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We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well
approximated as a probabilistic mixture of multifold product states. The approximation is measured by
distinguishability under measurements that are implementable by fully-one-way local operations and
classical communication (LOCC). Our result strengthens Brandão and Harrow’s de Finetti theorem where
a kind of partially-one-way LOCC measurements was used for measuring the approximation, with
essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm
which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured
with a variant of the relative entropy of entanglement), and (ii) a proof that in quantumMerlin-Arthur proof
systems, polynomially many provers are not more powerful than a single prover when the verifier is
restricted to one-way LOCC operations.

DOI: 10.1103/PhysRevLett.114.160503 PACS numbers: 03.67.Mn, 02.50.Cw, 03.67.Ac

Consider random variables X1;…; Xn representing the
color of a sequence of balls drawn without replacement
from a bag of 100 red balls and 100 blue balls. These
variables are not independent, since the probability of
withdrawing a red ball on the kth withdrawal depends
on the number of balls of each color remaining. They are,
however, exchangeable: the probability of removing a
particular sequence of balls ðx1;…; xnÞ is equal to the
probability of removing any reordering of that sequence
ðxπð1Þ;…; xπðnÞÞ for permutation π. Remarkably, the de
Finetti theorem tells us that any such exchangeable random
variables can be represented by independent and identically
distributed ones [1,2], yielding a profound result in
probability theory and a powerful tool in statistics.
A series of works have established analogs of this

theorem in the quantum domain [3–10], where a classical
probability distribution is replaced by a quantum state and
the situation is more complicated and interesting due to
entanglement and the existence of many different ways to
distinguish states of multipartite systems. These quantum
de Finetti theorems are appealing not only due to their own
elegance on the characterization of symmetric states, but
also because of the successful applications in many-body
physics [5,11,12], quantum information [9,13,14], and
computational complexity theory [10,15,16].
More precisely, a quantum de Finetti theorem concerns

the structure of a symmetric state ρA1…An
that is invariant

under any permutations over the subsystems [17]. It tells
how the reduced state ρA1…Ak

on a smaller number k < n
of subsystems could be approximated by a mixture of
k-fold product states, namely, de Finetti states of the formR
σ⊗kdμðσÞ. Here, μ is a probability measure over density

matrices. Using the conventional distance measure, trace
norm, Ref. [8] proved a standard de Finetti theorem with

an essentially optimal error bound 2jAj2k=n for the
approximation (jAj denotes the dimension of the subsys-
tems). However, in many situations this bound is too large
to be applicable. Luckily, it is possible to circumvent this
obstruction. For example, Renner’s exponential de Finetti
theorem employs the “almost de Finetti states” and has an
error bound that decreases exponentially in n − k [9], being
very useful in dealing with cryptography or information
theory problems [9,13,14].
In a beautiful work [10], Brandão and Harrow recently

proved a de Finetti theorem under locally restricted
measurements, generalizing a similar result for the case
k ¼ 2 [16]. Both [10] and [16] have overcome the
limitation of the standard de Finetti theorem regarding
the dimension dependence. The basic idea is to relax
the measure of approximation by employing an operational
norm associated with measurements that are implementable
by a kind of one-way local operations and classical
communication (LOCC). This gives an error boundffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k2 ln jAjÞ=ðn − kÞ

p
[18], scaling polynomially in

ln jAj instead of polynomially in jAj as in earlier de
Finetti results, which is crucial to the complexity-theoretic
applications.
While [10] showed approximation in the parallel one-

way LOCC norm associated with the measurement class
LOCC∥

1, here, we prove a de Finetti theorem where the
approximation is measured with the fully-one-way LOCC
norm (or relative entropy) associated with LOCC1

