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Abstract

Voters are now demanding the ability to verify that their votes are cast and counted
as intended. Most existing cryptographic election protocols do not treat the voter
as a computationally-limited entity separate from the voting booth, and therefore
do not ensure that the voting booth records the correct vote. David Chaum and
Andrew Neff have proposed mixnet schemes that do provide this assurance, but little
research has been done that combines voter verification with homomorphic encryp-
tion. This thesis proposes adding voter verification to an existing multi-candidate
election scheme (Baudron et al.) that uses Paillier encryption. A “cut and choose”
protocol provides a probabilistic guarantee of correctness. The scheme is straightfor-
ward, and could easily be extended to multi-authority elections. The feasibility of
the proposed scheme is demonstrated via a simple implementation.
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Chapter 1

Introduction

Requirements for an election vary by country and election type, but there are certain

properties that are a starting point for all voting systems.

1. Democratic – each eligible voter must be able to vote and may vote at most

once.

2. Private – a voter’s final ballot must be secret.

3. Uncoercible – a voter cannot prove the contents of her final ballot to anyone.

4. Accurate – the final tally is the sum of the cast votes.

5. Verifiable – an individual can prove to herself that her vote was cast as intended

and that it was counted, and anyone can prove that the final tally is accurate.

6. Robust – a small group of people cannot disrupt the election.

7. Fair – Partial totals should not be known early.

It is also important for an election to be convenient and flexible for the voters

and officials. Voters will be less likely to vote if the process is complicated and

difficult to understand. Officials are unlikely to adopt a system that cannot support

voting practices particular to their districts, such as write-in votes and instant runoff

elections.
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Paper-based voting systems have been the standard since the mid-19th century,

when secret votes became the norm. Electronic systems, often called Direct Recording

Electronic (DRE) systems, have become more prominent recently. In a society that

is increasingly turning to technology to automate and streamline everyday tasks, it

is natural to apply technology to an institution as important as elections. Electronic

voting systems have the potential to improve accuracy and security of elections as

well as alleviate many of the logistical headaches.

One of the major advantages of DRE systems is the potential for consistent im-

plementation of security policies. A machine does only what it is programmed to

do, whereas human behavior is situation-dependent and may bias the election sys-

tem. Despite this potential, most DRE systems still rely exclusively on the integrity

of election officials and training of poll workers to ensure the election maintains the

proper security and privacy. In order to believe her vote was properly recorded and

tallied, the voter must trust election officials in her district, the technicians that set

up the machines, the programmers that wrote the software, and the engineers that

designed the hardware. She needs to trust that the machines were stored in a way

that prevents tampering, and that they have been properly monitored since being

removed from storage. She needs to trust that they will be securely delivered to the

counting location after the polls close.

Since this issue has come to the forefront in 2000, there has been a push to in-

tegrate security into voting systems and thereby eliminate the reliance on trusted

third parties. In particular, many have focused on the problem of trusting that the

voting machine has recorded the proper vote. Of the two common types of cryp-

tographic voting schemes, only mixnets have proposals for addressing this problem.

David Chaum [7] has proposed using visual cryptography to allow the voter to verify

that the ballot encrypts the correct choices. Andrew Neff has proposed [19] using

receipts with codes corresponding to particular candidates. No such proposals exist

for homomorphic encryption voting systems, which have the advantage maintaining

greater privacy by never revealing the contents of individual ballots.
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The goal of this thesis is to provide a secure and private homomorphic voter-

verified election scheme. Chapter 2 of this thesis examines current voting technologies,

and Chapter 3 surveys existing cryptographic research in voting. Chapter 4 proposes

a new homomorphic scheme with a process for the voter to verify that the machine

records and counts her vote properly. The voter is presented with several possible

encrypted ballots and asked to choose one among them to use to cast her vote.

The remaining ballots are decrypted to reveal whether they were properly formed

by the voting machine. This straightforward “cut and choose” protocol provides a

probabilistic proof of the voting machine’s correctness. Section 4.4 presents a Java

implementation that was created to demonstrate the scheme. Finally, Chapter 5

compares the new scheme to those proposed by Chaum and Neff, and discusses areas

for future work.
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Chapter 2

A Brief Analysis of Current Voting

Technologies

This chapter will provide a brief discussion of voting systems used in current elec-

tions. This thesis focuses on electronic systems, but it is important to understand the

advantages and disadvantages of both paper-based and electronic systems. Section

2.1 analyzes paper-based systems and Section 2.2 focuses on electronic systems and

the arguments for and against voter verification.

A more thorough survey of the topic can be found in the Caltech/MIT Voting

Technology Project’s report [24]. The Election Reform Information Project has a

series of briefings [25] on election reform topics such as security.

2.1 Paper-based voting systems

Auditability is the primary argument for paper systems. If ballots are stored safely

and securely, there can be as many independent audits as needed. The fact that the

audits can be independent is especially important. Each recount involves examining

the original ballots, as marked and verified by the voter, rather than relying on a

machine’s recording of the ballots.

The second major advantage of paper-based ballots, voter verifiability, has become

more prominent since the 2000 U.S. presidential election. Many have looked to paper
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systems to guarantee voters that their ballots were cast as intended because all paper-

based systems involve permanently marking a piece of paper. After a voter makes her

choice, she can visually inspect the paper to ensure the correct choice is indicated. As

long as the voter selects a candidate, the vote indicated cannot be changed without

invalidating the race or ballot.

The primary types of paper systems are hand-counted, punch-card, and optical-

scan ballots. They differ in the method of marking choices and tabulating the results.

The paper systems vary in ease of use and ease of tabulation.

Both hand-counted and optical-scan ballots are marked by hand using a marker

or pen. The voter is asked to fill in an oval, put an “x” in a box, or complete a line

to indicate her choice. If the ballot is designed well, this is a very intuitive action,

and it is readily apparent to the voter which choice she has selected.

Using a punch-card ballot involves punching a hole to indicate a choice. The

voter is provided with a device that maps ballot locations to ballot choices, and must

punch holes to indicate her choices. This action is complicated, and it is often difficult

for users to associate their choices with the holes they punched, especially after the

ballot is removed from the polling device. This reduces the voter’s ability to verify

her choice.

With respect to tabulation, hand-counting is infeasible for elections on the scale

of US national elections [24]. It is too slow, expensive, and cumbersome given the

complexity of the ballots. However, hand-counting remains a backup method of

auditing all paper-based systems. A hand-count of a small statistical sample can

trigger a full recount if the distribution of votes differs significantly from that of the

electronic or mechanical count.

Optical-scan tabulators are more portable and less expensive than punch-card

machines, which makes it easier for them to be placed in polling locations. In-precinct

scanning allows an invalid ballot to be rejected immediately, so that the voter has an

opportunity to try again. The VTP [24] report shows that precinct-scan setups can

reduce the number of uncounted ballots by 50%.

The punch-card machines are more expensive and cumbersome and have been
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shown to lose more votes than both hand-counted and optical scan systems [24].

This was highlighted during the 2000 presidential election when the Florida recount

was bogged down by punch-cards with holes that were not definitively punched [15].

2.2 Electronic voting systems

There are two main groups of supporters for electronic voting systems: voters inter-

ested in the convenience and usability of the systems, and election officials interested

in a simpler, more flexible, and less costly system. No studies that conclusively demon-

strate that electronic voting is more usable exist, mainly because there are so many

different systems. This technology is also in its infancy and the cited advantages are

not necessarily apparent in current systems.

2.2.1 Usability advantages of DREs

The length of current ballots creates problems for paper-based systems. Elections are

rarely a one-race affair and there are typically many more than two candidates for each

race. Elections are also used as an opportunity to present referenda on public issues,

which are typically written using legal terminology and are difficult to understand.

The result ballots that are often double sided and printed in small font sizes. Even

with the Federal Election Commission’s mandated minimum 6.3 mm character size

[9], many elderly and impaired voters are unable to read ballot text.

Electronic systems do not need to display all of the ballot information at once;

instead races can be displayed individually. This allows the font size to be increased.

For voters with vision impairments, there could be settings with even larger font sizes

and greater contrast.

The issues of ballot design go far beyond font size. The ballots should be designed

to convey which candidates are running in which races and how to cast a vote for

each candidate. However, many current designs fail to do this well, and voters miss

key information [24].

An under-vote occurs when a voter does not select a candidate for a race. While it
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is allowable for a voter to choose not to vote in a race, if the voter casts an under-vote

because she did not see the race, it is an error. With large and complicated ballots,

these errors are more common.

With DRE machines, races can be presented individually. The voter can be forced

to either choose a candidate or acknowledge that she is not voting in the race. This

could reduce under-votes because the voter must explicitly choose not to vote in a

particular race.

Using a paper-based ballot, a voter can mark multiple selections for a race where

only one selection is allowed. This is known as an over-vote. Whether this is due to

stray marks or confusion, the result is that the voter’s choice is invalidated because

election officials are unable to determine the voter’s intent. A computer can disallow

selecting more than the allowed number of candidates and thereby eliminate over-

votes.

