryptedContainer<List<ReadPermission>> EncPreviousKeys

FIGURE 5 SURGE Box KEYS

ACL

- List<PublicWritePermission> Administrators
- List<PublicWritePermission> Writers
- List<WrappedPermissions> Readers
- BoxKeys BoxKeyInfo

FIGURE 6 A SURGE ACL

To break the ACL down into more understandable terms we will look at it field by field.

a) The Administrators field is the list controlling which users can modify the ACL, and how they

can do so. More concretely the "Administrators" list can be understood as a list of public

keys and their corresponding permissions. For instance one of the items in the

Administrators list might be Alice's public key and a corresponding indicator that Alice has

permission to make arbitrary modifications to the "Writers" field of the ACL.

b) The Writers field is the list controlling which users can modify the object data and how they

can do so. Like the "Administrators" list the "Writers" list can be understood as a list of

public keys and their corresponding permissions. For instance, one of the items in the

Writers list might be Bob's public key and a corresponding indicator that Bob can perform

arbitrary operations on the object data.

c) The BoxKeyinfo field has the structure described in Figure 5, and contains 1) the current

public encryption key for the box and 2) all of the previous private keys for the box

encrypted under the current box's public encryption key

d) The Readers field is effectively SURGE's key management system. It stores the current box

private decryption key encrypted under the public keys of all of the users who are given

Page 15 of 38



"Read Permission" to the box. In this way the "Readers" field simply contains the keys that

allow the appropriate users to read the box contents.

Modifying the ACL is as simple as performing an operation on it, much like the data operations described

above. The only difference is that instead of using a PrivateOpCapsule with an encrypted operation,

instead ACL modification operations use PublicOpCapsules in which the operations are not encrypted.

As a result, adding new users to the ACL is simple, to grant read access simply encrypt the object's

asymmetric private key with the new user's public key and the administrator can then add that key to

the object's Readers field in the ACL. To grant the other permissions write/administrator the

administrator simply needs to perform a modification to the object's ACL indicating that the new user

has the intended privileges. All of these operations are public and it is easy to verify whether an ACL

operation is valid since it uses the same mechanism as for regular operations (signatures and checking

the object's current ACL).

On the other hand removing users from the ACL is a little trickier, and is outlined in Figure 7.

Two notations that will be used from here on out are the notation A{B} which means that the key B is

ACL

Admin: ...
Writers: ...
Readers: Alice = Alice{Box Primte Dec Key), Bob =

BoxKeys: Box Public Enc Key

Rewke Bob

ACL

Admin:
Writers: ...
Readers: Alice' = Alice{Box Private Dec Key')
BoxKeys: Box Public Enc Key', Box Public Enc Key'{Box Private Dec Key)

FIGURE 7 THE ACL OF AN OBJECT BEFORE AND AFTER BOB'S READ ACCESS TO THE OBJECT IS REVOKED. THE NOTATION

A{B) MEANS THAT THE KEY B IS ENCRYPTED UNDER THE KEY A. ADDITIONALLY, THE NOTATION X' MEANS THAT X HAS

CHANGED. FINALLY THE NOTATION ALICE' = ALICE(Box PRIVATE DEC KEY') MEANS THAT ALICE'S NEW READ

PERMISSION IS DEFINED BY HER PUBLIC KEY WRAPPING THE NEW BOX PRIVATE KEY.

Page 16 of 38



encrypted under the key A, and the notation A' which means that a user A has changed keys to A'. In

particular revoking read access means that the object's asymmetric key must be updated to a new one,

but the old operations must still be readable. As a result, SURGE has the administrator replace all of the

old asymmetric keys encrypted under users' public keys with the new asymmetric key encrypted under

their public keys. Additionally, the old key, and all previous keys, are encrypted under the new key to

allow new users to have easy access to decrypting older operations. A final important detail about

revoking access to the ACL regards concurrency. If two administrators, Alice and Bob, simultaneously

tried to revoke access to two different users (say Andrew and Brenda respectively) then, while this

might not inherently seem problematic it turns out that since each of these operations involves

encrypting the old keys under a new one, there isn't really a correct one to use. In particular, using

either of these two keys results in either Andrew or Brenda still having access to the data going forward.

In order to prevent this SURGE uses SPORC's concept of a "Barrier Operation" that basically reintroduces

synchronization to the system by requiring that any operations that come after the Barrier Operation b

be reexamined and recommitted after taking into account (via some procedure like OT) operation b.

SECTION 3.5 ROOT OF TRUST/VERIFYING THE FIRST OPERATION
One issue that we have thus far glossed over is the "root of trust" of an object's ACL. In

particular, incoming SURGE operations can be verified only given that the previous state of the object

(data and ACL) are also verified. Then how is the first operation creating the object verified? SURGE

directly exposes this issue by requiring that the public key of the first operation on the object be passed

into the function that retrieves SURGE objects from the "cloud". While in many frameworks keeping

track of the "root of trust" for every shared object might be problematic, SURGE's internal messaging

system (discussed in Section 5.4) ensures that a user Alice can have an "inbox" and that when other

users share objects with her they send her a notification that includes the "root of trust" for the object.

