Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements

Ke Li1,2,* and Graeme Smith1,†

1IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
2Center for Theoretic Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 24 September 2014; revised manuscript received 26 February 2015; published 24 April 2015)

We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow’s de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multiparticle entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

DOI: 10.1103/PhysRevLett.114.160503 PACS numbers: 03.67.Mn, 02.50.Cw, 03.67.Ac

Consider random variables X_1, \ldots, X_n representing the color of a sequence of balls drawn without replacement from a bag of 100 red balls and 100 blue balls. These variables are not independent, since the probability of withdrawing a red ball on the kth withdrawal depends on the number of balls of each color remaining. They are, however, exchangeable: the probability of removing a particular sequence of balls (x_1, \ldots, x_n) is equal to the probability of removing any reordering of that sequence $(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for permutation π. Remarkably, the de Finetti theorem tells us that any such exchangeable random variables can be represented by independent and identically distributed ones [1,2], yielding a profound result in probability theory and a powerful tool in statistics.

A series of works have established analogs of this theorem in the quantum domain [3–10], where a classical probability distribution is replaced by a quantum state and the situation is more complicated and interesting due to entanglement and the existence of many different ways to distinguish states of multiparticle systems. These quantum de Finetti theorems are appealing not only due to their own elegance on the characterization of symmetric states, but also because of the successful applications in many-body physics [5,11,12], quantum information [9,13,14], and computational complexity theory [10,15,16].

More precisely, a quantum de Finetti theorem concerns the structure of a symmetric state $\rho_{A_1 \cdots A_n}$ that is invariant under any permutations over the subsystems [17]. It tells how the reduced state $\rho_{A_1 \cdots A_k}$ on a smaller number $k < n$ of subsystems could be approximated by a mixture of k-fold product states, namely, de Finetti states of the form $\int \sigma^{\otimes k} d\mu(\sigma)$. Here, μ is a probability measure over density matrices. Using the conventional distance measure, trace norm, Ref. [8] proved a standard de Finetti theorem with an essentially optimal error bound $2|A|^2k/n$ for the approximation ($|A|$ denotes the dimension of the subsystems). However, in many situations this bound is too large to be applicable. Luckily, it is possible to circumvent this obstruction. For example, Renner’s exponential de Finetti theorem employs the “almost de Finetti states” and has an error bound that decreases exponentially in $n - k$ [9], being very useful in dealing with cryptography or information theory problems [9,13,14].

In a beautiful work [10], Brandão and Harrow recently proved a de Finetti theorem under locally restricted measurements, generalizing a similar result for the case $k = 2$ [16]. Both [10] and [16] have overcome the limitation of the standard de Finetti theorem regarding the dimension dependence. The basic idea is to relax the measure of approximation by employing an operational norm associated with measurements that are implementable by a kind of one-way local operations and classical communication (LOCC). This gives an error bound $\sqrt{(2k^2 \ln |A|)/(n - k)}$ [18], scaling polynomially in $\ln |A|$ instead of polynomially in $|A|$ as in earlier de Finetti results, which is crucial to the complexity-theoretic applications.

While [10] showed approximation in the parallel one-way LOCC norm associated with the measurement class LOCC_1^k, here, we prove a de Finetti theorem where the approximation is measured with the fully-one-way LOCC norm (or relative entropy) associated with LOCC_j (cf. Fig. 1). The error bound remains essentially the same as that of [10]. This improves Brandão and Harrow’s de Finetti theorem considerably: it is conceptually more complete and, when applied to the problems considered in [10,16,19], gives new and improved results. For entanglement detection, a central problem in quantum
information theory and experiment, we present strong guarantees for the effectiveness of the well-known hierarchy of entanglement tests of [20]. We also consider the power of multiple-prover quantum Merlin-Arthur games, which bears directly on the problems of pure-state vs mixed-state N-representability [21] as well as the entanglement properties of sparse Hamiltonian’s ground states [22].