Another advantage of DREs is the voter’s ability to change her ballot without the

intervention of election officials. If a voter marks her ballot, then wishes to change

her choice, most paper-based systems would require that she turn in her old ballot.

This policy results in a lack of privacy for the voter, who may have only marked one

choice incorrectly and is now forced to reveal the rest of her choices. To avoid this,

electronic systems allow voters to change their votes without any intervention from

election officials. Whether doing so is simple and straightforward depends largely on

the user interface.

The extent to which the improvements discussed above are present is dependent

on the quality of the user interface. Many current DREs do not achieve these im-

provements. If electronic systems become widely used, the user interface is sure to

improve as more vendors compete to deliver electronic voting systems, and as data

about the usability of individual systems becomes available.

Accessibility and DRE systems

The American Association of Disabled People (AADP) is one of the most vocal voting

groups supporting the DRE voting machines. The AADP favors the machines because
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they are more accessible than any current systems – in particular, they allow disabled

people to cast secret ballots. With paper-based systems, many disabled people rely

on another person to fill out their ballots; this destroys the secrecy of the process and

leaves such voters wondering if their votes were cast as intended.

DRE machines can be adapted to accommodate disabilities and allow such voters

to vote without assistance. Vision-impaired voters can use headphones and systems

that provide verbal feedback. Mobility-impaired voters can use alternative input

mechanisms to make their selections. These features provide disabled voters with

the ability to vote unassisted, an ability most voters take for granted. In addition to

increasing accessibility and improving the secrecy of voting for disabled people, these

features are mandated by the Help America Vote Act [22].

2.2.2 Logistical advantages of DREs

For election officials, DREs provide the potential to reduce costs and alleviate many

problems in current processes. Using paper-based voting systems, election officials

must securely and efficiently print, distribute, transport, and count millions of ballots.

Managing this paper is an enormous logistical feat, and even with many years of

accumulated wisdom, election officials have not gotten it entirely right. Voting experts

regularly describe lapses of security such as ballot boxes that are unaccounted for

hours after the polls close, a time period during which they could easily be altered

[24].

Each voting district, and possibly each polling location, may have a different ballot

due to differences in local races. In primary elections, there must be different ballots

for each party. Many voting districts must also provide ballots in different languages

for voters who are not native speakers of English. (In some cases, it is not even

possible to print ballots, as certain native languages in Alaska and the northwest have

no written form.) The result is an enormous number of ballots that must be printed

and distributed to specific locations. Electronic voting machines can easily support

multiple ballots, and could even support audio ballots for non-written languages.

The differences between ballots prevent voters from voting at an alternate polling
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location if the assigned location is not conveniently located. Electronic voting may

allow voters to easily vote at an unassigned polling location.

Undeniably, maintaining the security of paper ballots after they are cast is ex-

tremely difficult, especially if they are counted centrally as they are in many large

districts. Additionally, officials must retain and securely store ballots for 22 months

after they are cast [9]. With DREs, transferring ballots to a central location is re-

duced to setting up a secure connection to the polling locations or transporting a

small amount of electronic material, rather than boxes of paper. Storing ballots

on electronic media requires much less physical space, and the media can be easily

destroyed when no longer needed.

Another major problem with paper ballots is the difficulty of counting them.

Hand-counting has the advantage of being easily observed by multiple parties, but is

largely impractical with voting districts as large as Los Angeles County, which has

almost four million registered voters [17]. Automated methods, such as optical scan

ballots, speed up the process but vote counts can be inconsistent, as ballots may be

marked in ways that are unclear to the machines, resulting in recounts that differ

from the original counts even if no fraud exists [12]. DRE machines produce final

vote counts instantaneously and consistently. Consistency and speed are appealing

to voting officials because the voting public appreciates immediate and definitive

results.

DRE voting machines have a high initial cost, but the repeat cost of individual

elections is lower than with paper-based systems. Printing ballots is very expensive

and must be done for each election. The VTP report [24] calculated that DRE

machine with a life span of 15 years is more expensive than an optical scan machine

over the same time period. However, if the machine lasts 20 years, the cost is the

same.

2.2.3 Disadvantages of DREs

The major criticism of the DRE voting systems is that they give voters no confidence

that the machines are doing the proper thing. After a voter submits her ballot, she has
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no way of knowing that the machine is recording and counting the vote as entered.

To believe this occurred, the voter must trust that the vendors did not intend to

misrecord votes, that the software developers performed their job competently, that

the software was properly certified, and that the machine is running the certified

software. This also assumes that the certification standards are high enough to ensure

proper security.

The problem with trusting the vendors’ intent is that the companies making these

machines may not be unbiased parties. The companies that produce voting machines,

as well as the executives that run those companies, have a history of supporting and

donating to particular political campaigns[29]. Furthermore, some of the officials

responsible for selecting and regulating electronic voting equipment are elected. There

is clearly a conflict of interest in these cases.

In other situations where partisan individuals are responsible for critical electoral

processes, efforts are made to disclose their actions as much as possible and to allow

members of any political group to participate. One example is the presence of party

observers at poll closings. Poll workers, themselves of varying political beliefs, are

watched by representatives of any candidates that choose to provide them. Imposing

a similar process on the production of voting machines is not feasible.

Vendors claim that suspicions of bias are unfounded because the software must

go through a verification process. However, detecting intentionally faulty software

is very difficult. For example, a Rice University professor asked computer science

students to introduce bugs into a simple voting system and asked other students to

examine the code for bugs [2]. Despite a small code base, only 2,000 lines, some

bugs went undetected. Compare this to commercial voting systems with over 50,000

lines of code [2]. Even with professionally trained auditors, malicious bugs could go

undetected.

Beyond the issue of vendor intent is the problem of vendor competency. It is

extremely difficult to achieve correctness in software, as evidenced by the bugs dis-

covered in commercial software on a daily basis. While some bugs are to be expected,

some of those discovered in current election systems provide very little confidence in
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those writing the software. One of the more publicized such bugs was the hard-coding

of keys into the software [30]. This meant that every election district using that soft-

ware had the same key, and that the key could not be changed without changing the

underlying software. These keys were used to encrypt all of the ballots and to set up

the memory cards used to authenticate voters. Knowledge of these keys could allow

an adversary to cast extra votes, among other things.

One way of reassuring the public of the impartiality and correctness of the voting

system is to test the system using predefined standards. Currently, election systems

are certified by individual states, based on results from both federal and state tests.

These tests generally include auditing the code for errors. The current process is

considered inadequate by many, especially because “commercial off the shelf” software

is allowed to be included without being audited for errors. Commercial off the shelf

software, such as operating systems purchased by vendors from other companies, is

used as-is in the voting machines. The current process also treats certification as

a one-time process and does not provide an opportunity for citizen involvement or

significant public disclosure [12]. The result is that voter confidence is not particularly

high. An improved certification process would help improve trust, but examining the

code and running tests can never completely ensure correctness, especially if the

programmer is malicious.

Another way of improving security and gaining public trust is to require that

voting machine software be open source. This solves the problem of transparency by

allowing the public to participate in the development process as coders or observers.

However, open source based voting machines are not likely to be profitable. A more

limited approach would be to make the source code publicly available for evaluation

only. In the end, open source can not completely eliminate errors or malicious code,

although it may improve public trust.

Even if code can be certified such that the public has complete confidence in it, this

will not ensure that the software running on the voting machines is the certified code.

Vendors have a history of putting uncertified software onto voting machines without

the knowledge of the election districts [29, 31]. This problem can be prevented with
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rigorous oversight of the installation process and using hash libraries [21] to compare

installed software to certified software. These measures may slow down the process

of fixing bugs, but they will make the maintenance of the software more transparent

to the public.

Other voting systems have similar problems with achieving trust, but manage to

avoid the criticism heaped on DREs because it is possible to recover from fraud by

recounting ballots. DRE voting machines have no meaningful recount ability. Optical

scan machines use software that is susceptible to the same fraud and correctness errors

as DREs, but the ballots are not affected by such errors. Optical-scan ballots can

be manually recounted if necessary. In contrast, the only copies of the ballot on a

DRE machine are the ones the machine chooses to store. Even if large errors such as

obvious candidate bias are detected, no recovery is possible.

2.2.4 DREs and voter verification

It is clear that there are many reasons to worry about the DRE machines, even if some

problems can be alleviated in the long term. The question of providing assurance that

a voter’s vote is cast as intended and counted properly remains to be solved. Some

form of “voter verification” is necessary. Rebecca Mercuri was apparently the first

to suggest that DREs print a paper receipt that the voter cannot take home [18].

The machines would print out a receipt behind a glass window, so that the voter

would be prevented from marking or removing it. The voter would then have the

opportunity to examine the receipt before choosing to submit her vote. If approved

by the voter, the receipt would be put into a sealed ballot box. The receipt serves as

a “voter verified paper trail” or “voter verified paper audit trail.” This method makes

recounts possible, since the paper ballots approved by the voter can be recounted.