Page 17 of 38



In this way Alice is guaranteed that her "root of trust" for the object will not change over time, as long as

her inbox is not tampered with (discussed in the internal messaging section).

SECTION 3.6 CHOICES FOR THE ARBITER

While SURGE can use a server as the OT arbiter as described above, SURGE also allows for

different arbiters. Recall from the description of Operational Transformation above (Section 2.1) the

Arbiter has a fairly simple role. It simply needs to take two operations that could have occurred

simultaneously (for instance Alice and Bob in the examples above could have performed their

operations at the same time, but it is clear that the version of the object that Alice and Bob had before

they went on vacation is an earlier version then what they had after they came back from vacation) and

give all the parties the same (arbitrary) information to help them resolve the transformation of

operations when there are multiple possible options.

One solution for an arbiter is to have an untrusted server giving incrementing numbers to

operations that are inbound (this is the solution described in the design section above). This allows all

clients (Alice, Bob, etc.) to put a definitive priority ordering on the operations, and to therefore to

achieve the same result after performing the operational transformations. It is possible to not even need

to care about a server maliciously giving numbers to incoming operations due to check-ability using

fork*-consistency. Additionally, the server could give preference to Alice's operations over Bob's when

they both could have come in at the same time (as in our examples above), but that it is irrelevant since

one of the points of properly designed operational transforms is not to make it hard to fix an "incorrect"

transform, if performing an "incorrect" transform is even doable.

Therefore, since the server is allowed to arbitrarily favor users it is possible to eliminate the

arbiter role from the server entirely. For instance, operations can be put in a priority ordering based on

the unique identifier of the clients committing operations, and the hash chain value corresponding to

Page 18 of 38



the operations that came before them. As an example, in order to arbitrate between operations

committed by Alice and Bob it could be agreed upon that since lexigraphically Alice comes before Bob

that Alice's operations will be given "priority". This manages to remove any need for a server and

therefore allows the system to make use of a simple cloud storage medium instead of a server. The only

real downside to this approach is that there must be some system in place for properly giving identifiers

to all users. While in the case of Alice and Bob this may not be problematic, if Alice is using multiple

devices to pose as herself there must be a way of identifying "Alicel", "Alice2", "Alice3", etc. so that the

multiple Alice clients can have a sorted ordering. The simplest way to do this is to just give all of Alice's

devices large random numbers upon creation, then the probability that two IDs are identical is

practically zero. Alternatively, Alice could register all new devices and get new unique IDs for them such

as incremental IDs "Alicel", "Alice2", "Alice3".

SECTION 3.7 SURGE FOR APPLICATION DEVELOPERS

To make use of SURGE for a new application a developer has three main tasks. Firstly, if the

application requires collaboration on a new type of data, such as some custom struct, then the

developer must create this new data object complete with serialization/deserialization routines. For the

majority of tasks this step will be simple, but it is nonetheless an important step in making SURGE work

for the new application

Secondly and most importantly the developer must create the operations that modify the target

data object. Operations on data are fairly simple and simply express a transformation from a prevState

to a newState. For example, an operation on a String could be a simple as the "Append Zero" operation

where newState +- prevStateJ'O'. On the other hand operations can be generic such as an "Insert"

operation on a String where the operation is constructed using a String insertionString and a location

insertionIndex to create the operation:

Page 19 of 38



newState +- Insert(prevState, insertionData, insertionIndex).

Perhaps the most difficult part about creating new data operations is figuring out how to perform OT on

the new operations (for more information about implementing Operations see the Operations and

Permissions Library section).

Thirdly, the application developer may desire custom permissions to go with the custom

operations for the application. In this case, the application developer will likely only need to make

custom PublicWritePermissions, which are defined and detailed in section 4.1.1 below. If so then the

work will mainly be in defining what types of operations are allowed by the particular type of

PublicWritePermission granted to users.

Finally, as with all libraries the developer must deal with the "glue code" that gets SURGE to talk

to the rest of the application. Thankfully, with SURGE this is relatively easy with most of the work

involved in getting any sort of User Interface to properly express all of the different possible permissions

that the developer might want the user to be allowed to grant/revoke. Once all this is done the

application developer can bundle up his new data object and operations with the rest of his application

and ship it out to users. Note that if the developer chooses to use a server based arbiter that the server

does not need to be aware of the data objects and operations specific to the application and it can

instead just be a generic SURGE compatible server.

SECTION 4 SURGE API
The API is broken up into a number of components: Object Containers, Object Updaters, Permissions,

and Operations.