Operational norms as distance measures.—We identify every positive operator-valued measure $\{M_x\}_x$ with a measurement operation M: for any state ω, $M(\omega) := \sum_x |x\rangle \langle x| \text{Tr}(\omega M_x)$ with $\{|x\rangle\}$ an orthonormal basis. For simplicity, we call them both quantum measurement. Given a class of measurements M, the operational norm is defined as [23]

$$\|\rho - \sigma\|_M = \max_{M \in M} \|M(\rho) - M(\sigma)\|_1.$$

It measures the distinguishability of two quantum states under restricted classes of measurements. We will be particularly interested in $\|\cdot\|_{\text{LOCC}}$ and $\|\cdot\|_{\text{LOCC}_1}$. In fact, these two norms can differ substantially: using a recent result obtained in [24], we can show that, for all d, there are constant C and $d \times d \times 2$ states ρ_{ABC} and σ_{ABC} such that $\|\rho_{ABC} - \sigma_{ABC}\|_{\text{LOCC}_1} = 2$, but $\|\rho_{ABC} - \sigma_{ABC}\|_{\text{LOCC}} \leq C/\sqrt{d}$ (see the Supplemental Material [25]).

Improved LOCC de Finetti theorem.—Our main result is the following Theorem 1. Besides the improvement with the fully-one-way LOCC norm, for the first time, we employ relative entropy $D(\rho|\sigma) = \text{Tr}(\rho \log \rho - \rho \log \sigma)$ to measure the approximation, defining $D_{\text{LOCC}}(\rho|\sigma) := \max_{M \in \text{LOCC}} D(M(\rho)|M(\sigma))$.

In the proof, we will use information-theoretic methods similar to [10], along with some new ideas. In particular, Lemma 2, presented below, is a crucial technical tool, which may be of independent interest. We employ and manipulate entropic quantities to derive the final result:

apart from relative entropy, the mutual information of a state ρ_{AB} is defined as $I(A;B) := D(\rho_{AB}|\rho_A \otimes \rho_B)$, and the conditional mutual information of a state ρ_{ABC} is defined as $I(A;B|C) := I(A;BC) - I(A;C)$.

Theorem 1: Let $\rho_{A_1...A_k}$ be a permutation-invariant state on $\mathcal{H}_A^\otimes n$. Then, for integer $0 \leq k \leq n$, there exists a probability measure μ on density matrices on \mathcal{H}_A such that

$$D_{\text{LOCC}_1}(\rho_{A_1...A_k} \| \int \sigma^{\otimes k} d\mu(\sigma)) \leq \frac{(k-1)^2 \log |A|}{n-k}, \quad (1)$$

$$\left\| \rho_{A_1...A_k} - \int \sigma^{\otimes k} d\mu(\sigma) \right\|_{\text{LOCC}_1} \leq \sqrt{2(k-1)^2 \ln |A| \over n-k}. \quad (2)$$

Proof of Theorem 1.—Equation (2) follows from Eq. (1) immediately by using the Pinsker’s inequality [26], $D(\rho|\sigma) \geq [1/(2 \ln 2)] ||\rho - \sigma||^2_1$. So it suffices to prove Eq. (1).

Group the n subsystems as shown in Fig. 2: except for one subsystem, the others are divided into groups of $k-1$ subsystems each (we discard the possibly remaining qubits, of which there will be fewer than $k-1$). So, we have $m = [(n-1)/(k-1)] \geq [(n-k)/(k-1)]$ groups. Label the groups as bigger subsystems B_1, B_2, \ldots, B_m and the isolated system as A. Let the $k-1$ subsystems in B_i be $A_1, A_2, \ldots, A_{k-1}$ and the system A is also identified with A_k.