While the idea of a voter verified paper trail has gained support from many law-

makers and computer scientists, there are also many who strongly object to them.

Using the term “contemporaneous paper trail,” they criticize the effectiveness, ex-

pense, and feasibility of such a system [28].

When using voter verified paper trails the question is, “What is the official bal-
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lot?” While state laws will ultimately determine the answer, the paper ballot, not

the electronic ballot, is supposed to provide the final vote count in the event of a

challenge. Essentially, the DRE machine has become a device that records the ballot

on paper and maintains an unofficial count. The obvious problem is that many of the

disadvantages of a paper-based voting system are retained, including some printing

costs, the expense of storing the receipts, and the difficulty of managing the paper

securely at all times.

Paper trails also reduce the usability of DRE machines for disabled voters. The

vision-impaired would not be able to verify the paper receipt, and many object to

such systems because resources used for creating and maintaining paper trails could be

used instead to improve the overall accessibility of the machines [22]. The practicality

of these machines is another serious issue. Many opponents point to the possibility

that the printers will fail as a new election day disaster [28].

The goal of the voter verified paper audit trails is worth pursuing. A voter should

be able to convince herself that her vote was recorded as she intended and that the

vote was included in the final tally. However, counting paper ballots is a technological

step backwards. Instead, modern cryptography can offer similar assurances without

losing the advantages of modern electronic systems.
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Chapter 3

Use of Cryptography in Voting

Systems

The main problem with current DRE systems is that they require a large amount

of trust from the election officials, who are either elected officials themselves or else

appointed by elected officials. However, there has been a significant amount of re-

search on providing cryptographic schemes that reduce this burden of trust. A more

detailed survey of the topic can be found in Secure Electronic Voting [13].

The problem is that cryptography is often added as an afterthought, rather than

than as an integral part of the voting system. An end-to-end scheme allows the voter

to verify that her vote was cast as she intended and that the ballot cast was included

in the final tally. This should all occur in a secure manner that ensures a fair election

while maintaining the privacy of the voters.

There are three general classes of cryptographic voting protocols: those based on

blind signatures, those based on mix-nets, and those using homomorphic encryption.

Historically, cryptographic research has focused on proving that the tally is the sum

of all the ballots, and that the contents of individual ballots remain secret. Crypto-

graphic voting research considered the voter and the polling booth to be one entity.

In 2004, two new mix-net based schemes due to Chaum [7] and Neff [20] were pro-

posed that provide true end-to-end verification and enable the voter to verify that

the voting machine recorded the correct vote.
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Section 3.1 describes homomorphic encryption and its applications to voting. Mix-

net voting systems are described in section 3.2, and two voter-verifiable mix-net

schemes are discussed in section 3.3.

3.1 Homomorphic Encryption

Homomorphic encryption is naturally suited to election schemes. It allows the votes

to be tabulated before decryption, improving privacy. For example, in additive homo-

morphic encryption, the product of two ciphertexts is a third ciphertext that encrypts

the sum of the two original plaintexts.

More generally, let ⊥ be an operation, m1, m2 be two messages, and let E[m] rep-

resents the encryption of the message m under an encryption scheme. The scheme is

homomorphic for the operation ⊥ if you can easily find a ciphertext c = E(m1⊥m2)

from E(m1) and E(m2). That is, the operation ⊥ can be performed on the under-

lying messages without revealing them. For election systems, a scheme where ⊥ is a

addition is most useful.

Voting applications may use additive homomorphism to allow tallying to be done

before decryption. With other forms of encryption, all the ballots are dissociated from

their identifying pieces of information and then decrypted and tallied. If homomorphic

encryption is used, the tallying can be done while the votes are still encrypted, and the

final total can then be decrypted. This effectively hides the contents of the original

ballots while providing an publicly computable tally.

Section 3.1.1 presents a basic two-candidate homomorphic election scheme. Sec-

tion 3.1.2 describes Paillier encryption, while 3.1.3 proves the security and one-

wayness of the scheme. Possible improvements to the basic scheme are discussed

in 3.1.4, and an expanded multi-candidate version is described in 3.1.5.

3.1.1 A very basic homomorphic encryption scheme

Before introducing the Paillier encryption scheme, it is necessary to examine exactly

how homomorphism can be used in an election protocol.
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The most basic type of election is a two-candidate race with v voters where ev-

eryone raises their hand for their preferred candidate. To construct an equivalent

electronic system, let 0 represent a vote for the first candidate and 1 represent a vote

for the second. Everyone posts their vote in some public manner. If the sum of all the

votes is less than v/2, the first candidate wins. If it is greater, the second candidate

wins. If the sum is exactly equal to v/2, there is a tie. However, this scheme obviously

lacks privacy. If each voter instead posted a homomorphic encryption of her vote, the

encrypted ballots could be multiplied and then decrypted to find a plaintext sum of

the votes.

There are many issues with this simplistic approach. The first is that there is no

proof that the voter submitted a valid vote. Instead of an encryption of 0 or 1, the

voter could submit an encryption of a larger number or a negative number and thereby

corrupt the sum. Potential for fraud also exists in the decryption operation – it must

be done in a verifiable way. Giving any one authority the power to decrypt can also

threaten the privacy of individual votes because that authority now has access to the

contents of every voter’s ballot. Most races contain more than two candidates, so the

candidates must be encoded in a way that preserves the summation property. Another

major issue for homomorphic election schemes is support for write-in candidates.

3.1.2 Paillier encryption

A public-key encryption scheme frequently used in homomorphic voting systems was

designed by Pascal Paillier [23]. It is additively homomorphic and computationally

efficient to decrypt. It will be the basis of the scheme proposed in chapter 4.

Paillier encryption is provably secure and one-way based on the Decisional Com-

posite Residuosity Assumption (DCRA) and the Computational Composite Resid-

uosity Assumption (CCRA). We present here an explanation of the scheme drawn

from the original paper [23].

Let p and q be two large primes and n = p∗q. Two functions we will use frequently

are Euler’s totient function (φ) and Carmichael’s function (λ). For n, the product of

two primes, φ(n) = (p − 1)(q − 1) and λ(n) = lcm(p − 1, q − 1). These functions are
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used because they have nice properties over the multiplicative group Z∗
n2 :

|Z∗
n2 | = φ(n2) = nφ(n);

and

wλ(n) = 1 (mod n),

wnλ(n) = 1 (mod n2),

for any w ∈ Z∗
n2 .

We will also make use of the function L(u) = (u−1)/n, ∀u ∈ {u|u = 1 (mod n)}.
A common term in modular arithmetic is residue, where a is a residue of b modulo

n if a = b (mod n). A number z is said to be an n-th residue modulo n2 if there exists

a y ∈ Z∗
n2 such that z = yn (mod n2). Each n-th residue z modulo n2 has n such

roots y less than n [23]. The set of all n-th residues is a multiplicative subgroup of

Z∗
n2 . Each n-th residue z has n roots, of which exactly 1 is less than n. In particular,

the n-th roots of 1, called the n-th roots of unity, are (1 +n)x = 1 +xn (mod n2) for

x ∈ {0, · · · , n − 1}.
We can now define the function εg, which maps Zn × Z∗

n to Z∗
n2 :

εg(x, y) = gx ∗ yn (mod n2)

This will be our encryption function, where x is a message encrypted under public

key g. To use εg as an encryption function, we need to show it is bijective in message

for a fixed key. If we choose g such that the order of g is a nonzero multiple of n, εg

can be inverted.

Lemma 1 (equivalent to Lemma 3 from [23]): If the order of g is a nonzero

multiple of n then εg is a bijective map from Zn × Z∗
n to Z∗

n2.

Proof: [Proof expanded from Paillier’s original paper [23].] We will show εg is

bijective for g when g has order equal to αn for all α ∈ {1, · · ·λ(n)}.
Let h be the order of g. To show that εg is injective, we will demonstrate that for

any c ∈ Z∗
n2 , x1, x2 ∈ Zn, y1, y2 ∈ Z∗

n, c = εg(x1, y1) = εg(x2, y2) if and only if x1 = x2

and y1 = y2. Let

gx1yn
1 = gx2yn

2 (mod n2),

which can be simplified to
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gx1−x2(y1y
−1
2 )n = 1 (mod n2).

We can then raise both sides to λ(n) and get

gλ(n)(x1−x2)(y1y
−1
2 )λ(n)n = 1 (mod n2).

When we introduced the function λ(n), we also made the following statement: for

all w ∈ Z∗
n2 , wλ(n)n = 1 (mod n2). This implies

gλ(n)(x1−x2) = 1 (mod n2).

From this, we know that λ(n)(x1 −x2) is a multiple of g’s order, h. By definition,

gcd(λ(n), n) = 1, therefore x1 − x2 = 0 (mod n) and x1 = x2 (mod n).

If we go back to

gx1−x2(y1y
−1
2 )n = 1 (mod n2),

we can now determine that (y1y
−1
2 )n = 1 (mod n2), which makes y1y

−1
2 an n-th

root of 1. The roots of 1 take the form 1 + βn for β ∈ {0, · · · , n − 1}, therefore

y1y
−1
2 = 1 + βn (mod n2) and y1 = y2 + y2βn (mod n2). From this we get y1 = y2

(mod n). Therefore, εg is injective for the chosen g.