(cf. Fig. 1). The error bound remains essentially the same
as that of [10]. This improves Brandão and Harrow’s de
Finetti theorem considerably: it is conceptually more
complete and, when applied to the problems considered
in [10,16,19], gives new and improved results. For
entanglement detection, a central problem in quantum
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information theory and experiment, we present strong
guarantees for the effectiveness of the well-known hier-
archy of entanglement tests of [20]. We also consider the
power of multiple-prover quantum Merlin-Arthur games,
which bears directly on the problems of pure-state vs
mixed-state N-representability [21] as well as the entan-
glement properties of sparse Hamiltonian’s ground
states [22].
Operational norms as distance measures.—We identify

every positive operator-valued measure fMxgx with a
measurement operation M: for any state ω, MðωÞ ≔P

xjxihxjTrðωMxÞ with fjxigx an orthonormal basis.
For simplicity, we call them both quantum measurement.
Given a class of measurements M, the operational norm is
defined as [23]

∥ρ − σ∥M ¼ max
M∈M

∥MðρÞ −MðσÞ∥1:

It measures the distinguishability of two quantum states
under restricted classes of measurements. We will be
particularly interested in ∥ · ∥LOCC1

and ∥ · ∥LOCC∥
1
. In fact,

these two norms can differ substantially: using a recent
result obtained in [24], we can show that, for all d, there are
constant C and d × d × 2 states ρABC and σABC such that
∥ρABC−σABC∥LOCC1

¼ 2, but ∥ρABC−σABC∥LOCC∥
1

≤C=
ffiffiffi
d

p

(see the Supplemental Material [25]).
Improved LOCC de Finetti theorem.—Our main result

is the following Theorem 1. Besides the improvement
with the fully-one-way LOCC norm, for the first time,
we employ relative entropy Dðρ∥σÞ ¼ Trρðlog ρ − log σÞ
to measure the approximation, defining DLOCC1

ðρ∥σÞ ≔
maxΛ∈LOCC1

D(ΛðρÞ∥ΛðσÞ).
In the proof, we will use information-theoretic methods

similar to [10], along with some new ideas. In particular,
Lemma 2, presented below, is a crucial technical tool,
which may be of independent interest. We employ and
manipulate entropic quantities to derive the final result:

apart from relative entropy, the mutual information of a
state ωAB is defined as IðA;BÞ ≔ DðωAB∥ωA ⊗ ωBÞ, and
the conditional mutual information of a state ωABC is
defined as IðA;BjCÞ ≔ IðA;BCÞ − IðA;CÞ.
Theorem 1: Let ρA1…An

be a permutation-invariant state
on H⊗n

A . Then, for integer 0 ≤ k ≤ n, there exists a
probability measure μ on density matrices on HA such that

DLOCC1

�
ρA1…Ak

∥
Z

σ⊗kdμðσÞ
�

≤
ðk − 1Þ2 log jAj

n − k
; ð1Þ

����ρA1…Ak
−
Z

σ⊗kdμðσÞ
����
LOCC1

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk − 1Þ2 ln jAj

n − k

r
: ð2Þ

Proof of Theorem 1.—Equation (2) follows from Eq. (1)
immediatelybyusing thePinsker’s inequality [26],Dðρ∥σÞ ≥
½1=ð2 ln 2Þ�kρ − σk21. So it suffices to prove Eq. (1).
Group the n subsystems as shown in Fig. 2: except for

one subsystem, the others are divided into groups of k − 1
subsystems each (we discard the possibly remaining qubits,
of which there will be fewer than k − 1). So, we have
m ¼ ⌊ðn − 1Þ=ðk − 1Þ⌋ ≥ ½ðn − kÞ=ðk − 1Þ� groups. Label
the groups as bigger subsystems B1; B2;…; Bm and the
isolated system as A. Let the k − 1 subsystems in B1 be
A1; A2;…; Ak−1 and the system A is also identified with Ak.
Obviously, the total state is invariant under permutations

over B1; B2;…; Bm. So Lemma 3 applies. Thus, there
exists a measurement Q�∶B2…Bm → X, such that, for
any measurement P∶B1 → Y, we have

