MIT OpenCourseWare <http://ocw.mit.edu>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

Section 10

Multivariate normal distributions and CLT.

Let $\mathbb P$ be a probability distribution on $\mathbb R^k$ and let

$$
g(t) = \int e^{i(t,x)} d\mathbb{P}(x).
$$

We proved that $\mathbb{P}^{\sigma} = \mathbb{P} * \mathcal{N}(0, \sigma^2 I)$ has density

$$
p^{\sigma}(x) = (2\pi)^{-k} \int g(t)e^{-i(t,x) - \frac{1}{2}\sigma^2|t|^2}dt.
$$

Lemma 20 (Fourier inversion formula) If $\int |g(t)|dt < \infty$ then $\mathbb P$ has density

$$
p(x) = (2\pi)^{-k} \int g(t)e^{-i(t,x)}dt.
$$

Proof. Since

$$
g(t)e^{-i(t,x)-\frac{1}{2}\sigma^2|t|^2} \to g(t)e^{-i(t,x)}
$$

pointwise as $\sigma \to 0$ and

$$
\left| g(t)e^{-i(t,x)-\frac{1}{2}\sigma^2|t|^2} \right| \le |g(t)| \text{ - integrable},
$$

by dominated convergence theorem $p^{\sigma}(x) \to p(x)$. Since $\mathbb{P}^{\sigma} \to \mathbb{P}$ weakly, for any $f \in C_b(\mathbb{R}^k)$,

$$
\int f(x)p^{\sigma}(x)dx \to \int f(x)d\mathbb{P}(x).
$$

On the other hand, since

$$
|p^{\sigma}(x)| \le (2\pi)^{-k} \int |g(t)|dt < \infty,
$$

by dominated convergence theorem, for any compactly supported $f \in C_b(\mathbb{R}^k)$,

$$
\int f(x)p^{\sigma}(x)dx \to \int f(x)p(x)dx.
$$

Therefore, for any such f ,

$$
\int f(x)d\mathbb{P}(x) = \int f(x)p(x)dx.
$$

It is now a simple exercise to show that for any bounded open set U ,

$$
\int_U d\mathbb{P}(x) = \int_U p(x) dx.
$$

This means that P restricted to bounded sets has density $p(x)$ and, hence, on entire \mathbb{R}^k .

For a random vector $X = (X_1, \ldots, X_k) \in \mathbb{R}^k$ we denote $\mathbb{E}X = (\mathbb{E}X_1, \ldots, \mathbb{E}X_k)$.

Then $\mathcal{L}\left(\frac{S_n}{\sqrt{n}}\right)$ converges weakly to distribution $\mathbb P$ which has characteristic function **Theorem 24** Consider a sequence $(X_i)_{i\geq 1}$ of i.i.d. random vectors on \mathbb{R}^k such that $\mathbb{E}X_1 = 0, \mathbb{E}|X_1|^2 < \infty$.

$$
f_p(t) = e^{-\frac{1}{2}(Ct,t)} \quad \text{where} \quad C = \text{Cov}(X_1) = \left(\mathbb{E}X_{1,i}X_{1,j}\right)_{1 \le i,j \le k}.\tag{10.0.1}
$$

Proof. Consider any $t \in \mathbb{R}^k$. Then $Z_i = (t, X_i)$ is i.i.d. real-valued sequence and by the proof of the CLT on the real line,

$$
\mathbb{E}e^{i\left(t,\frac{S_n}{\sqrt{n}}\right)} = \mathbb{E}e^{i\frac{1}{\sqrt{n}}\sum_i(t,X_i)} \to e^{-\frac{1}{2}\text{Var}((t,X_i))} = e^{-\frac{1}{2}(Ct,t)}
$$

as $n \to \infty$, since

$$
Var(t_1X_{1,1} + \dots + t_kX_{1,k}) = \sum_{i,j} t_i t_j EX_{1,i} X_{1,j} = (Ct, t) = t^T Ct.
$$

The sequence $\left\{ \mathcal{L}\left(\frac{S_n}{\sqrt{n}}\right) \right\}$ is uniformly tight on \mathbb{R}^k since

$$
\mathbb{P}\Big(\Big|\frac{S_n}{\sqrt{n}}\Big|\geq M\Big)\leq \frac{1}{M^2}\mathbb{E}\Big|\frac{S_n}{\sqrt{n}}\Big|^2=\frac{1}{nM^2}\mathbb{E}\left|(S_{n,1},\ldots,S_{n,k})\right|^2=\frac{1}{nM^2}\sum_{i\leq k}\mathbb{E}S_{n,i}^2=\frac{1}{M^2}\mathbb{E}|X_1|^2\stackrel{M\to\infty}{\longrightarrow}0.
$$

It remains to apply Lemma 19 from previous section.

The covariance matrix $C = \text{Cov}(X)$ is symmetric and non-negative definite, $(Ct, t) = \mathbb{E}(t, X)^2 \geq 0$.