SECTION 4.1 PERMISSIONS
The control over the permissions system is what gives SURGE so much more functionality over other

similar systems. To do so it has four simple types of permissions:

Page 20 of 38



Section 4.1.1 PUBLIC WRITE PERMISSION
Type Signature:

bool verifyData(byte[] signature, byte[] data)

bool allows<T>(T operation)

Public Write Permissions are essentially public verification keys, but that do not just check that

cryptographic signatures are valid, they also check whether a particular operation is allowed. Therefore,

there are two broad categories of PublicWritePermissions, those that implement cryptographic

primitives (i.e. RSA Public Keys) and those that leverage existing cryptographic primitives but implement

new "allows" functions. The only instance of a cryptographically based PublicWritePermission in the

SURGE prototype is the RSAPublicVerifyKeyPermission, which is essentially just an RSA Public Key that

allows no operations. On the other hand the framework has a number of Public Write Permissions that

do not bother with new cryptographic measures, but instead focus on the allows functions. These

include the AllPermission, TypeBasedPermission, ReplaceSelfWritePermission. Pseudo-code for these

permissions follows:

class AllPermission : PublicWritePermission
PublicWritePermission fWritePerm
AllPermission(PublicWritePermission writePerm)

fWritePerm = writePerm

bool allows<T>(T op)
return true

bool verifyData(byte[] signature, byte[] data)
return fWritePerm.verifyData (signature, data)

class TypePermission : PublicWritePermission
PublicWritePermission fWritePerm;
Type f Type
TypePermission(PublicWritePermission writePerm, Type t)

fWritePerm = writePerm
fType = t

bool allows<T>(T op)
return op is fType

Page 21 of 38



class ReplaceSelfWritePermission : PublicWritePermission
PublicWritePermission fWritePerm;
TypePermission (PublicWritePermission writePerm)

fWritePerm = writePerm

bool allows<T>(T op)
if (op is ReplaceWritePermissionOp)

return ((ReplaceWritePermissionOp) op) .OldKey.Equals (fWritePerm)
return false

Public Write Permissions are a key component which allow users to determine whether an

operation was done by a valid user. For most all intents and purposes they may be treated as Public Keys

with some metadata tag indicating the intent of the permission. Developers should AVOID making new

Public Write Permissions that use cryptography unless they are confident in their abilities since some

mistakes could be catastrophic (e.g. including private information in the permission). However,

developers should feel free to either use inheritance or more commonly the composite pattern to be

able to implement new versions of the "allows" function.

It is worth pointing out that the ease of defining new PublicWritePermissions using the

composite pattern really gives SURGE a lot of flexibility. For instance to allow users to perform any

operation of a particular type (say an Insert into String Operation) a TypeBasedPermission is a great tool.

However, the developer can have even more control over the kinds of operations a user can perform,

such as only being allowed to perform ReplaceWritePermissionOps when the permission being replaced

belongs to a particular user. In fact, it turns out that the ReplaceSelfWritePermission is extremely useful

for having users be able to replace their own compromised credentials (see Section 5.1 below).

Furthermore, notice that a user can be granted a TypeBased Permission for an Insert Operation

that inserts data into the object without necessarily being granted read permission for the object. This is

Page 22 of 38



thanks to the object having an asymmetric box key to preserve confidentiality even in the case of write-

only permissions.

Section 4.1.2 WRITE PERMISSION
Type Signature:

byte[] signData(byte[] objectData)

PublicWritePermission toPublicWritePermissiono

Write Permissions are simply the necessary counterpart to their Public friends. If Public Write

Permission are basically Public Keys that allow verifying input, then Write Permissions also allow signing

that input. As a result the SURGE prototype currently has a single WritePermission, the

RSAPrivateSigningKeyPermission, which is essentially an RSA private key. For this reason developers

should not need to create new Write Permissions unless they are making use of cryptographic primitives

in which case caution should be utilized as described for PublicWritePermissions above.

Section 4.1.3 PUBLIC READ PERMISSION
Type Signature:

byte[] encryptData (byte[] objectData)

The SURGE prototype currently has two Public Read Permissions:

RSAPublicEncryptionKeyPermission and WrappedPermission. RSAPublicEncryptionKeyPermission is, as

expected, a simple RSA Public Encryption Key. On the other hand WrappedPermission is a bit more

complex. A WrappedPermission is essentially a PublicRead Permission encrypting/wrapping a number of

nested Read Permissions. For instance, the most commonly used WrappedPermission is a user's

RSAPublicEncryptionKeyPermission wrapping an AESKeyPermission that in turn wraps a Box's

RSAPrivateDecryptionKeyPermission. A WrappedPermission can be unwrapped into an

Page 23 of 38



UnwrappedPermission by using the ReadPermission corresponding to the PublicReadPermission that

corresponds to the highest level of encryption for the WrappedPermission.