Obviously, the total state is invariant under permutations over B_1, B_2, \ldots, B_m. So Lemma 3 applies. Thus, there exists a measurement $Q^* : B_2^* \ldots B_m^* \rightarrow X$, such that, for any measurement $\mathcal{P} : B_1 \rightarrow Y$, we have

$$I(A;Y|X) \leq \frac{\log |A|}{m} \leq \frac{(k-1) \log |A|}{n-k}. \quad (3)$$

Q^* effectively decomposes the state on AB_1 into an ensemble. Specifically, we have $\rho_{AB_1} = \sum_x p_x \rho_{A_1 \ldots A_k}$, where p_x is the probability of obtaining the measurement outcome x and $\rho_{A_1 \ldots A_k}$ is the resulting state on $A_1 \ldots A_k$. Note that, since $\rho_{A_1 \ldots A_k}$ is permutation-invariant, the post-measurement states $\rho_{A_1 \ldots A_k}^\tau$ are also permutation-invariant.

Now, we rewrite Eq. (3) in terms of the relative entropy: for any measurement \mathcal{P} on $A_1 \ldots A_{k-1}$,
\[
\sum_x p_x D(\mathcal{P} \otimes \text{id}^{A_k}(\rho_{A_1 \ldots A_k}^x) || \mathcal{P}(\rho_{A_1 \ldots A_{(k-1)}}^x) \otimes \rho_{A_k}^x) \\
\leq \frac{(k-1) \log |\mathcal{A}|}{n-k}.
\]

(4)

Pick a one-way LOCC measurement Λ^k acting on systems $A_1 \ldots A_k$ and denote its reduced measurement on the first ℓ systems as Λ^ℓ. Now, we apply Lemma 2 to each state $\rho_{A_1 \ldots A_k}^x$, and get

\[
D(\Lambda^k(\rho_{A_1 \ldots A_k}^x) || \Lambda^k(\rho_{A_1}^x \otimes \cdots \otimes \rho_{A_k}^x)) \\
\leq \sum_{\ell=2}^k D(\Lambda^{\ell-1} \otimes \text{id}(\rho_{A_1 \ldots A_{(\ell-1)}}^x) || \Lambda^{\ell-1}(\rho_{A_1 \ldots A_{(\ell-1)}}^x) \otimes \rho_{A_\ell}^x) \\
\leq (k-1)D(\Lambda^{k-1} \otimes \text{id}(\rho_{A_1 \ldots A_{(k-1)}}) || \Lambda^{k-1}(\rho_{A_1 \ldots A_{(k-1)}}) \otimes \rho_{A_k}^x),
\]

(5)

where, for the first inequality, we have also applied the monotonicity of relative entropy [27], and for the second inequality, we used the monotonicity of relative entropy again, as well as the symmetry of the state $\rho_{A_1 \ldots A_k}^x$. Combining Eq. (4) and Eq. (5), we arrive at

\[
D(\Lambda^k(\rho_{A_1 \ldots A_k}) || \Lambda^k(\sum_x p_x \rho_{A_1}^x \otimes \cdots \otimes \rho_{A_k}^x)) \\
\leq \sum_x p_x D(\Lambda^k(\rho_{A_1}^x) || \Lambda^k(\rho_{A_1}^x \otimes \cdots \otimes \rho_{A_k}^x)) \\
\leq \frac{(k-1)^2 \log |\mathcal{A}|}{n-k}.
\]

(6)

where the first inequality is due to the joint convexity of relative entropy. At this point, we are able to conclude Eq. (1) from Eq. (6), noticing that $\Lambda^\ell \in \text{LOCC}_1$ is picked arbitrarily and $\sum_x p_x \rho_{A_1}^x \otimes \cdots \otimes \rho_{A_k}^x$ is a de Finetti state of the form $\sum_x p_x (\rho_{A_1}^x)^\otimes k$ due to the symmetry of $\rho_{A_1 \ldots A_k}^x$. ■

