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Section 10 

Multivariate normal distributions and 
CLT. 

Let P be a probability distribution on Rk and let 

g(t) = e i(t,x)dP(x). 

We proved that Pσ = P ∗ N (0, σ2I) has density 

p 
1 
2σ(x) = (2π)−k g(t)e−i(t,x)− σ2|t|2 

dt. 

Lemma 20 (Fourier inversion formula) If |g(t)|dt < ∞ then P has density 

p(x) = (2π)−k g(t)e−i(t,x)dt. 

Proof. Since 
g(t)e−i(t,x)− 1

2 σ2|t|2 

g(t)e−i(t,x) → 

pointwise as σ 0 and � �→ � �1 
2�g(t)e−i(t,x)− σ2|t|2 � ≤ |g(t)| - integrable, 

by dominated convergence theorem pσ (x) → p(x). Since Pσ → P weakly, for any f ∈ Cb(Rk), 

f(x)p σ(x)dx f(x)dP(x).→ 

On the other hand, since � 
|p σ(x)| ≤ (2π)−k |g(t)|dt < ∞, 

by dominated convergence theorem, for any compactly supported f ∈ Cb(Rk), 

f(x)p σ (x)dx f(x)p(x)dx.→ 

Therefore, for any such f, � � 
f(x)dP(x) = f(x)p(x)dx. 
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It is now a simple exercise to show that for any bounded open set U, 

dP(x) = p(x)dx. 
U U 

This means that P restricted to bounded sets has density p(x) and, hence, on entire Rk . 

For a random vector X = (X1, . . . , Xk) ∈ Rk we denote EX = (EX1, . . . , EXk). 

of i.i.d. random vectors on Rk such that EX1 = 0, E X1
2Theorem 24 Consider a sequence (Xi)i≥1 

Then L Sn converges weakly to distribution P which has characteristic function √
n 

< ∞.| |

fp(t) = e−
1
2 (Ct,t) where C = Cov(X1) = EX1,iX1,j . (10.0.1) 

1≤i,j≤k 

Proof. Consider any t ∈ Rk . Then Zi = (t, Xi) is i.i.d. real-valued sequence and by the proof of the CLT on 
the real line, 

√
n 
1 PSn√

n 
1 1Var((t,Xi))i i (t,Xi)t, (Ct,t)e− = e−Ee = Ee i 2 2→ 

as n →∞, since 

Var t1X1,1 + + tkX1,k = titj EX1,iX1,j = (Ct, t) = tT Ct. · · · 
i,j 

SnThe sequence L √
n is uniformly tight on Rk since 

P 
Sn √

n 
≥ M ≤ 

1 
M2 

� S� n�E √
n 

2 
= 

1 2 1 
ES2 

n,i = 
1 

M2 
E|X1|2 M →∞−→ 0.(Sn,1, . . . , Sn,k)E =| |

nM2 nM2 
i≤k 

It remains to apply Lemma 19 from previous section. 

The covariance matrix C = Cov(X) is symmetric and non-negative definite, (Ct, t) = E(t, X)2 ≥ 0. 

The unique distribution with c.f. in (10.0.1) is called a multivariate normal distribution with covariance 
C and is denoted by N (0, C). It can also be defined more constructively as follows. Consider an i.i.d. sequence 
g1, . . . , gn of N (0, 1) r.v. and let g = (g1, . . . , gn)T . Given a k × n matrix the covariance matrix of Ag ∈ Rk is 

C = Cov(Ag) = EAg(Ag)T = AEgg T AT = AAT . 

The c.f. of Ag is 
21

2
1
2

1
2i(AT |AT T AATi(t,Ag) t,g) (Ct,t)t| t t= e− = e− = e−= Ee 

This means that Ag ∼ N (0, C). Interestingly, the distribution of Ag depends only on AAT and does not 
depend on the choice of n and A. 

Exercise. Show constructively, using linear algebra, that the distribution of Ag and Bg� is the same if 
AAT = BBT . 

On the other hand, given a covariance matrix C one can always find A such that C = AAT . For 
example, let C = QDQT be its eigenvalue decomposition for orthogonal matrix Q and diagonal D. Since 
C is nonnegative definite, the elements of D are nonnegative. Then, one can take n = k and A = C1/2 := 
QD1/2QT or A = QD1/2 . 

Density in the invertible case. Suppose det(C) =� 0. Take A such that C = AAT so that Ag ∼ 
N (0, C). Since the density of g is 

Ee . 