The unique distribution with c.f. in (10.0.1) is called a multivariate normal distribution with covariance C and is denoted by $\mathcal{N}(0, C)$. It can also be defined more constructively as follows. Consider an i.i.d. sequence g_1, \ldots, g_n of $\mathcal{N}(0,1)$ r.v. and let $g = (g_1, \ldots, g_n)^T$. Given a $k \times n$ matrix the covariance matrix of $Ag \in \mathbb{R}^k$ is

$$
C = \text{Cov}(Ag) = \mathbb{E}Ag(Ag)^{T} = A\mathbb{E}gg^{T}A^{T} = AA^{T}.
$$

The c.f. of Ag is

$$
\mathbb{E}e^{i(t, Ag)} = \mathbb{E}e^{i(A^Tt, g)} = e^{-\frac{1}{2}|A^Tt|^2} = e^{-\frac{1}{2}t^TAA^Tt} = e^{-\frac{1}{2}(Ct, t)}.
$$

This means that $Ag \sim \mathcal{N}(0, C)$. Interestingly, the distribution of Ag depends only on AA^T and does not depend on the choice of n and A .

Exercise. Show constructively, using linear algebra, that the distribution of Ag and Bg' is the same if $AA^T = BB^T$.

On the other hand, given a covariance matrix C one can always find A such that $C = AA^T$. For example, let $C = QDQ^T$ be its eigenvalue decomposition for orthogonal matrix Q and diagonal D. Since C is nonnegative definite, the elements of D are nonnegative. Then, one can take $n = k$ and $A = C^{1/2}$:= $QD^{1/2}Q^T$ or $A = QD^{1/2}$.

Density in the invertible case. Suppose $\det(C) \neq 0$. Take A such that $C = AA^T$ so that $Ag \sim$ $\mathcal{N}(0, C)$. Since the density of q is

$$
\prod_{i \le k} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x_i^2\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{1}{2}|x|^2\right),\,
$$

 \Box

 \Box

 \Box

for any set $\Omega \subseteq \mathbb{R}^k$ we can write

$$
\mathbb{P}(Ag \in \Omega) = \mathbb{P}(g \in A^{-1}\Omega) = \int_{A^{-1}\Omega} \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{1}{2}|x|^2\right) dx.
$$

Let us now make the change of variables $y = Ax$ or $x = A^{-1}y$. Then

$$
\mathbb{P}(Ag \in \Omega) = \int_{\Omega} \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{1}{2}|A^{-1}y|^2\right) \frac{1}{|\det(A)|} dy.
$$

But since

$$
\det(C) = \det(AA^T) = \det(A)\det(A^T) = \det(A)^2
$$

we have $|\det(A)| = \sqrt{\det(C)}$. Also

$$
|A^{-1}y|^2 = (A^{-1}y)^T(A^{-1}y) = y^T(A^T)^{-1}A^{-1}y = y^T(AA^T)^{-1}y = y^TC^{-1}y.
$$

Therefore, we get

$$
\mathbb{P}(Ag \in \Omega) = \int_{\Omega} \left(\frac{1}{\sqrt{2\pi}}\right)^k \frac{1}{\sqrt{\det(C)}} \exp\left(-\frac{1}{2}y^T C^{-1} y\right) dy.
$$

This means that the distribution $\mathcal{N}(0, C)$ has the density

$$
\left(\frac{1}{\sqrt{2\pi}}\right)^k \frac{1}{\sqrt{\det(C)}} \exp\left(-\frac{1}{2}y^T C^{-1} y\right).
$$

 \Box

General case. Let us take, for example, a vector $X = QD^{1/2}g$ for i.i.d. standard normal vector g so that $X \sim \mathcal{N}(0, C)$. If q_1, \ldots, q_k are the column vectors of Q then

$$
X = QD^{1/2}g = (\lambda_1^{1/2}g_1)q_1 + \ldots + (\lambda_k^{1/2}g_n)q_k.
$$

Therefore, in the orthonormal coordinate basis q_1, \ldots, q_k a random vector X has coordinates $\lambda_1^{1/2} g_1, \ldots, \lambda_k^{1/2} g_k$. These coordinates are independent with normal distributions with variances $\lambda_1, \ldots, \lambda_k$ correspondingly. When $\det(C) = 0$, i.e. C is not invertible, some of its eigenvalues will be zero, say, $\lambda_{n+1} = \ldots = \lambda_k = 0$. Then the random X vector will be concentrated on the subspace spanned by vectors q_1, \ldots, q_n but it will not have density on the entire space \mathbb{R}^k . On the subspace spanned by vectors q_1, \ldots, q_n a vector X will have a density

$$
f(x_1,\ldots,x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\lambda_i}} \exp\left(-\frac{x_i^2}{2\lambda_i}\right).
$$

 \Box

Let us look at a couple of properties of normal distributions.

Lemma 21 If $X \sim \mathcal{N}(0, C)$ on \mathbb{R}^k and $A : \mathbb{R}^k \to \mathbb{R}^m$ is linear then $AX \sim \mathcal{N}(0, ACA^T)$ on \mathbb{R}^m .