Lemma 2: Let Λ^k be a fully-one-way LOCC measurement on quantum systems A_1, \ldots, A_k. Denote its reduced measurement corresponding to the first ℓ steps on A_1, \ldots, A_ℓ as Λ^ℓ. Then, for any state $\rho_{A_1 \ldots A_\ell}$, we have

\[
D(\Lambda^k(\rho_{A_1 \ldots A_k}) || \Lambda^k(\rho_{A_1} \otimes \cdots \otimes \rho_{A_k})) \\
= \sum_{\ell=2}^k D(\Lambda^\ell(\rho_{A_1 \ldots A_{(\ell-1)}}) || \Lambda^\ell(\rho_{A_1 \ldots A_{(\ell-1)}}) \otimes \rho_{A_\ell}).
\]

Proof of Lemma 2.—It suffices to show

\[
D(\Lambda^k(\rho_{A_1 \ldots A_k}) || \Lambda^k(\rho_{A_1} \otimes \cdots \otimes \rho_{A_k})) \\
= D(\Lambda^{k-1}(\rho_{A_1 \ldots A_{k-1}}) || \Lambda^{k-1}(\rho_{A_1} \otimes \cdots \otimes \rho_{A_{k-1}})) \\
+ D(\Lambda^k(\rho_{A_1 \ldots A_{k-1}}) || \Lambda^k(\rho_{A_1 \ldots A_{k-1}}) \otimes \rho_{A_k}),
\]

(7)

because applying this relation recursively allows us to obtain the equation claimed in Lemma 2. Write $\Lambda^{k-1}(\rho_{A_1 \ldots A_{k-1}}) = \sum_x p_x |x\rangle \langle x| \text{ and } \Lambda^{k-1}(\rho_{A_1} \otimes \cdots \otimes \rho_{A_{k-1}}) = \sum_x q_x |x\rangle \langle x|$. Let Λ^k be realized as follows. We first apply Λ^{k-1} on A_1, \ldots, A_{k-1}. Then, depending on the measurement outcome x, we apply a measurement \mathcal{M}_x on A_k. Thus, we can write

\[
\Lambda^k(\rho_{A_1 \ldots A_k}) = \sum_x p_x |x\rangle \langle x| \otimes \mathcal{M}_x(\rho_{A_k}^x),
\]

\[
\Lambda^k(\rho_{A_1 \ldots A_{k-1} \otimes \rho_{A_k}}) = \sum_x p_x |x\rangle \langle x| \otimes \mathcal{M}_x(\rho_{A_k}),
\]

\[
\Lambda^k(\rho_{A_1} \otimes \cdots \otimes \rho_{A_k}) = \sum_x q_x |x\rangle \langle x| \otimes \mathcal{M}_x(\rho_{A_k}),
\]

where $\rho_{A_k}^x$ is the state of A_k when Λ^{k-1} is applied on $\rho_{A_1 \ldots A_{k-1}}$, and outcome x is obtained. With these, we can confirm, by direct computation, that

\[
D(\Lambda^k(\rho_{A_1 \ldots A_k}) || \Lambda^k(\rho_{A_1} \otimes \cdots \otimes \rho_{A_k})) \\
= D(\Lambda^{k-1}(\rho_{A_1 \ldots A_{k-1}}) || \Lambda^{k-1}(\rho_{A_1} \otimes \cdots \otimes \rho_{A_{k-1}})) \\
+ \sum_x p_x D(\mathcal{M}_x(\rho_{A_k}^x) || \mathcal{M}_x(\rho_{A_k})),
\]

(8)

and

\[
D(\Lambda^k(\rho_{A_1 \ldots A_{k-1} \otimes \rho_{A_k}}) || \Lambda^k(\rho_{A_1 \ldots A_{k-1} \otimes \rho_{A_k}})) \\
= \sum_x p_x D(\mathcal{M}_x(\rho_{A_k}^x) || \mathcal{M}_x(\rho_{A_k})),
\]

(9)

Equation (8) and Eq. (9) together lead to Eq. (7), and this concludes the proof.