IðA;YjXÞ ≤ log jAj
m

≤
ðk − 1Þ log jAj

n − k
: ð3Þ

Q� effectively decomposes the state on AB1 into an
ensemble. Specifically, we have ρAB1

¼ P
xpxρ

x
A1…Ak

,
where px is the probability of obtaining the measurement
outcome x and ρxA1…Ak

is the resulting state on A1…Ak.
Note that, since ρA1…An

is permutation-invariant, the post-
measurement states ρxA1…Ak

are also permutation-invariant.
Now, we rewrite Eq. (3) in terms of the relative entropy: for
any measurement P on A1…Ak−1,

(a) (b)

FIG. 1 (color online). Parallel one-way LOCC vs fully-one-way
LOCC. (a) LOCC∥

1 denotes parallel one-way LOCC measure-
ments used in [10]. Here, the first k − 1 parties make measure-
ments in parallel and report their outcomes to the kth, who then
makes a measurement that depends on the messages he receives.
(b) LOCC1 denotes fully-one-way LOCC measurements. We
adopt a more complete definition of one-way LOCC: all the
parties measure their own systems sequentially, but in a fully
adaptive way, where each party chooses his own measurement
setting depending on the outcomes of all the previous measure-
ments performed by the other parties.

FIG. 2 (color online). Grouping and relabeling the n subsys-
tems.
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X
x

pxDðP ⊗ idAkðρxA1…Ak
Þ∥PðρxA1…Aðk−1Þ Þ ⊗ ρxAk

Þ

≤
ðk − 1Þ log jAj

n − k
: ð4Þ

Pick a one-way LOCC measurement Λk acting on
systems A1…Ak and denote its reduced measurement on
the first l systems as Λl. Now, we apply Lemma 2 to each
state ρxA1…Ak

and get

D(ΛkðρxA1…Ak
Þ∥ΛkðρxA1

⊗ � � �⊗ ρxAk
Þ)

≤
Xk
l¼2

D(Λl−1 ⊗ idðρxA1…Al
Þ∥Λl−1ðρxA1…Aðl−1Þ Þ⊗ ρxAl

)

≤ ðk− 1ÞD(Λk−1 ⊗ idðρxA1…Ak
Þ∥Λk−1ðρxA1…Aðk−1Þ Þ⊗ ρxAk

);

ð5Þ

where, for the first inequality, we have also applied the
monotonicity of relative entropy [27], and for the second
inequality, we used the monotonicity of relative entropy
again, as well as the symmetry of the state ρxA1…Ak

.
Combining Eq. (4) and Eq. (5), we arrive at

D(ΛkðρA1…Ak
Þ∥Λk

�X
x

pxρ
x
A1

⊗ � � � ⊗ ρxAk

�
)

≤
X
x

pxD(ΛkðρxA1…Ak
Þ∥ΛkðρxA1

⊗ � � � ⊗ ρxAk
Þ)

≤
ðk − 1Þ2 log jAj

n − k
; ð6Þ

where the first inequality is due to the joint convexity of
relative entropy. At this point, we are able to conclude
Eq. (1) from Eq. (6), noticing that Λk ∈ LOCC1 is picked
arbitrarily and

P
xpxρ

x
A1

⊗ � � � ⊗ ρxAk
is a de Finetti state of

the form
P

xpxðρxAÞ⊗k due to the symmetry of ρxA1…Ak
. ▪

Lemma 2: Let Λk be a fully-one-way LOCC measure-
ment on quantum systems A1;…; Ak. Denote its reduced
measurement corresponding to the first l steps on
A1;…; Al as Λl. Then, for any state ρA1…Ak

, we have

D(ΛkðρA1…Ak
Þ∥ΛkðρA1

⊗ � � � ⊗ ρAk
Þ)

¼
Xk
l¼2

D(ΛlðρA1…Al
Þ∥ΛlðρA1…Aðl−1Þ ⊗ ρAl

Þ):