While Public Write Permissions are necessary because they allow the user to verify their object,

Public Read Permissions are more like place markers. These place markers ensure that in the event of

changes in Read Access to the object the object's keys are made available to the correct users.

Additionally, Public Read Permissions allow for the existence of Write-only permissions that are still

confidential. Public Read Permissions can for the most part be treated simply as Public Encryption Keys,

developers should not need to implement new ones unless they plan on making use of cryptographic

primitives.

Section 4.1.4 READ PERMISSION
Type Signature:

byte[] decryptData(byte[] encryptedObjectData)

PublicReadPermission toPublicReadPermissiono

The SURGE prototype currently has three Read Permissions:

RSAPrivateDecryptionKeyPermission, AESKeyPermission, UnwrappedPermission.

RSAPrivateDecryptionKeyPermission and AESKeyPermission are, as expected, simply RSA Private

Decryption Keys and AES Keys respectively. UnwrappedPermissions are, as described above, simply the

ReadPermissions that result from unwrapping a WrappedPermission with the correct key.

UnwrappedPermissions are used within the framework to make use of WrappedPermissions, but should

be of no concern to the average SURGE developer.

SECTION 4.2 OPERATIONS
SURGE Operations are roughly the same as the operations in any operational transform based system.

SURGE Operations have the following signature:

Page 24 of 38



T applyTo(T previousState)

Operation<T> transform(Operation<T> op)

The "applyTo" function simply performs the operation on some old state and returns a new one.

The "transform" function deals with operational transformation and returns a modified operation op'

that should be applied instead of op to a state where the current operation has already been applied.

Most of the time application developers spend working the SURGE will likely be creating new

operations. As a result, the SURGE prototype and collaborative text editor application have many

operations. Some of the examples important to the SURGE Operations and Permissions library will be

detailed in that section.

In general, developers will almost certainly need to develop new operations specific to their

application. While the "applyTo" functions are generally extremely obvious to implement (they are

programmed the same way as any regular function), the "transform" functions take a little more

thought and some experience with operation transformation in order to properly develop them.

Developers are encouraged to spend some time reading up on implementing operational transformation

beyond this paper.

SECTION 4.3 BOXES
As described in the Section 3.1 Boxes are designed to make it easy for application developers to

apply operations to their data and to retrieve the data without having to worry about the inner workings

of SURGE. To that effect below is the signature for PrivateBox<T>, a Box that manages data of type T and

encrypts all operations on the data before sending them to the cloud.

Signature for PrivateBox<T>:

applyDataOperation(Operation<T> op, WritePermission perm)

Page 25 of 38



applyACLOperation(Operation<ACL> op, WritePermission perm)

T GetDatao

ACL GetACLO

GetUpdateso

SendUpdateso

Additionally there are Box Factory methods for Creating and Retrieving Boxes with the signatures:

CreateBox<T>(IAddress address, WritePermission initialWritePermission, ReadPermission

userReadPerm, PublicReadPermission boxPermission)

GetBox<T>(IAddress address, WritePermission initialWritePermission, ReadPermission

userReadPerm)

While many of the above operations may be self-explanatory a few (notably the factory methods)

require a little more explanation. The major methods of PrivateBox revolve around getting and

modifying the data or ACL. However, as Boxes also deal with sending/receiving operations to/from they

somehow need to deal with all the particulars of interfacing with a particular cloud provider, etc. As a

result, this is taken care of in the constructor to the Box Factory which takes in an Updater interface for

dealing with cloud providers. Finally, there are Box constructors made available through the Box Factory.

Both take the address of the Box (to be used by the internal Updater), the "root of trust" for the object,

and the user's ReadPermission needed for decrypting incoming operations. However, the "CreateBox"

function also requires the starting PublicReadPermission (i.e. public encryption key) for the Box.

Page 26 of 38



SECTION 5 OPERATIONS AND PERMISSIONS LIBRARY
While SURGE offers a tremendous amount of flexibility in terms of designing new permissions,

there are a number of common use cases that developers would probably rather not implement

themselves. To that extent SURGE offers a standard library of Operations and associated Permissions.

SECTION 5.1 REPLACING COMPROMISED CREDENTIALS

In a tradition ACL model, as well as those proposed by alternative such as SPORC, there is a set

of administrators that is in charge of managing keys/permissions for access to the object content.