Remark.—The quantity $D(\rho_{A_1 \ldots A_k} || \rho_{A_1} \otimes \cdots \otimes \rho_{A_k})$ is sometimes denoted as $I(A_1; A_2; \ldots; A_k)\rho$ and called the multiparticle mutual information. It is easy to see that $I(A_1; \ldots; A_k) = I(A_1; A_{(1\ell)}; A_{(2\ell)}; \ldots; A_k) + I(A_1; \ldots; A_{(2\ell)}; A_{(1\ell)}) + I(A_{(1\ell+1)}; \ldots; A_k)$. Using this repeatedly, we can write the multipartite mutual information as a sum of bipartite mutual information quantities. This decomposition can be done in many different ways depending on how we split the subsystems. Lemma 2 is a similar result. However, with the one-way LOCC measurement Λ^k, the decomposition only works for our special choice of splitting.

The following lemma, a statement of the monogamy of entanglement, is adapted from [10]. For completeness, we give a proof in the Supplemental Material [25].

Lemma 3: Let $\rho_{AB_1 \ldots B_m}$ be a state that is invariant under any permutation over B_1, B_2, \ldots, B_m. Let $\mathcal{P}_{B_1 \rightarrow X}$ and $\mathcal{Q}_{B_2 \rightarrow B_m \rightarrow X}$ be measurement operations performed on systems B_1 and $B_2 \ldots B_m$, respectively. We have
\[
\min_{Q} \max_{P} I(A; Y | X)_{id^A \otimes P \otimes Q(\rho_{A_1 \ldots A_n})} \leq \log |A|/m.
\]

Applications.— Using Theorem 1, we obtain a couple of interesting results as follows. The technical proofs are given in the Supplemental Material [25].

Detecting multipartite entanglement.— Deciding whether a density matrix is entangled or separable is one of the most basic problems in quantum information theory [28]. Despite the existence of many entanglement criteria, to date, the only complete ones that detect all entangled states are infinite hierarchies [28]. Among them, searching for symmetric extensions is probably the most useful [20]. This is exactly the scenario where quantum de Finetti theorems could be expected to be useful.

We consider the situation where a small error \(\epsilon \) is permitted, meaning that we must detect all the entangled states except for those very weak ones that are \(\epsilon \)-close to separable (at the same time, all the separable states should be detected correctly). This is equivalently formulated as the weak membership problem for separability: given a state \(\rho_{A_1 A_2 \ldots A_k} \) that is either separable or \(\epsilon \)-away from any separable state, we want to decide which is the case. It has been shown that this problem is NP-hard (NP refers to “nondeterministic polynomial time”), when \(\epsilon \) is of the order no larger than inverse polynomial of local dimensions (in trace norm) [29–31]. Surprisingly, Brandão, Christandl, and Yard found a quasipolynomial-time algorithm for constant \(\epsilon \) in one-way LOCC norm for bipartite states [16]. This algorithm was generalized to multipartite states in [19], then, in [10], using a stronger method. These algorithms are all based on the searching for symmetric extensions of [20]. Along these lines, we present the following result, which is obtained by applying Theorem 1 to bound the distance between properly extendible states and separable states.

Corollary 4: Testing multipartite entanglement of a state \(\rho_{A_1 A_2 \ldots A_k} \) with error \(\epsilon \) can be done via searching for symmetric extensions in time

\[
\exp \left[c \left(\sum_{l=1}^{k} \log |A_l| \right)^2 k^2 f(\epsilon) \right],
\]

where \(f(\epsilon) = \epsilon^{-2} \) if the error is measured by the norm \(\| \cdot \|_{\text{LOCC}} \), and \(f(\epsilon) = \epsilon^{-1} \) if it is measured by the relative entropy \(D_{\text{LOCC}} \).