Using Euler’s totient function, we can show that the two groups Zn ×Z∗
n and Z∗

n2

each have nφ(n) elements and are therefore the mapping is surjective.

In practice, we find g with an order that is a nonzero multiple of n by choosing a

random element of Z∗
n2 and testing if gcd(L(gλ(n) (mod n2)), n) = 1 as described by

Paillier [23].

Lemma 2: gcd(L(gλ(n) (mod n2)), n) = 1 implies the order of g is αn for some

α ∈ {1, · · · , λ(n)}.
Proof: Let the order of g modulo n2 be h. By Carmichael’s formula, h divides

λ(n2) = λ(n)n. Therefore, gλ(n) = 1 (mod n) and gλ(n) = (1 + n)x (mod n2) for

some x ∈ {0, · · · , n − 1}. The order of (1 + n)x modulo n2 is n ∗ 1/x (mod φ(n2))

because (1 + n)n = 1 (mod n2). Similarly, the order of gλ(n) is h/λ(n). We can now

see that h ∗ 1/λ(n) = n ∗ 1/x (mod φ(n2)) or xh = λ(n)n (mod φ(n2)).

Given this, we can express L(gλ(n) (mod n2)) as L(1 + xn (mod n2)) = x. We

can now simplify gcd(L(gλ(n) (mod n2)), n) = 1 to gcd(x, n) = 1. Given this and
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that xh = λ(n)n mod φ(n2), n must divide h and the order of g is a nonzero multiple

of n.

We can now define Paillier’s encryption scheme, the first described by Paillier [23].

The public key is (n, g), where n is a product of two large primes and g is chosen such

that εg is bijective. The secret key is λ(n). To encrypt the message m ∈ Zn under

public key (n, g), we choose a random r ∈ Z∗
n and use

Eg[m, r] = εg(m, r) = gmrn (mod n2).

To decrypt the ciphertext c with private key λ(n) we use

Dg[c] = L(cλ(n) (mod n2))

L(gλ(n) (mod n2))
(mod n).

The g will be omitted from Eg and Dg when it is obvious from the context.

Lemma 3:Given c = E[m, r], D[c] = m. [Equivalent to Lemma 7 of [23]].

Proof: [Proof expanded from Paillier’s original paper [23].] We first substitute in

c = gmrn (mod n2) to get

D[c] = L(gλ(n)mrλ(n)n (mod n2))

L(gλ(n) (mod n2))
(mod n).

From Carmichael’s formula, rλ(n)n = 1 (mod n2) and gλ(n) is an n-th root of unity

and equals xn + 1 mod n2 for some x ∈ {0, · · · , n − 1}. This gives us

D[c] = L((xn+1)m (mod n2))
L(xn+1 (mod n2))

(mod n).

We can simplify (xn + 1)m (mod n2) to mnx + 1 (mod n2) and end up with

D[c] = mx
x

(mod n) = m (mod n).

One of the main advantages of Paillier encryption is that it is additively homo-

morphic. If we choose some m1, m2 ∈ Zn and r1, r2 ∈ Z∗
n, and let

c1 = E[m1, r1] and

c2 = E[m2, r2], we have

c3 = c1 ∗ c2 (mod n2) = E[(m1 + m2 (mod n), r3], for some r3 ∈ Z∗
n.

Lemma 4: Paillier encryption is additively homomorphic. [Equivalent to Lemma

5 of [23].]
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Proof: Let c1 = E[m1, r1] = gm1rn
1 (mod n2), c2 = E[m2, r2] = gm2rn

2 (mod n2).

We get

c3 = c1 ∗ c2 = gm1+m2(r1r2)
n (mod n2).

This will decrypt to m1 + m2.

Security and one-way properties of Paillier Encryption

The problem of distinguishing an n-th residue from a non-n-th residue modulo n2 is

referred to as the Composite Residuosity problem, or CR[n]. An important property

of CR[n] is that it is randomly self-reducible: a particular instance of the problem

can be randomly transformed into a derived instance and a solution to the derived

instance can be transformed into a solution to the original instance. That is, if we

are given an oracle O that answers CR[n] for a random z ∈ Z∗
n2 with probability ρ,

with have an ρ chance of using O to determine CR[n] of a particular w ∈ Z∗
n2 .

Lemma 5: CR[n] is randomly self-reducible over w ∈ Z∗
n2.

Proof: Given w ∈ Z∗
n2 , we let w′ = w ∗ rn (mod n2), where r ∈R Z∗

n2 . If O
provides an answer to CR[n] for w′, the same answer can be returned for CR[n] for

w. Otherwise, fail.

To see that this works, consider the two possible cases. If w is an n-th residue,

there will exist a root y such that w = yn mod n2. Therefore, w′ = yn ∗ rn (mod n2)

and will be an n-th residue. If w is not an n-th residue, w′ cannot be an n-th because

rn mod n2 is an n-th residue and n-th residues modulo n2 are a multiplicative group.

If r is chosen randomly from Z∗
n2 , w′ will be randomly distributed in Z∗

n2 and the

probability of choosing it such that O will answer CR[n] is ρ. Therefore, CR[n] is

randomly self-reducible over all possible w ∈ Z∗
n2 .

The assumption that deciding CR[n] is computationally hard is referred to as the

Decisional Composite Residuosity Assumption (DCRA). This is dependent only the

choice of n due to random self-reducibility.
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Theorem 1 (equivalent to Theorem 15 from [23]): Paillier encryption is

semantically secure if and only if DCRA holds.

Proof: [Proof expanded from Paillier’s original paper [23].] We will first show

that if Paillier encryption is semantically secure, DCRA holds, by proving the con-

trapositive. Given m0, m1 ∈ Zn and c ∈ Z∗
n2 , where c is the encryption of either

m0 or m1, we need to determine which message c encrypts. We are also given an

oracle ODCRA(w) which returns whether w is an n-th residue modulo n. If c = gm0rn
1

(mod n2), cg−m0 = rn
1 (mod n2) and will be an n-th residue. Therefore, if and only

if ODCRA(cg−m0) is true, c is an encryption of m0.

We will now show that if DCRA holds, Paillier encryption is semantically secure.

Given w ∈ Z∗
n2 and an oracle for Paillier encryption, we can determine whether w is

an n-th residue modulo n2 by constructing c = gxw (mod n2), x ∈ Z∗
n, and giving c

and x to the oracle. If it accepts c as a valid encryption of x, w is an n-th residue

modulo n2.

Therefore, Paillier encryption is semantically secure based on DCRA.

To prove the one-wayness of Paillier encryption, we will introduce the n-th Resid-

uosity Class Problem of base g, or Class[n, g]. This is the problem of computing

x ∈ Z∗
n2 given w = εg(x, y). This problem is randomly self-reducible over both w and

g.

Lemma 6 (equivalent to Lemma 6 from [23]): Class[n, g] is random self-

reducible over w ∈ Z∗
n2.

Proof: [Proof from Paillier’s original paper [23].] We are given n, the product

of two primes, g, a member of Z∗
n2 with an order that is a nonzero multiple of n,

and w ∈ Z∗
n2 . We can create a random instance w′ = wgγωn (mod n2), where

γ ∈R Zn, ω ∈R Z∗
n. Let x′ be the result of the Class[n, g] oracle on w′. We can solve

for

x = x′ − α (mod n).
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Lemma 7 (equivalent to Lemma 7 from [23]): Class[n, g] is randomly self-

reducible over all g with order equal to αn for some α ∈ {1, · · · , λ(n)n}. That is, for

all g1, g2 with orders a nonzero multiple of n, Class[n, g1] is equivalent to Class[n, g2].

Proof: [Proof expanded from Paillier’s original paper [23].] Earlier we showed εg

to be bijective, so we can assume inverses exist for all proper g. For any w ∈ Z∗
n2 ,

there exists (x1, y1) = ε−1
g1

(w) and (x2, y2) = ε−1
g2

(w), x1, x2 ∈ Zn and y1, y2 ∈ Z∗
n. Let

(z, y3) = ε−1
g1

(g2). Therefore, g2 = εg1(z, y3) = gz
1y

n
3 (mod n2).

We can substitute in for g2 in w = εg2(x2, y2) and get

w = (εg1(z, y3))
x2yn

2 (mod n2).

We can simplify to get w = gzx2(y2y
x2
3 )n (mod n2) and w = εg1(zx2, y2y

x2
3 ).

However, we know that ε is bijective, therefore x1 = x2z (mod n). Another way

of expressing this is Dg1[w] = Dg2 [w]Dg1[g2]. We can also establish that Dg[g] = 1

for all proper g by observing g = εg(x, y) = gxyn (mod n2) for x, y = 1. Using this

identity, we get Dg1[g1] = Dg2 [g1]Dg1[g2].