However, if the administrator Alice grants Bob read permission to the file and Bob's private key

becomes compromised or expires then Bob has to ask Alice to replace his old read permission with a

new one. However, using our framework this problem is easily resolvable by giving Bob a verifiable

permission to replace his key with a new key. If the scenario is, as in Figure 8, that Bob needs permission

to update his Read Permission then Bob can be granted the Type Based Permission to allow the

ReplaceReadPermissionsOperation

List<Pair<WrappedPermission,WrappedPermission>> OldKeysToNewKeys
PublicReadPermission NewBoxEncKey
EncryptedContainter<List<ReadPermission>> NewBoxKeyWrappingOldBoxKeys

ACL

Admin: Alice (AllPermission), Bob (Replace Read Perms)
Writers: ...
Readers: Bob = Bob{Box Priete Dec Key}, Alice =
BoxKeys: Box Public Enc Key

Replace Read Keys Operation

ACL

Admin: Alice (AllPermission), Bob(Replace Read Perms)
Writers: ...
Readers: Bob' = Bob'{Box Private Dec Key', Alice' = Alice{Box Private Dec Key')
BoxKeys: Box Public Enc Key', Box Public Enc Key'{Box Prinete Dec Key)

FIGURE 8 THE WAY THE ACL OF AN OBJECT SHARED BY ALICE AND BOB CHANGES AFTER BOB USES HIS PERMISSION TO
REPLACE HIS READ KEY.

Page 27 of 38



ReplaceWritePermissionOperation

PublicWritePermission OldKey
PublicWritePermission NewKey

ACL

Admin: Alice (AllPermission), Bob (Replace Bob Write Key)
Writers: Bob (InsertPermission, DeletePermission), Alice (InsertPermission)
Readers: ...
BoxKeys: ...

Replace Write Keys Operation

ACL

Admin: Alice (AllPermission), Bob' (Replace Bob Write Key)
Writers: Bob' (InsertPermission, DeletePermission), Alice (InsertPermission)
Readers: ...
BoxKeys: ...

FIGURE 9 THE WAY THE ACL OF AN OBJECT SHARED BY ALICE AND BOB CHANGES AFTER BOB USES HIS PERMISSION TO

REPLACE HIS WRITE KEY.

ReplaceReadPermissionsOperation. In this way Bob is allowed to generate new read keys for the Box,

and generate new Wrapped Permissions for all of the users with read permission to the Box. It is worth

noting that Bob can in fact commit incorrect WrappedPermissions for other users to deny them access.

However, this particular abuse is easily detectable (the user is denied permission) and easily recoverable

(either by rolling back to before the bad operation, or by having a user with a correct

WrappedPermission properly refresh keys). On the other hand, the scenario described in Figure 9,

where Bob is given access to update his Write Permissions, does not have any such downsides. To allow

Bob to update his Write Permissions he can be granted a ReplaceSelfWritePermission. Then when the

ReplaceSelfWritePermission is executed only Bob's Write Permissions are affected and they are simply

replaced with cloned permissions that use the verifyData function from the NewKey.

Page 28 of 38



SECTION 5.2 GROUPS

The ability to replace compromised/expired credentials directly leads to the ability to have user

groups. The idea behind a user group is that Alice would like to be able to share her documents with all

of her co-workers (which there may be many of) without having to separately encrypt and store the

Object Key for each co-worker. Additionally, it is a nice usability to be able to share objects with groups

of people without having to manually give permission to the same set of users for every object planning

on being shared.

Groups can be implemented by creating a Group data object which is essentially just two

asymmetric key pairs for signing and encrypting, and a list of names/identifiers of the objects shared

with the group. These key pairs should have the public key portion publicly visible, as a simple example

it could even be the name/identifier of the object. Users who have read permission to the Group have

access to the group's private asymmetric keys and can therefore pose as members of the group. For

instance, as shown in Figure 10, if Alice gives a Group G read/write permission to an object and Bob has

read permission to G then Bob can read/write to the object using G's private key. If G's group

administrator, Adam, later decides he wants to revoke Bob's group membership then Adam will change

G's asymmetric keys. Additionally, since the group object contains the objects shared with the group

Adam can go to every object and request that the group key be replaced with the new group key. It is

worth noting that depending on how particularly groups are set up the individual users in the group may

be empowered to change which key is used to keywrap the Object Keys of objects shared with the

group. This is important for legitimate reasons, such as if one of the group members' keys is

Page 29 of 38



compromised, but could also be used for more malicious purposes, such as replacing the group key used

by an object with a user's own key. However, such a change would be obvious to group users (i.e. easily
Group G

ACL

Admin: Adam (AllPermission)
Writers: Adam(UpdateGroupKeys)
Readers: Bob = Bob {Group Box Primete Dec Key)
BoxKeys: Box Public Enc Key

Group Public Data

PublicWritePermission PublicGroupVerilcationKey
PublicReadPermission PublicGroupEncryptionKey

Group Private Data

List<WritePermission> [PrineteGroupSigningKey]
List< ReadPerm ission> [Pdi~ateGroupDecryptionKey]
List<Address> objectsSharedWthGroup = [Alice's Box]

