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18.175. Pset 1. 

1. Let {Xi}i�1 be i.i.d. If Sn/n � 0 a.s., show that E|X1| < → and, 
therefore, EX1 = 0. 

2. If u : [0, 1]k � R is continuous then show that 
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uniformly on [0, 1]k . 
3. µn = 1/(n + 1) for n � 0 is a sequence of moments of a distribution 

on [0, 1]. Find 
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where � is the difference operator. 
4. Let {Xi}i�1 be independent with EXi = 0 and EXi 

2 < →. Let 
bi � bi+1 and bi � →. If 
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2/b2 
i < → show that Sn/bn � 0 a.s. 

Remark. Notice that in the proof of SLLN we showed that 
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so this gives a new proof of SLLN. 
5. Let {Xi}i�1 be i.i.d. with EX1 = 0 and EX1

2 < →. Prove that 

Sn 
� 0 a.s. 

n1/2(log n)1/2+� 

for any � > 0. 
6. Let {Xi}i�1 be i.i.d. and EX1 > 0. Given a > 0, show that E� < → 

for � = inf{k � 1 : Sk > a}. 
7. A function 
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is a moment generating function of a Rademacher r.v. Is chm(�) a m.g.f. if 
0 < m < 1? 