If we have an oracle for Class[n, g1] we can determine Class[n, g2] of w by asking

the oracle for ε−1
g1

(g2) and ε−1
g1

(w) and solving ε−1
g2

(w) = ε−1
g1

(w)ε−1
g1

(g2). Therefore,

Class[n, g] is random self-reducible over g.

Class[n] is Class[n, g] for a specific g, conditioned only on n. Due to random

self-reducibility, this is equivalent to Class[n, g]. The Computational Composite

Residuosity Assumption (CCRA) is the conjecture that Class[n] is intractable. It

is obvious that Paillier encryption is one-way if and only if CCRA holds because

inverting Paillier is by definition the Composite Residuosity Class Problem.

Paillier’s original paper [23] connects the DCRA and CCRA to several problems

generally believed to be in intractable. Class[n], the basis of CCRA, is reducible to

factoring n and CR[n], the basis of DCRA, is reducible to Class[n].
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3.1.3 Improved homomorphic encryption schemes

Since Paillier first proposed his encryption scheme and suggested its relevancy to

voting, there have been many different approaches to the problems mentioned at the

end of 3.1.1.

One scheme is the multi-candidate, multi-authority scheme proposed by Baudron,

Fouque, Pointcheval, Poupard, and Stern [3]. It allows races with multiple candidates

and makes use of threshold cryptography to distribute the private decryption key

among multiple authorities. The distribution of the key in this manner safe-guards

the voters’ privacy against malicious authorities. This scheme also adds verification

to the encryption and decryption stages of the election scheme.

Another homomorphic voting scheme is the vector-ballot approach proposed by

Kiayias and Yung [16]. This scheme is unique in its attempt to support write-in

candidates. It makes use of mix-nets to anonymize the write-in ballots but the rest

of the system takes advantage of the efficiency of homomorphic encryption.

3.1.4 Multi-candidate homomorphic election systems

Drawing from Baudron, Fogue, Pointcheval, Poupard, and Stern [3], this section de-

scribes a multi-candidate election scheme based on Paillier homomorphic encryption.

To set up a k-candidate election for v voters, we choose a m to be an integer

greater than v. Note that m can be any integer greater than v and can be chosen to

be something computationally convenient such as the next power of 2 larger than v.

The public key n = pq must be greater than mk, g will be chosen in the usual way.

The candidates must be assigned an ordering and candidate i ∈ {0, · · · , k − 1} will

be uniquely represented as mi = mi.

To vote for candidate i, the voter must encrypt mi under the public key (n, g).

She will then need to provide a zero-knowledge proof that her ballot is an encryption

of a valid vote. To prove that ballot b = E[mi, r] = gmirn, r ∈R Zn for some

mi ∈ M = {m0, · · · , mk−1} the voter must present a zero-knowledge proof. We use

non-interactive zero-knowledge proofs because this information will be posted publicly

34



and we wish to preserve the privacy of the voters while still allowing for universal

verification.

To use the proof described by Baudron, Fouque, Pointcheval, Poupard, and Stern

[3], the voting machine would compute k− 1 values, one for each unchosen candidate

in the final ballot, based on the ciphertext and the unused messages. The verifier gives

the machine a random challenge to which it must respond with the computed values

and one final value computed based on the challenge. This prevents cheating by the

voting machine because it is not possible to compute the final value if the ciphertext

does not encrypt a message from M . This particular proof has length O(k), but an

O(log(k)) proof has been described Damgard, Jurik and Nielsen [11].

After the ballots bi are submitted for all i ∈ {0, · · · , v − 1}, we can accumulate

and decrypt them. Let B =
∏

i bi (mod n2) be the accumulated ballots. T = D[B] is

the decrypted sum of all the votes. We then need to determine the number of votes

for each candidate. If we interpret T as an m-ary number, T = {mk−1, · · · , m1, m0},
we can determine the final tallies for each candidate.

3.2 Mix-nets

This section describes a generic mix-net voting system, an alternative approach to

cryptographic voting systems. This category of voting schemes is interesting because

there are proposals that incorporate end-to-end verification into the mix-net protocol.

Mix-nets were introduced by David Chaum [8] as a way to anonymize email.

Like ballots in an election, the goal was to dissociate the encrypted message from

its sender. To ensure privacy, multiple authorities share key information, and the

identity of the sender can only be determined if multiple authorities conspire. In

voting, the authorities are usually opposing organizations such as political parties.

There are two types of mix-nets: decryption and reencryption. In a decryption

mix-net, the messages are encrypted under all of the authorities’ public keys and each

authority partially decrypts the message. For a reencryption mix-net, the message is

encrypted under a shared public key and reencrypted under each authority’s private
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key. The following description focuses on decryption mix-nets.

If an election has v voters and a authorities, a basic mix-net election can be run in

the following manner. Let PKi, SKi be the public/private key pair of authority i, for

all i = 0, . . . , a − 1 for encryption function EPKi
[x] and decryption function DSKi

[x].

Let PK be a key that combines PKi for all i. In the case of El Gamal encryption,

which is described later in this section, PK is simply the product of all PKi. Each

voter encrypts her ballot bj , for all j = 0, . . . , v − 1, with PK to get cj,0 and posts it

publicly.

When all v votes are posted, the first authority chooses a random permutation of

the set {0, · · · , v − 1}, π0, to reorder the elements and partially decrypts all of the

ciphertexts with SK0. It outputs cπ0(j),1 = DSK0[cj,0] for all j = 0, . . . , v − 1 to the

public board. This is considered one stage of the mixing. All of the following stages

are performed in a similar manner.

After reordering and partially decrypting, an authority then must prove that all

the ballots that entered this stage also left it. A simple probabilistic method is to

challenge the authority by randomly choosing half of the inputs and asking for proof

that they correspond to outputs [14]. This could potentially lead to some privacy

loss if the correspondence can be traced from the input ballot and voter to the final

decrypted ballot. Instead, each authority can be responsible for two stages of mixing

[7]. Again, half of the inputs are randomly chosen as challenges. Any output of

the first stage that was not part of the challenge, becomes a challenge for the second

stage. This prevents one ballot from being part of more than two successive challenges.

These proofs can also be replaced with zero-knowledge proofs.

After the final mixing stage, the ballots are in plaintext form. They can then

be tallied in a normal fashion. This tally is easily verified because the ballots are

public. This doesn’t violate the privacy of the voters because the votes have been

anonymized.

El Gamal encryption is commonly used for mix-nets. Let p be a large prime and

g be a generator modulus p. The private key is x ∈R Z∗
p and the public key is y = gx

(mod p). The encryption function is Ey[m] = (a, b) = (gr (mod p), myr (mod p)),
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r ∈R Z∗
p and the decryption function is Dx[c] = a−xb (mod p). To generate PK

from PKi for 0 ≤ i < a, simply take the product of all the public keys. That is,

PK =
∏

0≤i<a PKi. To partially decrypt ciphertext c = (a, b) with SKi = x, let

c′ = (a, a−xb).

3.3 Cryptographic Approaches to Voter Verifica-

tion

This section describes the existing proposals for cryptographic voter verification.

These schemes take existing mix-net protocols and add voter verification to produce

schemes with end-to-end verification. The work of David Chaum and Andrew Neff

are discussed in sections 3.3.1 and 3.3.2.

As discussed above, mix-net voting schemes all achieve some assurance that votes

are not tampered with once they are encrypted. The last step is to achieve verification

that the encrypted ballot contains the voter’s intended choices without reverting to

relying on paper for a final vote count and while maintaining secrecy and anonymity.

This is extremely difficult because voters cannot be given a traditional receipt, which

would violate secrecy, but must be provided with some physical assurance of their

votes being counted. Two schemes that handle this issue have been proposed. David

Chaum proposed a scheme that uses visual cryptography to provide an encrypted

receipt of the ballot [7] while Andrew Neff’s idea uses a codebook of encrypted re-

sponses for each voter[20]. They have each outlined a process by which an entire

election can be run, but this section will focus on how the receipts are generated and

why they provide voter verification.

3.3.1 Chaum and Visual Cryptography

In Chaum’s proposed scheme [7], the user enters her vote into the DRE machine as

usual. After the ballot is filled out, but before it is submitted, a two layer transparency

is printed. The layers are stuck together and the printing is done on the outer surfaces

37



of the layers. Each pixel is represented by the two corresponding pattern squares on

these transparencies such that if the patterns are the same, light can shine through,

and if not, the square is opaque. The result is a visual method of “xoring” the two

layers. The layers are produced from the ballot image determined by the voter through

the ballot selection process, a pseudorandom number generation process based on the

serial number of the ballot and the public keys of the trustees who will be responsible

for decrypting the ballots. When the two layers lay on top of each other, the original

ballot image is visible. If they are separated, both layers are encrypted.

At this point, the encrypted receipts have not been cutoff from the printer and

the machine will be waiting for a confirmation that the ballot is correct. If the voter

approves the ballot, she will then be asked to randomly choose a layer, top or bottom.

A final signature will be printed on the layer chosen and the voter will remove the

resulting ballot. To complete the process, the voter must shred the layer she did not

choose. She should retain the chosen layer, which can later be used to verify after

the election is completed that her encrypted ballot was among those counted.