Apply Remoke Bob
Read Permission

UpdateGroupKeysOperation

WritePermission NewWritePermission
ReadPermission NewReadPermission

Alice's Box ACL

Admin: Alice (AllPermission), G(Replace G Write Key, Replace Read Keys)
Writers: G(InsertPermission)
Readers: G = G{Box Private Dec Key}, Alice =
BoxKeys: Box Public Enc Key

Adam Updates G's Read and Write Keys
41

Alice's Box ACL

Admin: Alice (AllPermission), G'(Replace G' Write Key, Replace Read Keys)
Writers: G'(lnsertPermission)
Readers: G'= G'{Box Private Dec Key'}, Alice'= ...
BoxKeys: Box Public Enc Key', Box Public Enc Key'{Box Prite Dec Key)

Group G

ACL

Admin: Adam (AllPermission)
Writers: Adam(UpdateGroupKeys)
Readers: None
BoxKeys: Group Box Public Enc Key', Group Box Public Enc Key'{Group Box Primete Dec Key)

Group Public Data

PublicWritePermission PublicGroupVerificationKey
PublicReadPermission PublicGroupEncryptionKey

Group Private Data

List<WritePermission> [PriveteGroupSigningKey]
List<ReadPermission> [PrieteGroupDecryptionKey]
List<Address> objectsSharedWithGroup = [Alice's Box]

Apply Update Group Keys
1k

Group G

ACL

Admin: Adam (AllPermission)
Writers: Adam(UpdateGroupKeys)
Readers: None
BoxKeys: Group Box Public Enc Key', Group Box Public Enc Key'{Group Box Priete Dec Key)

Group Public Data

PublicWritePermission PublicGroupVerficationKey'
PublicReadPermission PublicGroupEncryptionKey'

Group Private Data

List<WritePermission> [PrineteGroupSigningKey', PrieteGroupSigningKey]
List<ReadPermission> [PrivateGroupDecryptionKey', PriveteGroupDecryptionKey]
List<Address> objectsSharedWthGroup = [Alice's Box]

FIGURE 10 THE MODIFICATION OF GROUP G AND ALICE'S BOX WHICH IS SHARED WITH G, AS BOB IS REMOVED FROM G.

Page 30 of 38



detectable) and it would be clear which user performed the malicious change since the objects are

composed of operations which essentially results in a built in logging system.

Groups as put forth in this section act as a single entity. As a result if a particular member of a

group performs some malicious edit the group as a whole can be blamed, but not any particular user. In

some cases this may be the intended behavior, however if the developer wants to be able to keep track

of the users acting on behalf of the group this too is doable. In fact, the only two modifications are

required. The first is that G's public data should also contain the PublicWritePermissions for all users in

the group. The second is that instead of Alice granting G write permissions like

TypeBasedPermission(InsertOperation, G's RSAPublicVerificationKeyPermission) instead grant a

TypeBasedPermission(lnsertOperation, GroupWritePermission(G's RSAPublicVerificationKeyPermission,

GroupBox)). Then when the GroupWritePermission verified the signature it would check to see if any of

the users in G's list of user PublicWritePermissions verified the signature.2

SECTION 5.3 ANONYMITY

For some systems anonymity might be an important requirement. Our definition of anonymity is

that when a user Alice wants to share an object with Bob and Charlie she may know who Bob and

Charlie are (or maybe not, she may just know which public key to use but not who it's for), but Bob and

Charlie should not know who each other are. Additionally, Alice should not be able to pose as Bob or

Charlie. Finally, the system should allow for the existence of an "auditor" who will in the event of a user

performing malicious operations be able to identify the user responsible at least as well as the granter of

2 Note that going through all the users is unnecessary, and a pointer such as "#5 in the list" could be made as part
of the user's signature for the group.

Page 31 of 38



the original permission (for instance the should be able to identify Bob at least as well as Alice can,

assuming Alice is cooperative).

ACL

Admin: Alice (AllPermission)
Writers: ...
Readers: Alice = Alice{Box Pri,.ete Dec Key}
BoxKeys: Box Public Enc Key

Add Replaceable Read Operation

ACL

Admin: Alice (AllPermission), PseudoBob(Replace PseudoBob Replaceable Read)
Writers: ...
Readers: PseudoBob = PseudoBob{Box PriNate Dec Key}, Alice =
BoxKeys: Box Public Enc Key

Replace the Replaceable Read Operation

ACL

Admin: Alice (AllPermission)
Writers: ...
Readers: AnonBob = AnonBob{Box Private Dec Key}, Alice =
BoxKeys: Box Public Enc Key

FIGURE 11 ALICE GRANTING BOB AN ANONYMOUS READ PERMISSION

To implement this we can use a two-step process for granting permissions as shown in Figure 11

for Anonymous Read Permissions and Figure 12 for Anonymous Write Permissions. First, if Alice wants

to grant a permission to Bob then Alice generates a new asymmetric key pair and grants this new key

pair the permission she was going to give to Bob. Alice then communicates the generated key pair

(including the private key(s)) to Bob in the initial messages to him letting him know about his newly

granted permissions. When Bob first accesses the file he then replaces the key pair used for the

permission he received using the mechanism from "Replacing Compromised Credentials" with a new key

pair generated just for that object. Now while Alice knows that Bob is the one using the replaced

credentials Charlie does not, since the information regarding the initial set of (now replaced) asymmetric

Page 32 of 38



keys was done via the message that Alice sends Bob about his being granted a new permission, which is

secret to Charlie.

