MEASURING THE IMPACT OF VOTING TECHNOLOGY ON RESIDUAL VOTE RATES

DELLA GRIGG
CALTECH

Key words: voting technology, residual vote rates
Measuring the Impact of Voting Technology on Residual Vote Rates

Delia Grigg
California Institute of Technology

Summary
In the wake of the 2000 election, the importance of knowing the impact of voting equipment on the number of uncounted ballots became evident. Using data from the 1988-2004 presidential elections, this paper estimates the effects of voting technologies on residual vote rates using several measurement techniques: a difference-in-differences estimator, fixed effects regression models and a propensity score matching technique. The pattern of the results is robust to the different methods. Paper ballots and lever machines produce the lowest rates of residual votes followed by optically scanned ballots, direct recording electronic machines and punch cards.

Data
- 1988-2004 Presidential Elections
- Election Returns
- Voting Technology
- Demographics
- Data on approximately \(\frac{1}{4} \) of U.S. Counties
- Residual Votes

Average Residual Vote by Machine Type and Year in U.S. Counties 1988-2004 Presidental Elections.

Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Punch Card</td>
<td>3.8%</td>
<td>3.1%</td>
<td>2.6%</td>
<td>2.0%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Lever Machine</td>
<td>1.8%</td>
<td>1.7%</td>
<td>2.2%</td>
<td>2.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Paper</td>
<td>2.7%</td>
<td>1.9%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Optical Scan</td>
<td>3.1%</td>
<td>3.1%</td>
<td>2.4%</td>
<td>2.1%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Electronic</td>
<td>3.6%</td>
<td>3.8%</td>
<td>3.3%</td>
<td>2.4%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Total</td>
<td>2.9%</td>
<td>2.4%</td>
<td>2.7%</td>
<td>2.3%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Residual Vote Rates by Presidential Election

3.5% 2.7% 3.1% 2.6% 2.0%

3.1% 3.1% 2.4% 2.1% 1.4%

Empirical Results

Methods
- Difference-in-differences

 Exploit the natural experiment that occurs when counties change technology

 Focus only on counties that switch from Punch Cards to Optical Scanners

 \[
 DD = \left[\hat{E}(Y|O) - \hat{E}(Y|P) \right] - \left[\hat{E}(Y|P) - \hat{E}(Y|P') \right]
 \]

 Fixed Effects

 All specifications are variations on the following equation:

 \[
 \ln\left(\frac{F(Y_{it})}{F(Y_{it})}\right) = \alpha + \gamma_i + \lambda_j + X_{3it} + \varepsilon_{it}
 \]

 1. state and year fixed effects
 2. county and year fixed effects
 3. county and year fixed effects as well as lagged dependent variable

- Propensity Score Matching

 Propensity score estimated via logistic regression of \(T_{ij} \) on \(X_{3ij} \)

 Nearest-neighbor matching with replacement, using Matching package for R (Sekhon 2005).

 Estimated average treatment effect (ATE): \(r = \hat{E}(Y|O) - \hat{E}(Y|P) \)

 Multi-valued treatment – measured change from Punch Cards to each other technology individually

Conclusions
- Pattern of the results is consistent across estimators.
- Matching estimates do not differ significantly from the linear models, suggesting that the linear specification is appropriate.
- Difference-in-differences estimators theoretically appropriate, but not enough data to distinguish estimates from zero.