Immediately after leaving the voting booth, the voter can verify that her ballot

was encrypted properly by checking the signature on the layer and that the pseu-

dorandomness revealed by that layer was generated properly. These computational

tasks can be done through public algorithms. The voter can implement her own

version of the verification software or rely on a trusted third party to provide the

software that performs the verification.

At the end of the election, all of the layers retained by the voters are also published

on a designated public website. These are the official encrypted ballots. A voter can

check her receipt against what is posted and provide physical evidence of her vote if

it does not appear or if it is different than posted.

If either of these verification steps fail, the voter can bring her ballot to the election

authorities to prove that it was not properly formed.

A mix-net is then used to decrypt the ballots while dissociating the encryptions

with the final plaintext. Multiple parties with differing interests can be included in

this process to ensure the correctness and secrecy of this process.
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Security of Chaum’s scheme

There are three sources of fraud that Chaum’s scheme protects against: the machine,

the voter, and the trustee. Protection against machine fraud is achieved by forcing

the machine to print the layers before it knows which layer the voter will choose. If

the machine attempts to cheat by encrypting a different ballot image while making

the transparencies combine to form the correct image, it will have to alter some

of the pseudorandomness from what it would correctly use. If the user is equally

likely to pick either layer, the machine has a 50% chance of choosing to cheat on

the wrong layer. If even a small percentage of the receipts produced are checked

for correctly formed randomness, there will still be an overwhelming likelihood that

widespread fraud will be caught. Unlike any plaintext receipts, the encrypted ballot

gives no information about the original ballot receipt. This prevents voters from

selling their votes by proving who they voted for. Against trustees, anonymity and

secrecy is achieved by using a mix-net to allow a series of servers to each remove

one layer of encryption on each ballot and permute the results. Forcing each server

to demonstrate half of the correspondences protects against cheating, and the use

of mutually adversarial parties as trustees ensures anonymity as long as one honest

trustee exists.

The obvious problems with this scheme are ensuring the destruction of the trans-

parency not chosen, printing the receipts, and voter confusion. If any copy of the

other transparency is retained, secrecy is destroyed. This will require vigilance at

polls and careful consideration of how the information is stored on the machines. The

printing is a huge problem, one that has come up with voter verified paper trails

and is made more complex here with two-layer double-sided transparencies. Finally,

voters will most likely find choosing between the two layers confusing because it will

not be obvious to the average member of the public what purpose this serves. These

are a few of the challenges of the scheme, some of which are unavoidable.
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3.3.2 Neff and Votehere.net

In one of Neff’s schemes, which is marketed commercially by votehere.net [20, 19],

a voter receives a random ballot number from poll workers. After providing this

number to the voting machine, a preloaded “codebook” is printed out and detached.

This specifies each candidate or response for each question and a corresponding code.

The voter then fills out her ballot as usual. Before the ballot is confirmed, the codes

for the selected choices are printed out on a receipt. The voter can check the codes

on her receipt against the codebook printed earlier to ensure her vote was recorded

accurately. If the voter is satisfied, she accepts the ballot and takes the receipt and

a printed signature. If not, she must request another ballot number and start over.

Before leaving any polls, the voter must surrender and destroy the codebooks she

received.

For this scheme, observers take an active role. Spot checks of the machines are

produced throughout the voting process by having an observer enter a voting booth

with an unused ballot number, print the codebook, and cancel the ballot. This code-

book is checked against an independently stored record of the precomputed codebook

values. If it differs, the machine is either malfunctioning or cheating.

At the end of the election, each ballot id is associated with the encryptions of

the selections encoded on the ballot receipt. These ciphertexts are posted in a public

location as the inputs to the mix-net which will anonymously decrypt the ballots. In

addition to decrypting the ballots and tabulating the results, the trustees post the

verification codes of the ballot choices, which are based on the encryptions. The voter

can check that her ballot is listed and the codes listed on her receipt are those posted.

Observers protect against malicious voting machines. If a machine wishes to

cheat, it must print an incorrect codebook to convince the voter that her choices are

recorded properly. However, if there is a significant chance that an observer will be

the receiver of the false codebook, the machine is unlikely to get away with widespread

fraud. Giving the voter a receipt with encrypted choices prevents her from revealing

her vote conclusively to a third party, unless they can steal the codebook, as only the
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voter saw the correspondence.

The remaining possibility of cheating lies with the trustees, which is prevented by

choosing mutually adversarial parties and using mix-nets and threshold encryption

for determining the verification codes.

The obvious problem with this scheme is managing the codebooks. Voters must

not keep their codebooks. Additionally, the observers must be carefully administered

to prevent them from casting extra votes or violating anonymity using their access

to the codebooks. Trustees must not have access to the final codebooks, just their

portions of them, otherwise they can directly associate the code with choices and

violate anonymity. This process seems more physically feasible than the Chaum

scheme, but places more trust in election officials.

41



42



Chapter 4

A Homomorphic Voter-Verifiable

Election Scheme

The challenge in making an election scheme voter-verifiable lies in the fact that a

voter, being human, has limited computational abilities. The most one can ask of

a voter inside a voting booth is to compare two things and determine if they are

different. All other computation must be deferred to a later point. This makes “cut

and choose” a natural choice for a protocol with human verification.

Cut and choose was formalized by Brassard, Chaum, and Crepeau [4], though

the idea first appears in the protocol described by M. Rabin [26]. The analogy used

was the problem of sharing a cake between two mutually distrustful parties. Each

party wants as large a slice as possible. To ensure that the slices are as equitable as

possible, one party slices and the other chooses which slice to take. If the first party

slices the cake unevenly, she will receive the smaller slice. Therefore, she is motivated

to divide the cake fairly.

In this case, the voter and the voting booth can be thought of as the mutually

distrustful parties. Since the voting booth is the one with the computational power,

it does the slicing and the voter chooses a slice.

The scheme proposed in this thesis adds a layer of voter verification on top of

existing homomorphic encryption techniques. Section 4.1 presents the scheme and

describes the voter experience. Section 4.2 describes the mathematical details of the
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verification process, and section 4.3 proves the security of the scheme. Section 4.4

describes the implementation of the scheme and demonstrates how a typical election

using the scheme might work.

4.1 Overview of the scheme

The scheme extends the voting protocol described in section 3.1.4. First, several pos-

sible ballots are prepared for a particular race. The order of candidates is randomly

permuted on each ballot. After committing to a set of ballots, the voting machine

presents them to the voter, who must select one ballot with which to cast her vote.

The voting machine then provides proofs that the unchosen ballots match their com-

mitments, which can be verified by the voter. This prevents the voting machine from

falsifying any particular ballot without risking that the falsified ballot is not chosen,

in which case the machine would not be able to prove the commitment.

This voter-verification protocol breaks down into three phases: inside the voting

booth and receipt verification.

These are the steps inside the voting booth:

1. Voting Machine: Generate d ballots and print a commitment for each ballot

to the receipt. Display a grid of the candidates committed to on the screen.

2. Voter: Choose a candidate from those printed on the screen.

3. Voting Machine: Print the row and column of the voter’s selection, the the

contents of the unchosen ballots and proofs that those commitments were cor-

rectly formed.

4. Voter: Verify that the ballot selected is the one identified on the receipt and

that the commitment proofs correspond to what is displayed on the screen.

5. Voter: If satisfied that the voting machine behaved properly, approve the bal-

lot. Otherwise, cancel the ballot and start again or contact an election official.

6. Voter: Remove the final receipt.
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After leaving the voting booth, the voter can verify her receipt was correctly

formed.

1. For each candidate in each unchosen ballot, check that the candidate revealed

and the proof provided verify the commitment.

2. Verify that the receipt is among those posted to the official website and the

posted receipt and paper receipt are identical.

Figure 4-1 shows the steps the voter must take and the inputs to each step. If the

voter is asked to choose one of k candidates for a race, she is presented with a d by

k grid on the screen as in Grid A of Figure 4-1, where d is an small integer security

constant, such as 2 or 3. Each of the d rows contains a random permutation of the k

candidates. When the grid is presented, a cryptographic commitment to the grid is

printed. Receipt Part A in Figure 4-1 is this commitment. At this point, the voter

must select the candidate she wishes to vote for and a row to vote in.

Let r ∈ {0, · · · , k − 1} and c ∈ {0, · · · , d − 1} be the voter’s row and column

choice. In Figure 4-1, this corresponds to a vote for the triangle candidate. This

information is printed on the receipt tape, along with the grid displayed to the voter

for rows 0 through r − 1 and r + 1 through d − 1 and reveal information that proves

the commitments were properly formed. Grid B and Receipt Part B pictured in 4-1

show this stage of the process.