It is worth mentioning that the run time in Eq. \((10) \) is quasipolynomial, for constant particle number \(k \) and constant error \(\epsilon \). The algorithm in [19], using \(\text{LOCC}_1 \)-norm, behaves exponentially slower than ours with respect to the number of particles \(k \), while the algorithm of [10] has the same run time as ours but works only for \(\text{LOCC}_1 \)-norm rather than our \(\text{LOCC}_1 \)-norm approximation. Thus, our result has bridged the gap between these two works. Furthermore, here, for the first time, we catch the importance of the amount of entanglement in this problem. The quantity \(E_{\text{LOCC}}(\rho) := \min \{ D_{\text{LOCC}}(\rho \| \sigma) : \sigma \text{ is separable} \} \), introduced in [32], is asymptotically normalized since \(E_{\text{LOCC}}(\Phi_d) = \log (d+1) - 1 \) for maximally entangled state \(\Phi_d \) of local dimension \(d \) [33]. Corollary 4 shows that, detecting all the \(k \)-partite entangled states \(\rho \) such that \(E_{\text{LOCC}}(\rho) \geq \epsilon \) can be done in quasipolynomial time in local dimensions. This is a stronger statement than using \(\text{LOCC}_1 \)-norm as the error measure. We point out that, for the bipartite case, this result can also be obtained by combining the algorithm of [16] with the “commensurate lower bound” for squashed entanglement of [33].

Quantum Merlin-Arthur proof system with multiple proofs.—QMA, the quantum analog of the nondeterministic-polynomial-time complexity class NP, is the set of decision problems whose solutions can be efficiently verified on a quantum computer, provided with a polynomial-size quantum proof [34]. In recent years, there have been significant advances on the structure of quantum Merlin-Arthur systems, where multiple unentangled proofs and possibly locally restricted measurements in the verification were considered [10,16,35–37]. It has been proven that many natural problems in quantum physics are characterized by quantum Merlin-Arthur proof systems (see, e.g., [21,22,38,39]).

To solve a problem, the verifier performs a quantum algorithm on the input \(x \in \{0,1\}^n \) along with the quantum proofs. The algorithm then returns “yes” or “no” as the answer to the instance \(x \). This procedure of verification can be effectively described as a set of two-outcome measurements \(\{(M_x, 1-M_x)\}_x \) on the proofs. In the definition below, a problem is formally identified with a “language.”

Definition 5: A language \(L \) is in \(\text{QMA}^{M}(k)_{m,c,s} \) if there exists a polynomial-time implementable verification \(\{(M_x, 1-M_x)\}_x \), with each measurement from the class \(M \) such that (1) Completeness: If \(x \in L \), there exist \(k \) states as proofs \(\omega_1, \ldots, \omega_k \), each of size \(m \) qubits, such that \(\text{Tr}[M_x(\omega_1 \otimes \cdots \otimes \omega_k)] \geq c \). (2) Soundness: If \(x \notin L \), then for any \(\omega_1, \ldots, \omega_k \), \(\text{Tr}[M_x(\omega_1 \otimes \cdots \otimes \omega_k)] \leq s \).

We are also interested in quantum Merlin-Arthur systems with multiple symmetric proofs. \(\text{SymQMA}^{M}(k)_{m,c,s} \) is defined in a similar way, but here, we replace independent proofs \(\omega_1, \ldots, \omega_k \) with identical ones \(\omega \otimes k \) in both completeness and soundness parts. As a convention, we set \(M \) to be ALL (the class of all measurements), \(m = \text{poly}(n) \), \(k = 1 \), \(c = 2/3 \), and \(s = 1/3 \) as defaults [41]. We can now state our application of Theorem 1 to these complexity classes.

Corollary 6: We have

\[
\text{QMA} = \text{QMA}^{\text{LOCC}}(\text{poly}) = \text{SymQMA}^{\text{LOCC}}(\text{poly}).
\]

In particular,

\[
\text{SymQMA}^{\text{LOCC}}(k)_{m,c,s} \subseteq \text{QMA}_{0.6 m^2 k^2 e^{-2},c,s+e},
\]

\[
\text{QMA}^{\text{LOCC}}(k)_{m,c,s} \subseteq \text{QMA}_{0.6 m^2 k^2 e^{-2},c,s+e}.
\]

In words, Eq. (11) shows that polynomially many provers are not more powerful than a single one when the verifier is restricted to one-way LOCC measurements. This generalizes the result obtained in [16] that QMA = QMA^{\text{LOCC}}(k) for constant \(k \). It is also a generalization of the results in [10,42] which prove the reduction of QMA^{\text{LO}}(k) to QMA (LO denotes local measurements).