Proof. The c.f. of AX is

$$
\mathbb{E}e^{i(t,AX)} = \mathbb{E}e^{i(A^Tt,X)} = e^{-\frac{1}{2}(CA^Tt, A^Tt)} = e^{-\frac{1}{2}(ACA^Tt,t)}.
$$

 \Box

Lemma 22 X is normal on \mathbb{R}^k iff (t, X) is normal on \mathbb{R} for all $t \in \mathbb{R}^k$.

Proof. " \Longrightarrow ". The c.f. of real-valued random variable (t, X) is

$$
f(\lambda) = \mathbb{E}e^{i\lambda(t,X)} = \mathbb{E}e^{i(\lambda t,X)} = e^{-\frac{1}{2}(C\lambda t,\lambda t)} = e^{-\frac{1}{2}\lambda^2(Ct,t)}
$$

which means that $(t, X) \sim \mathcal{N}(0, (Ct, t)).$

" \Longleftarrow ". If (t, X) is normal then

$$
\mathbb{E}e^{i(t,X)} = e^{-\frac{1}{2}(Ct,t)}
$$

because the variance of (t, X) is (Ct, t) .

Lemma 23 Let $Z = (X, Y)$ where $X = (X_1, \ldots, X_i)$ and $Y = (Y_1, \ldots, Y_j)$ and suppose that Z is normal on \mathbb{R}^{i+j} . Then X and Y are independent iff $Cov(X_m, Y_n) = 0$ for all m, n.

Proof. One way is obvious. The other way around, suppose that

$$
C = \text{Cov}(Z) = \left[\begin{array}{cc} D & 0 \\ 0 & F \end{array} \right].
$$

Then the c.f. of Z is

$$
\mathbb{E}e^{i(t,Z)} = e^{-\frac{1}{2}(Ct,t)} = e^{-\frac{1}{2}(Dt_1,t_1) - \frac{1}{2}(Ft_2,t_2)} = \mathbb{E}e^{i(t_1,X)}\mathbb{E}e^{i(t_2,Y)},
$$

where $t = (t_1, t_2)$. By uniqueness, X and Y are independent.

Lemma 24 (Continuous Mapping.) Suppose that $\mathbb{P}_n \to \mathbb{P}$ on X and $G : X \to Y$ is a continuous map. Then $G^{-1} \to \mathbb{P} \circ G^{-1}$ on Y. In other words, if r.v. Z_n \rightarrow Z weakly then $G(Z_n)$ \rightarrow $\mathbb{P}_n \circ G^{-1} \to \mathbb{P} \circ G^{-1}$ on Y. In other words, if r.v. $Z_n \to Z$ weakly then $G(Z_n) \to G(Z)$ weakly.

Proof. This is obvious, because for any $f \in C_b(Y)$, we have $f \circ G \in C_b(X)$ and therefore,

$$
\mathbb{E} f(G(Z_n)) \to \mathbb{E} f(G(Z)).
$$

 \Box

 \Box

Lemma 25 If $\mathbb{P}_n \to \mathbb{P}$ on \mathbb{R}^k and $\mathbb{Q}_n \to \mathbb{Q}$ on \mathbb{R}^m then $\mathbb{P}_n \times \mathbb{Q}_n \to \mathbb{P} \times \mathbb{Q}$ on \mathbb{R}^{k+m} .

Proof. By Fubini theorem, The c.f.

$$
\int e^{i(t,x)} d\mathbb{P}_n \times \mathbb{Q}_n(x) = \int e^{i(t_1,x_1)} d\mathbb{P}_n \int e^{i(t_2,x_2)} d\mathbb{Q}_n \to \int e^{i(t_1,x_1)} d\mathbb{P} \int e^{i(t_2,x_2)} d\mathbb{Q} = \int e^{i(t,x)} d\mathbb{P} \times \mathbb{Q}.
$$

By Lemma 19 it remains to show that $(\mathbb{P}_n \times \mathbb{Q}_n)$ is uniformly tight. By Theorem 21, since $\mathbb{P}_n \to \mathbb{P}$, (\mathbb{P}_n) is uniformly tight. Therefore, there exists a compact K on \mathbb{R}^k such that $\mathbb{P}_n(K) > 1 - \varepsilon$. Similarly, for some compact K' on \mathbb{R}^m , $\mathbb{Q}_n(K') > 1 - \varepsilon$. We have,

$$
\mathbb{P}_n \times \mathbb{Q}_n(K \times K') > 1 - 2\varepsilon
$$

and $K \times K'$ is a compact on \mathbb{R}^{k+m} .

Corollary 1 If $\mathbb{P}_n \to \mathbb{P}$ and $\mathbb{Q}_n \to \mathbb{Q}$ both on \mathbb{R}^k then $\mathbb{P}_n * \mathbb{Q}_n \to \mathbb{P} * \mathbb{Q}$.

Proof. Since a function $G : \mathbb{R}^{k+k} \to \mathbb{R}^k$ given by $G(x, y) = x + y$ is continuous, by continuous mapping lemma,

$$
\mathbb{P}_n * \mathbb{Q}_n = (\mathbb{P}_n \times \mathbb{Q}_n) \circ G^{-1} \to (\mathbb{P} \times \mathbb{Q}) \circ G^{-1} = \mathbb{P} * \mathbb{Q}.
$$

 \Box