The voter must then either confirm her vote or start with a new ballot. Before

confirming, she should check that the row and column printed on the receipt matches

the box chosen on the screen, and that the candidate information printed on the

receipt for all rows except r matches the information on the screen. In Figure 4-1,

this corresponds to matching the highlighted box in Grid B to the cell specified at the

top of Receipt Part B and matching the rest of Grid B to the grid printed on Receipt

Part B. If there are any discrepancies, the voter should discard the ballot and either

start a new ballot or alert the poll officials. After she approves the ballot, the voting

machine prints a digital signature to the receipt, and the voter removes it and leaves.

The signature corresponds to Receipt Part C in 4-1.
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Start ballot
------------------------------------------------

Commitments:
E[0,0] E[0,1] ...E[0,k-1]

:
:

E[d-1,0]E[d-1,1]...E[d-1,k-1]
------------------------------------------------

Vote chosen: 
[row r, column c]

------------------------------------------------
(   ,R[0,0])...(   ,R[0,c])...(   ,R[0,k-1])

:
(   ,R[r-1,0])...(   ,R[r-1,c])...(   ,R[r-1,k-1])
XXXXXXXXXXXXXXXXXXXXXXXXXX
(  ,R[r+1,0])...(  ,R[r+1,c])...(  ,R[r+1,k-1])

:
(   ,R[d-1,0])...(  ,R[d-1,c])...(  ,R[d-1,k-1])
-----------------------------------------------------

[Signature of booth on this ballot]

End ballot
--------------------------------------------

0 k-1

0

d-1

...

...

...

...

...
...

...
...

1

d-2

1 k-2

0 k-1c

0

d-1

r

..

...
... ..

...
...

...

...

... ...

...

...

Step 1: voter selects 
r,c to be her vote

Step 2: voter verifies
her vote and confirms

E[i,j] represents the commitment
for cell in the ith row, jth column.
R[i,j] represents the randomness

used to form E[i,j]

Grid A:

Grid B:

Receipt
Part A:

Receipt
Part B:

Receipt
Part C:

Figure 4-1: An overview of the proposed voter-verification scheme. The left hand
side shows the grids that will be displayed on the screen, while the right hand side
shows the receipt that will be printed. Note that there are three contiguous parts to
the receipt which are divided to show the points at which the voter interacts with the
voting machine.
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After the election is concluded, all the ballot receipts are posted electronically

for the public to review. A voter should check that the receipt she received in the

voting booth was posted correctly. A voter should also verify that her ballot is

correctly formed – i.e., that the reveal information matches the commitments. As in

Chaum’s scheme, trusted third parties such as the ACLU could provide software for

this verification, or the voter could implement her own.

Because the votes for each race are encrypted homomorphically with Paillier’s

scheme, the encrypted tally is formed by multiplying all the votes for a particular

race. The encrypted tally can be verified by anyone, using the publicly posted ballots.

It can also be decrypted in a verifiable manner.

4.2 Mathematical details

A standard k-candidate election for v voters is set up using Paillier encryption. Let

n = pq and g ∈ Z∗
n2 with order αn for some nonzero α.

After the grid is generated, each cell contains the name of one of the candi-

dates. For the cell in the xth column and yth row containing candidate i, let

cx,y = gmiρn
x,y mod n2 , where mi ∈ M, ρx,y ∈R Z∗

n, be the commitment generated

using Paillier encryption. The commitments for all cells are printed to the receipt.

The commitments can be condensed by hashing, reducing the length of the receipt.

Let r, c be the row and column the voter chose as her vote. After printing the

voter’s selection, the machine opens the commitments for all rows except r. That is,

ρx,y for all y and x �= r is printed to the receipt along with the candidate that the

corresponding cell contained. At this point the voter removes the receipt.

If, after leaving the voting booth, the voter chooses to verify her vote, it can be

done by checking that all of the commitments in rows outside of r were properly

formed. To check that a particular cell x, y is properly formed, construct c′x,y =

gmiρx,y mod n2 where mi is the candidate printed on the receipt for that cell. If c′x,y

is equal to the cx,y found on the receipt, the commitment was properly formed.
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4.3 Security of the scheme

It can now be proven that the voting machine has a uniformly small chance of de-

frauding the voter. If the machine prints commitments to votes that do not match

up to the grid on the screen, there are two possible outcomes.

If the false commitments are in the row the voter chooses, the fraud will not be

discovered. The machine will not reveal the contents of this row because that would

destroy the voter’s privacy. However, if the voter’s choice is sufficiently random and

unbiased, the machine has only a 1/d chance of predicting the row the voter will

select.

Otherwise, the machine will have to provide reveal information for the false com-

mitment. The machine could change the screen to match the false commitment and

risk the voter noticing. For example, in a race between candidates X, Y, and Z, a

voting machine might wish to switch votes for X and Y. Looking at the grids below,

the machine could commit to Grid A (on the left) but display Grid B (on the right)

on the screen.

Z Y X Z X Y

X Z Y Y Z X

Z X Y Z Y X

Suppose the voter selects Z for the first row, first column of Grid B, which is

displayed on the screen. The voting machine can print Grid C, below, to the receipt,

and change the screen to display Grid A instead of Grid B.

- - -

X Z Y

Z X Y

If the voter does not notice the reversal of X and Y in the second and third rows of

the grid on the receipt, the machine has successfully cheated. The feasibility of such

a reversal is discussed later, as it is more an issue of usability and human interface.

The second way for the machine to cheat is to provide the correct reveal informa-
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tion for the false commitment along with the candidate choice the voter expects. For

example, say that the machine has committed to candidate Y for row i and column

j, but displays candidate Z in that cell on the screen. Let ci,j be the commitment

for the cell, which is an encryption of mY with some randomness rY ∈ Zn. If the

voter chooses a row other than i for her ballot, the machine prints mZ , rY for the

reveal information even though this will not verify ci,j as described in section 4.2.

The falsification will be detected if the voter chooses to cryptographically verify their

receipt at a later time, but will not be noticed in the voting booth. The feasibility

of this attack is dependent on the likelihood that the voter checks their ballot after

leaving the voting booth.

The final possibility for the cheating voting machine is to generate a proof for the

candidate choice displayed on the screen that corresponds to the false commitment

printed to the receipt. More explicitly, given commitment c = E[mi, ρi] to candidate

i, find ρj such that c = E[mj , ρj]. Earlier it was shown that the Paillier encryption

scheme is one-way based on CCRA. Therefore, it is not computationally feasible for

the cheating voting machine to provide a ρi for the false commitment.

Therefore, the voting machine has a 1/d chance of undetectably cheating for each

vote. The question of whether this is sufficient depends on many factors, not the

least of which is d. If it is assumed that the voting machine needs to alter .5% of the

votes to significantly affect the outcome of an election (this estimate may be too low,

considering the winner’s margin during the 2000 presidential election was less than

.5% in four states [24]), the machine would need to change 10 votes to change the

outcome of a 2,000 person election. If d = 2, the machine would have a 1 in 1,024

chance to succeed at altering .5% of the 2,000 votes.

To add more privacy and security, most of the techniques discussed in section

3.1.4 can be added onto the scheme with no modification. It is important to use zero-

knowledge proofs to verify the correctness of the ballots, and threshold encryption to

maintain the privacy of voters even from election officials.
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4.3.1 Human factors and their effect on security

The chance that cheating is detected is actually much lower than described above due

to human factors. According to the U.S. Census, only about 60% of eligible citizens

registered and voted in the 2000 presidential election [1]. This apathy carries over

to election day tasks, but the scheme requires that the voter perform several tasks

in addition to actually selecting their candidate. A recent study [27] by Ted Selker

found that less than 10% of voters noticed errors on the receipt in a simulated election

with a voter verified paper audit trail.

Assume that only 1 out of every t voters actually follows through on all of the

verification procedures. Without taking voter apathy into account, there was a (d −
1)/d chance that a machine’s fraud would be detected by each voter that was cheated.

This has been reduced to (d − 1)/(d ∗ t). For his voter-verifiable scheme, Chaum

assumes a t of 20 [7]. If this value is assumed in the case presented above where the

machine altered 10 votes, and d = 2, there is around a 75% chance of successful fraud.

However, successful cheating would involve far more votes in most elections. Altering

just 200 votes reduces the chances of remaining undetected to .5%. Given that the

2000 presidential election had a turnout of 111 million, the chance of undetectably

affecting the election seems negligible.

4.4 Implementation

An implementation of the scheme proposed in this chapter is now described. Section

4.4.1 describes our implementation of the Paillier scheme, and section 4.4.2 discusses

the structure of the races and ballots. The tabulation process and actual voting

experience are presented in sections 4.4.3 and 4.4.4, respectively.

To demonstrate the scheme, a basic implementation was done in Java 1.4.2. The

implementation focused on the new aspects of the scheme and did not include some

features, such as multiple authorities and verifiable decryption, that would be neces-

sary for a real-world election. Also left out of this implementation were proofs that

the final vote is actually from the set of acceptable votes. This is not necessarily
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an oversight, as the cut-and-choose protocol also provides probabilistic assurance of

ballot correctness. All the references to printers refer to printing to the command

line.

4.4.1 Paillier implementation

Despite being a common encryption scheme in cryptographic literature, there was no

easily available implementation of Paillier encryption for Java. Therefore, a Pallier

package was implemented for use in the voting system.