ACL

Admin: Alice (AllPermission)
Writers: Alice (InsertPermission)
Readers: ...
BoxKeys: ...

Add Replaceable Write Operation

ACL

Admin: Alice (AllPermission), PsuedoBob (Replace PseudoBob Write Key)
Writers: PseudoBob(insertPermission, DeletePermission), Alice(insertPermission)
Readers: ...
BoxKeys: ...

Replace the Replaceable Write Operation

ACL

Admin: Alice (AllPermission)
Writers: AnonBob(insertPermission, DeletePermission), Alice(InsertPermission)
Readers: ...
BoxKeys: ...

FIGURE 12 ALICE GRANTING BOB AN ANONYMOUS WRITE PERMISSION

As mentioned above we may like an auditor to be able to verify that Bob is in fact the person

associate with the new key K that Alice generated for him. To do so we augment the scheme above so

that instead of Alice giving Bob K and granting K the permission instead Alice gives Bob K and grants K

the permission to replace itself with the permission that Alice intends to give to Bob. When Bob goes to

execute the replace operation using K he must also sign the new public key he intends to use for the

object with his own private key and encrypt that blob for the auditor. In this way Alice and the auditor

know what operations Bob has committed, but neither Charlie nor anyone else should be able to

determine that information.

As an aside, there are a number of possible ways to deal with the issue of non-repudiation. For

instance the above scheme works as long as the auditor can know for sure that Bob has made at least

Page 33 of 38



one commit using the key that replaced K. However, if Bob denies ever having had K it may no longer

becomes possible to easily prove that he did. Some ways to deal with this include playing Alice and Bob

off each other since ultimately if there is malicious behavior caused by someone who had access to K it

must be either Alice's or Bob's fault/responsibility. One solution to this behavior is for Bob to encrypt

the message signed for the auditor in the above scheme for both the auditor and Alice, and perhaps

even have Alice sign this signed version to acknowledge that she believes Bob was making use of the key

that replaced K. This scheme is secure, however it requires more state management then the other

applications we have listed. However, it is likely that Bob will not be able to plausibly deny ever having

had access to the object due to other mechanisms external to the system and therefore for many

applications the first scheme mentioned may in fact be sufficient.

SECTION 5.4 INTERNAL MESSAGING

Throughout this paper there have been references to some "initial sharing message" between

the granter of permissions to an object, Alice, and the one receiving the permissions, Bob. While many

other systems such as SPORC and Dropbox tend to use external communication, such as email, for this

initial message our system allows this communication to be done internally. The requirements of such a

system are that any valid user of the system should be able to send a message to any other valid user,

the message should only be readable by the intended receiver of the message, and that the message

once received cannot be "un-received". As we are trusting the system managers for availability purposes

we cannot, without external communication, resolve issues where the system managers prevent some

users from communicating with other users whether maliciously or as a result of some unintentional

system partition.

To do this we can make use of our standard shared objects where the name/identifier of the

object is publicly and obviously related to the user's ID. Let our shared object be a list of "Message"

Page 34 of 38



objects, then the only operation that needs to be performed on it is the operation Append(message),

and any user of the system should be able to perform that operation. Since, as mentioned in the system

design, our system allows write-only permissions it is possible to grant users append permission without

read permission or any other write permissions. In fact, implementing the operation transform aspects

of Append is easy since we have no inherent requirements that one message is delivered before another

so it does not matter whether the object looks like [messagel, message2, message3] or [message1,

message3, message2]. Finally, it is trivial to grant everyone in the system the Append permission by just

having the client side validator always return true when asked if a user U has Append permission to the

object.

SECTION 6 EVALUATION
SECTION 6.1 APPLICATION: COLLABORATIVE TEXT EDITOR

To see the effectiveness of SURGE and its associated library of permissions in creating new

secure collaboration applications I decided to make a collaborative text editor. Both SURGE and the

application were built in C#. The vast majority of the collaborative text editor code was in creating the

GUI for the application and the hooks for thread-safe handling of updates. In fact, since the SURGE API

and Library allows for most of the actions that a user might want to perform on the data (modify it,

share it, modify permissions to it, etc.) to be as simple as for a non-secure alternative almost all of the

non-GUI work came in implementing the text-editor specific operations. In particular, the text-editor

needed to implement the Insert(Index, Data) and Delete(Index, Length) operations each of which was

about 100 lines of code (although the logic was the same as for the Insert and Delete operations

described in other operation transform documents such as the Google Wave paper and its open source

counterpart). Additionally, as an implementation choice instead of attempting to keep track of the

changes to the document as they occur I leveraged Google's open-source Diff Match and Patch

Page 35 of 38



(http://code.google.com/p/google-diff-match-patch/) to get the insert and delete operations by

comparing the document contents between two commits.