Proof of Lemma 2.—It suffices to show

D(ΛkðρA1…Ak
Þ∥ΛkðρA1

⊗ � � � ⊗ ρAk
Þ)

¼ D(Λk−1ðρA1…Ak−1
Þ∥Λk−1ðρA1

⊗ � � � ⊗ ρAk−1
Þ)

þD(ΛkðρA1…Ak
Þ∥ΛkðρA1…Ak−1

⊗ ρAk
Þ); ð7Þ

because applying this relation recursively allows us to obtain
the equation claimed in Lemma 2. Write Λk−1ðρA1…Ak−1

Þ ¼P
xpxjxihxj and Λk−1ðρA1

⊗ � � � ⊗ ρAk−1
Þ ¼ P

xqxjxihxj.
Let Λk be realized as follows. We first apply Λk−1 on
A1;…; Ak−1. Then, depending on the measurement outcome
x, we apply a measurement Mx on Ak. Thus, we can write

ΛkðρA1…Ak
Þ ¼

X
x

pxjxihxj ⊗ MxðρxAk
Þ;

ΛkðρA1…Ak−1
⊗ ρAk

Þ ¼
X
x

pxjxihxj ⊗ MxðρAk
Þ;

ΛkðρA1
⊗ � � � ⊗ ρAk

Þ ¼
X
x

qxjxihxj ⊗ MxðρAk
Þ;

where ρxAk
is the state of Ak when Λk−1 is applied on ρA1…Ak

,
and outcome x is obtained. With these, we can confirm, by
direct computation, that

D(ΛkðρA1…Ak
Þ∥ΛkðρA1

⊗ � � � ⊗ ρAk
Þ)

¼ D(Λk−1ðρA1…Ak−1
Þ∥Λk−1ðρA1

⊗ � � � ⊗ ρAk−1
Þ)

þ
X
x

pxD(MxðρxAk
Þ∥MxðρAk

Þ); ð8Þ

and

D(ΛkðρA1…Ak
Þ∥ΛkðρA1…Ak−1

⊗ ρAk
Þ)

¼
X
x

pxD(MxðρxAk
Þ∥MxðρAk

Þ): ð9Þ

Equation (8) and Eq. (9) together lead to Eq. (7), and this
concludes the proof. ▪
Remark.—The quantity D(ρA1…Ak

∥ρA1
⊗ � � � ⊗ ρAk

) is
sometimes denoted as IðA1;A2;…;AkÞρ and called the
multipartite mutual information. It is easy to see that
IðA1; …; AkÞ ¼ IðA1…Al; Alþ1…AkÞ þ IðA1; …; AlÞþ
IðAlþ1; …; AkÞ. Using this repeatedly, we can write the
multipartite mutual information as a sum of bipartite mutual
information quantities. This decomposition can be done in
many different ways depending on how we split the sub-
systems. Lemma 2 is a similar result. However, with the
one-way LOCC measurement Λk, the decomposition only
works for our special choice of splitting.
The following lemma, a statement of the monogamy of

entanglement, is adapted from [10]. For completeness, we
give a proof in the Supplemental Material [25].
Lemma 3: Let ρAB1…Bm

be a state that is invariant under
any permutation over B1; B2;…; Bm. Let PB1→Y and
QB2…Bm→X be measurement operations performed on
systems B1 and B2…Bm, respectively. We have
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min
Q

max
P

IðA;YjXÞidA⊗P⊗QðρAB1…Bm Þ ≤
log jAj
m

:

Applications.— Using Theorem 1, we obtain a couple of
interesting results as follows. The technical proofs are given
in the Supplemental Material [25].
Detecting multipartite entanglement.— Deciding whether

a density matrix is entangled or separable is one of the
most basic problems in quantum information theory [28].
Despite the existence of many entanglement criteria, to
date, the only complete ones that detect all entangled states
are infinite hierarchies [28]. Among them, searching for
symmetric extensions is probably the most useful [20]. This
is exactly the scenario where quantum de Finetti theorems
could be expected to be useful.
We consider the situation where a small error ϵ is

permitted, meaning that we must detect all the entangled
states except for those very weak ones that are ϵ-close to
separable (at the same time, all the separable states should
be detected correctly). This is equivalently formulated as
the weak membership problem for separability: given a
state ρA1A2…Ak

that is either separable or ϵ-away from any
separable state, we want to decide which is the case. It has
been shown that this problem is NP-hard (NP refers to
“nondeterministic polynomial time”), when ϵ is of the order
no larger than inverse polynomial of local dimensions (in
trace norm) [29–31]. Surprisingly, Brandão, Christandl,
and Yard found a quasipolynomial-time algorithm for
constant ϵ in one-way LOCC norm for bipartite states
[16]. This algorithm was generalized to multipartite states
in [19], then, in [10], using a stronger method. These
algorithms are all based on the searching for symmetric
extensions of [20]. Along these lines, we present the
following result, which is obtained by applying Theorem
1 to bound the distance between properly extendible states
and separable states.
Corollary 4: Testing multipartite entanglement of a

state ρA1A2…Ak
with error ϵ can be done via searching for

symmetric extensions in time

exp

�
c

�Xk
i¼1

log jAij
�2

k2fðϵÞ
	
; ð10Þ

where fðϵÞ ¼ ϵ−2 if the error is measured by the norm
∥ · ∥LOCC1

, and fðϵÞ ¼ ϵ−1 if it is measured by the relative
entropy DLOCC1

.
It is worth mentioning that the run time in Eq. (10) is

quasipolynomial, for constant particle number k and con-
stant error ϵ. The algorithm in [19], using LOCC1-norm,
behaves exponentially slower than ours with respect to the
number of particles k, while the algorithm of [10] has the
same run time as ours but works only for LOCC∥

1-norm
rather than our LOCC1-norm approximation. Thus, our

result has bridged the gap between these two works.
Furthermore, here, for the first time,we catch the importance
of the amount of entanglement in this problem. The qua-
ntity ELOCC1

r ðρÞ ≔ minfDLOCC1
ðρ∥σÞ∶σ being separableg,

introduced in [32], is asymptotically normalized since
ELOCC1
r ðΦdÞ ¼ logðdþ 1Þ − 1 for maximally entangled

state Φd of local dimension d [33]. Corollary 4 shows that,
detecting all the k-partite entangled states ρ such that
ELOCC1
r ðρÞ ≥ ϵ can be done in quasipolynomial time in

local dimensions. This is a stronger statement than using
LOCC1-norm as the error measure.We point out that, for the
bipartite case, this result can also be obtained by combining
the algorithm of [16] with the “commensurate lower bound”
for squashed entanglement of [33].
Quantum Merlin-Arthur proof system with multiple

proofs.—QMA, the quantum analog of the nondetermin-
istic-polynomial-time complexity class NP, is the set of
decision problems whose solutions can be efficiently
verified on a quantum computer, provided with a poly-
nomial-size quantum proof [34]. In recent years, there have
been significant advances on the structure of quantum
Merlin-Arthur systems, where multiple unentangled proofs
and possibly locally restricted measurements in the veri-
fication were considered [10,16,35–37]. It has been proven
that many natural problems in quantum physics
are characterized by quantum Merlin-Arthur proof systems
(see, e.g., [21,22,38,39]).
To solve a problem, the verifier performs a quantum

algorithm on the input x ∈ f0; 1gn along with the quantum
proofs. The algorithm then returns “yes” or “no” as the
answer to the instance x. This procedure of verification can
be effectively described as a set of two-outcome measure-
ments fðMx; 1 −MxÞgx on the proofs. In the definition
below, a problem is formally identified with a “language.”
Definition 5: A language L is in QMAMðkÞm;c;s if there
exists a polynomial-time implementable verification
fðMx; 1 −MxÞgx with each measurement from the class
M such that (1) Completeness: If x ∈ L, there exist k states
as proofs ω1;…;ωk, each of size m qubits, such that
Tr½Mxðω1 ⊗ � � � ⊗ ωkÞ� ≥ c. (2) Soundness: If x∉L, then
for any ω1;…;ωk, Tr½Mxðω1 ⊗ � � � ⊗ ωkÞ� ≤ s.
We are also interested in quantumMerlin-Arthur systems