Arguably, the biggest open question in the study of quantum Merlin-Arthur proof systems is whether QMA = QMA(2) [note that Harrow and Montanaro have proved that QMA(2) = QMA(k) for any polynomial \(k > 2 \) [37]]. On the one hand, there are natural problems from quantum physics that are in QMA(2) but not obviously in QMA [21,22,39]. On the other hand, Harrow and Montanaro showed that, if the first equality in Eq. (11) holds for a kind of separable measurements (even only for the case of two proofs), then QMA = QMA(2). Our result here, although it does not touch this open question directly, is a step towards a larger measurement class compared to [10], and we hope it will stimulate future progress in solving this open question.

Polynomial optimization over hyperspheres.—Theorem 1 also gives some improved results on the usefulness of a general semidefinite-programming relaxation method, called the sum-of-squares hierarchy [43,44], for polynomial optimization over hyperspheres (see, e.g., [10,45]). The relevance in physics is that pure states of a quantum system form exactly a hypersphere, and hence, some computational problems in quantum physics are, indeed, to optimize a polynomial over hyperspheres. See the Supplemental Material [25] for details.

Discussions.—The advantage of our method, inherited from [10], is that it tells us more information than that of [16,33] about the valid de Finetti (separable) state that approximates the symmetric (extendible) state. As a result, we obtain a huge improvement over [19] on the particle-number dependence, and we are able to strengthen the relation QMA = QMA^{\text{LOCC}}(k) from the constant \(k \) of [16] to polynomial \(k \). We hope that the de Finetti theorem presented in this Letter will find more applications in the future.

We ask whether Theorem 1 can be further improved, to work for two-way LOCC or even separable measurements. This would, accordingly, give stronger applications, and possibly, solve the QMA vs QMA(2) puzzle due to the result of [37]. Another open question is, in Theorem 1, for a state supported on the symmetric subspace (also known as the Bose-symmetric state), whether its reduced states have pure-state approximations of the form \(\int \varphi^\otimes k \mu(d\varphi) \) with \(\varphi \) pure. We notice that this is, indeed, the case for the de Finetti theorem of [8] and a similar statement holds for [9]. However, our method, as well as that of [10], seems to require that the state \(\varphi \) must be generally mixed.

K. L. is supported by NSF Grants No. CCF-1110941 and No. CCF-1111382. G. S. acknowledges NSF Grant No. CCF-1110941. We thank Charles Bennett, Fernando Brandão, Aram Harrow, and John Smolin for interesting discussions, and the anonymous referees for helping improve the manuscript.

*carl.ke.lee@gmail.com
gsbsmith@gmail.com

[17] The exchange of two systems \(A_i \) and \(A_j \) causes a unitary transformation \(U_{ij}|\phi_{A_i}\rangle|\phi_{A_j}\rangle = |\phi_{A_j}\rangle|\phi_{A_i}\rangle \) on their state. We say \(\rho_{A_1 \ldots A_n} \) is permutation-invariant if \(U_{ij}\rho_{A_1 \ldots A_n} U_{ij}^\dagger = \rho_{A_1 \ldots A_n} \) for any \(0 < i < j < n \).
[18] In the present Letter, \(In \) and \(\log \) are logarithms with base \(e \) and 2, respectively.
[41] Actually the values of c and s can be chosen arbitrarily as long as $c - s \geq 1/\text{poly}(n)$, because this gap can be amplified to have exponentially small errors. See [36,40] for the amplification of $\text{QMA}^{\text{LOCC}}(k)$ and QMA. The amplification of $\text{SymQMA}^{\text{LOCC}}(k)$ follows from Eq. (12) together with the amplification of QMA.