Likely the most complicated and difficult part of developing the collaborative text editor was in

deciding both what types of permissions to expose to the user (for instance, do I really want them to

have write-only permission?) as well as how to develop a GUI to properly expose permissions, groups,

etc. to the user. However, these are the types of concerns that application developers should have to

deal with since they concern making active decisions about which security mechanisms to expose to

their users, and how to do so. As a result it seems that SURGE, even as a prototype, makes developing a

secure cloud-based collaboration application even easier than making an equivalent cloud-based

collaboration application that attempts to secure user data by using server based authentication instead

of cryptography. Moving forward it should hopefully be an easy choice for application developers

looking to make new cloud-based collaboration applications like Google Docs or Office 365 to decide to

use SURGE and real cryptographic security for their users as opposed to using server side authentication

as Google and Microsoft do.

SECTION 7 RELATED WORK
There have been a number of papers in the area of secure file systems, including Cryptree

(Grolimund, Meisser, Schmid, & Wattenhofer, 2006), Tresorium, Plutus (Kallahalla, Riedel, Swaminathan,

Wang, & Fu, 2003), and SiRiUS (Goh, Shacham, Modadugu, & Boneh, 2003). While these systems

manage to get multiple users to be able to securely share resources stored in the cloud, because they

were developed as file systems they lack any reasonable ability for real time collaboration. Additionally,

while some of these systems, such as Tresorium, allows for Groups they are not implemented in a

generic way and therefore other benefits of SURGE (like non-administrative users being able to replace

their own credentials) are unavailable. Certainly none of these systems offer the ability for write-only

Page 36 of 38



permissions. In the world of secure real-time collaboration SPORC stands out as the major solution

providing offline access, confidentiality, integrity, dynamic ACLs and doing this all in real time. However,

as mentioned above SPORC misses some aspects like having groups, anonymity, and in general just

more flexible ACLs which would be quite useful for real world applications.

In particular, SPORC severely limits the ACL by restricting it to the 3 roles of read, read-write,

and administrator. Additionally, SPORC lacks any sort of groups and anonymity, as well as relying on

some external system to start the object sharing process. Even some basic real world security concerns

are left out, like the ability for a user to update his/her keys used in accessing stored data.

SECTION 8 CONCLUSION
A major goal for SURGE was to allow developers to create the types of cloud based collaboration

applications that have been in mainstream use for years, but in a way that does not require the clients

to have much trust in the service provider. OT has been a big help even in non-secure collaboration

systems like Google Wave by allowing these collaboration systems to be optimistic and even be able to

work while offline. The flexibility granted by using signed operations on an ACL to allow arbitrary

modifications to it leads directly to the ability to grant users the ability to update their credentials, use

groups, amongst other advantages. SURGE packages these aspects into an easy to use framework

complete with a library of useful permissions and operations for managing ACLs. Finally, SURGE's

usability and usefulness was demonstrated by creating a secure collaborative text-editor. Going forward

SURGE should hopefully enable new classes of secure collaborative cloud based tools to become

available to the general public. In particular the last decade's developments in standard collaborative

cloud based tools may be able to finally be used by the security conscious company or individual,

allowing them to be more productive than was previously possible.

Page 37 of 38



SECTION 9 REFERENCES
Feldman, A. J., Zeller, W. P., Freedman, M. J., & Felten, E. W. (2010). SPORC: Group collaboration using.

Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 337-350.

Goh, E.-J., Shacham, H., Modadugu, N., & Boneh, D. (2003). SiRiUS: Securing Remote Untrusted Storage.
Proceedings of the 2nd USENIX Conference on File and Storage Technologies, 29-42.

Grolimund, D., Meisser, L., Schmid, S., & Wattenhofer, R. (2006). Cryptree: A Folder Tree Structure for
Cryptographic File Systems. Proceedings of the 25th IEEE Symposium on Reliable Distributed
Systems (SRDS), 189-198.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., & Fu, K. (2003). Plutus: Scalable Secure File Sharing
on U ntrusted Storage. Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST), 29-42.

Lam, I., Szebeni, S., & Buttyan, L. (2012). Tresorium: cryptographic file system for dynamic groups over
untrusted cloud storage. Submitted to 4th International Workshop on Security in Cloud
Computing.

Page 38 of 38