with multiple symmetric proofs. SymQMAMðkÞm;c;s is
defined in a similar way, but here, we replace independent
proofs ω1;…;ωk with identical ones ω⊗k in both com-
pleteness and soundness parts. As a convention, we set M
to be ALL (the class of all measurements), m ¼ polyðnÞ,
k ¼ 1, c ¼ 2=3, and s ¼ 1=3 as defaults [41]. We can now
state our application of Theorem 1 to these complexity
classes.
Corollary 6: We have

QMA ¼ QMALOCC1ðpolyÞ ¼ SymQMALOCC1ðpolyÞ:
ð11Þ
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In particular,

SymQMALOCC1ðkÞm;c;s⊆QMA0.6m2k2ϵ−2;c;sþϵ; ð12Þ

QMALOCC1ðkÞm;c;s⊆QMA0.6m2k4ϵ−2;c;sþϵ: ð13Þ

In words, Eq. (11) shows that polynomially many
provers are not more powerful than a single one when
the verifier is restricted to one-way LOCC measurements.
This generalizes the result obtained in [16] that QMA ¼
QMALOCC1ðkÞ for constant k. It is also a generalization
of the results in [10,42] which prove the reduction of
QMALOðkÞ to QMA (LO denotes local measurements).
Arguably, the biggest open question in the study of

quantum Merlin-Arthur proof systems is whether QMA ¼
QMAð2Þ [note that Harrow and Montanaro have proved
that QMAð2Þ ¼ QMAðkÞ for any polynomial k > 2 [37]].
On the one hand, there are natural problems from quantum
physics that are in QMA(2) but not obviously in QMA
[21,22,39]. On the other hand, Harrow and Montanaro
showed that, if the first equality in Eq. (11) holds for a kind
of separable measurements (even only for the case of two
proofs), then QMA ¼ QMAð2Þ. Our result here, although
it does not touch this open question directly, is a step
towards a larger measurement class compared to [10], and
we hope it will stimulate future progress in solving this
open question.
Polynomial optimization over hyperspheres.—Theorem 1

also gives some improved results on the usefulness of a
general semidefinite-programming relaxation method, called
the sum-of-squares hierarchy [43,44], for polynomial opti-
mization over hyperspheres (see, e.g., [10,45]). The rel-
evance in physics is that pure states of a quantum system
form exactly a hypersphere, and hence, some computational
problems in quantum physics are, indeed, to optimize a
polynomial over hyperspheres. See the Supplemental
Material [25] for details.
Discussions.—The advantage of our method, inherited

from [10], is that it tells us more information than that of
[16,33] about the valid de Finetti (separable) state that
approximates the symmetric (extendible) state. As a result,
we obtain a huge improvement over [19] on the particle-
number dependence, and we are able to strengthen the
relation QMA ¼ QMALOCC1ðkÞ from the constant k of [16]
to polynomial k. We hope that the de Finetti theorem
presented in this Letter will find more applications in the
future.
We ask whether Theorem 1 can be further improved, to

work for two-way LOCC or even separable measurements.
This would, accordingly, give stronger applications, and
possibly, solve the QMA vs QMA(2) puzzle due to the
result of [37]. Another open question is, in Theorem 1, for a
state supported on the symmetric subspace (also known as
the Bose-symmetric state), whether its reduced states have

pure-state approximations of the form
R
φ⊗kdμðφÞ with φ

pure. We notice that this is, indeed, the case for the de
Finetti theorem of [8] and a similar statement holds for [9].
However, our method, as well as that of [10], seems to
require that the state φ must be generally mixed.
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