The Paillier keys are generated in the expected fashion by the class PaillierKeyGenerator.

Two primes of a specified size are found, n and λ(n) are calculated, and a g is found.

The interfaces PaillierKey, PaillierPrivateKey, and PaillierPublicKey follow

the conventions set up in the java.security package.

The other class in this package is PaillierAlgorithm, which implements the en-

cryption and decryption function as well as providing methods useful for PaillierKeyGenerator.

The client is given the option of providing a source of randomness for both the key

generation and the encryption options.

4.4.2 Races and ballots

It is important to make the ballot implementation flexible, as a race can be a 100-

candidate race or a 500-word proposition. The instances of the Race class are gen-

erated from a RaceTemplate which stores the name of the race or question, the

candidates, and the integers that represent each candidate. Similarly, Ballots are

constructed from BallotTemplates. Each such BallotTemplate contains the name

of the election, RaceTemplates, and the public key for the election.

When a new ballot is created, in addition to the BallotTemplate, the client must

provide a unique ballot ID and d, the number of rows the grid for each race will have.

This will be used to generate the Races from the RaceTemplates. The only time Race

is altered is when the vote is selected by the selectVote method, which can only be

called successfully once.
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After a race is voted on, an instance of RaceTally is formed from the commitments

and the reveal information of the unvoted rows. A separate class is used here because

accessing individual cells within the commitment and reveal grids is not allowed

during the actual voting process but is important for the tabulation and verification

process. During the voting process, the grids can only be read in their entirety.

RaceTallys are collected into a BallotTally in preparation for tabulation.

4.4.3 Tabulation

The Tabulator class has two tasks: accumulating the ballots, and decrypting and

calculating the final tally. To accumulate ballots, it takes in a list of BallotTally

objects and extracts out the commitments for the actual vote for each race, accu-

mulating the running products. After the accumulation is completed, the Tabulator

can either return the encrypted tally or determine the actual tallies. The getTally

method of Tabulator requires the client to provide the private key. The decryption

and tabulation happens much the way it was previously described.

4.4.4 Virtual voting booth

The “voting booth” is a window with four buttons, a question and a grid of possible

answers as in Figure 4-2. Note that the rows and columns are labeled with numbers

and letters. The buttons give the user the option of starting a new ballot at all times.

The other buttons are greyed out when not available. For this particular example,

the voter is asked “What is your favorite animal?” and presented with the following

choices: Duck, Penguin, Walrus, Tree 1. The election pictured in 4-2 has a security

factor of d = 4, i.e. there are 4 rows.

When a new ballot is started, “Start Receipt” is printed, followed by the name

of the ballot and the ballot ID number and then a dashed line. The commitments

are printed next, in hashed form. Figure 4-3 shows a voter’s receipt for the election

from Figure 4-2. Section A of the receipt in the figure shows the “Start Receipt” and

1Note that one of these things is not like the others.
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Figure 4-2: A view of the poll booth window, after a vote is selected.
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commitments, corresponding to Receipt Part A in Figure 4-1. With 1024 bit keys,

each unhashed commitment was 100 hexadecimal characters long. With hashing,

each row of commitments could be represented in around 25 characters, plus check

digits to provide error-detection when scanning the receipts.

At this point, the voter chooses to vote for the candidate in row r, column c. On

the screen, the color of the element in the grid that is selected changes to teal. In

Figure 4-2, this is row 2, column C which represents a vote for “Tree.” At the same

time, the printer records the voter’s choice and prints a grid of the candidates, match-

ing the grid still displayed on the screen, with “XXXXX” in place of the elements in

row r. In Figure 4-3 this is section B, corresponding to Receipt Part B in Figure 4-1.

The reveal information is quite large; for a 1024-bit key, each proof is 100 characters

long, and cannot be hashed since it is to be used for verification. The election that

produced the receipt in Figure 4-3 used a 64-bit key.

After the vote is entered, the program waits for the voter to either confirm the

ballot or restart. The voter should check that the grid on the screen and the grid

printed out are the same, and she should then select the Confirm Race button. This

will save the entered vote and move on to the next race. In Figure 4-3, section A’

shows the commitments for the next race and section B’ shows the reveal information.

After the voter has selected and confirmed a candidate for each race, she can

click Confirm Ballot and “Ballot confirmed” will be printed, followed by a line that

indicates the end of the receipt. This is section C in Figure 4-3, corresponding to

Receipt Part C in Figure 4-1. The machine then restarts the whole process with

a fresh ballot. Once one ballot has been confirmed, the Tabulate button becomes

available. If the Tabulate button is selected, a summary of the results of the election

will be printed to the command line. Figure 4-4 shows the result of the election

described in 4-2.
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Figure 4-3: The receipt presented to the voter after completing a two-race election.
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Figure 4-4: The receipt presented after tabulating a two race election.
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Chapter 5

Conclusions

The previous chapter proposed a new voting scheme which adds voter verification to

existing homomorphic voting systems, and presented an initial partial implementation

of the scheme. The scheme achieves cryptographic voter verification, despite human

limitations, for homomorphic voting systems. The proposal could be further adapted

to take advantage of other extensions of the traditional homomorphic voting scheme.

The implementation provides an opportunity to evaluate the feasibility and usability

of the proposal.

The implementation served to uncover the drawbacks of adding voter verification

to a homomorphic election system. The biggest problem is the tradeoff between

usability and security. Voters will be confused if they are presented with multiple

ways of doing the same task, and the randomness of a candidate’s location in the grid

does not lessen this confusion. Adding more rows to the grid reduces the possibility

that the voting machine will cheat undetectably, but reduces the user-friendliness of

the ballot. It also makes the receipt longer and more difficult to verify.

Another issue arises because all proposed cryptographic systems that provide voter

verification are designed so that the receipts can be used to prove whether a voting

machine cheats, yet the receipts themselves are difficult to authenticate. In the pro-

posed scheme, the last step is for the voting machine to sign the receipt. But inside

the voting booth, the voter has no way of knowing if the signature is properly formed.

The voter must wait until she exits the booth to verify the correctness of the signa-

57



ture. If she determines that the signature is not valid, she can approach an election

official to complain. However, this creates a new problem for the election official: how

is it possible to determine whether an improperly formed receipt was created by a

voting machine? Possible solutions include using special paper or watermarks, which

would raise the costs of the system, or retiring machines that receive complaints for

the remainder of the election.

A third issue that needs to be addressed in this scheme is where the randomness

comes from. All of the cryptography requires a random seed. In practice, a random

seed is chosen, and then a pseudorandom generator produces the randomness used

for permutations and encryptions. If the voting machine uses a seed provided by an

outside party, the outside party could potentially break some of the privacy of the

voters that use that machine. Asking the voter to provide the randomness would

allow the voter to sell their vote.

The same issues can be found in the schemes proposed by Chaum and Neff, in-

cluding the tradeoff between usability and security. This issue can be addressed. For

sufficiently large elections, using only two rows should be sufficient. Improving the

overall user-friendliness of the design can also alleviate the problem. Hashing the

commitments instead of printing them in their entirety helps reduce the length of the

receipts. While the reveal information cannot be hashed, it could be printed as a

barcode since it can only be verified by computers.

The scheme presented here achieves the goal of a secure and private homomorphic

voter-verified election scheme. While it has flaws, they are the same problems that

appear in all voter-verified systems.

5.1 Future work

There are several potential areas for improvement in the design and the implementa-

tion of this scheme. One major issue is the graphical user interface. Currently, it is

very basic. A voting machine should allow voters to skip races or return to previous

questions and alter a selection; the implementation does not currently do so. Finally,
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instead of printing to paper, the implementation presented in this thesis prints to

the command line. This is not an accurate simulation, as it allows words to wrap in

the terminal window and thereby hides the true size of the receipt. Improving the

interface would allow us to determine whether this system is truly feasible.

Another issue is the problem of matching the printed grid with the grid on the

screen. If a machine was malicious, it could display a grid different from the one

it commits to cryptographically on the receipt. After the voter selects her cell in

the grid, the machine could alter the grid on the screen to display the values that

correspond to the printed commitments. If the voter does not pay careful attention

to the grid on the screen, she might miss this deception. Even if she does notice, her

only option is to start over with a new ballot.

A potential solution to this problem would be to color-code the grid, so that a

change would be more noticeable. If each candidate assigned a color, altering the

arrangement of candidates would alter the pattern of colors in the grid. Such changes

are more noticeable to the human eye. Additionally, each voting machine could be

assigned a fixed color pattern and the colors randomly assigned to candidates for each

voter. A reference color pattern could be kept in the voting booth and would prevent

the machine from altering the pattern.

One major deficiency of the proposed voting system is its inability to handle write-

in votes. Mixnet’s ability to handle such elections is a clear advantage. Kiayias and

Yung designed a system that supplemented homomorphic encryption of the ballots

with a mixnet for write-in votes [16]. Applying voter verification to that scheme

would be tremendously useful.
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