1 �k1 1 12 2exp − = exp√
2π

√
2π 

− 
2 
|x|x ,i2 

i≤k 
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for any set Ω ⊆ Rk we can write 

P(Ag ∈ Ω) = P(g ∈ A−1Ω) = 
� 

A−1Ω 

� 
√1

2π 

�k 
exp 

� 
− 

2
1 |x|2 

� 
dx. 

Let us now make the change of variables y = Ax or x = A−1y. Then � � 1 �k � 1 � 1
P(Ag ∈ Ω) = 

Ω 
√

2π 
exp − 

2 
|A−1 y|2 

| det(A)| 
dy. 

But since 
det(C) = det(AAT ) = det(A) det(AT ) = det(A)2 

we have | det(A)| = det(C). Also 

|A−1 y|2 = (A−1 y)T (A−1 y) = y T (AT )−1A−1 y = y T (AAT )−1 y = y T C−1 y. 

Therefore, we get � � �k � �1 1 1
P(Ag ∈ Ω) = 

Ω 
√

2π 
� 

det(C) 
exp − 

2 
y T C−1 y dy. 

This means that the distribution N (0, C) has the density � 1 �k 1 � 1 � 
√

2π 
� 

det(C) 
exp − 

2 
y T C−1 y . 

General case. Let us take, for example, a vector X = QD1/2g for i.i.d. standard normal vector g so 
that X ∼ N (0, C). If q1, . . . , qk are the column vectors of Q then 

X = QD1/2 g = (λ1
1 
/2 

g1)q1 + . . . + (λ1
k
/2 

gn)qk. 

Therefore, in the orthonormal coordinate basis q1, . . . , qk a random vector X has coordinates λ1
1/2 

g1, . . . , λk 
1/2 

gk. 
These coordinates are independent with normal distributions with variances λ1, . . . , λk correspondingly. 
When det(C) = 0, i.e. C is not invertible, some of its eigenvalues will be zero, say, λn+1 = . . . = λk = 0. 
Then the random X vector will be concentrated on the subspace spanned by vectors q1, . . . , qn but it will 
not have density on the entire space Rk . On the subspace spanned by vectors q1, . . . , qn a vector X will have 
a density 

n� 1 � x2 
i 

� 
f(x1, . . . , xn) = √

2πλi 
exp − 

2λi 
. 

i=1 

Let us look at a couple of properties of normal distributions. 

Lemma 21 If X ∼ N (0, C) on Rk and A : Rk → Rm is linear then AX ∼ N (0, ACAT ) on Rm . 

Proof. The c.f. of AX is 

Ee i(t,AX) = Ee i(A
T t,X) = e− 2

1 (CAT t,AT t) = e− 2
1 (ACAT t,t). 

Lemma 22 X is normal on Rk iff (t, X) is normal on R for all t ∈ Rk . 
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Proof. ”= ”. The c.f. of real-valued random variable (t, X) is ⇒

f(λ) = Ee iλ(t,X) = Ee i(λt,X) = e− 2
1 (Cλt,λt) = e− 2

1 λ2(Ct,t) 

which means that (t, X) ∼ N (0, (Ct, t)). 
” =”. If (t, X) is normal then ⇐

1
Ee i(t,X) = e− 2 (Ct,t) 

because the variance of (t, X) is (Ct, t). 

Lemma 23 Let Z = (X, Y ) where X = (X1, . . . , Xi) and Y = (Y1, . . . , Yj ) and suppose that Z is normal 
on Ri+j . Then X and Y are independent iff Cov(Xm, Yn) = 0 for all m, n. 

Proof. One way is obvious. The other way around, suppose that 

D 0 
C = Cov(Z) = .0 F 

Then the c.f. of Z is 

Ee i(t,Z) = e− 2
1 (Ct,t) = e− 2

1 (Dt1 ,t1)− 2
1 (Ft2,t2) = Ee i(t1,X)Ee i(t2,Y ), 

where t = (t1, t2). By uniqueness, X and Y are independent. 

Lemma 24 (Continuous Mapping.) Suppose that Pn P on X and G : X Y is a continuous map. Then 
G−1 P G−1 on Y. In other words, if r.v. Zn 

→ 
Z weakly then G(Zn

→
) G(Z) weakly. Pn ◦ → ◦ → → 

Proof. This is obvious, because for any f ∈ Cb(Y ), we have f ◦ G ∈ Cb(X) and therefore, 

Ef(G(Zn)) Ef(G(Z)).→ 

Lemma 25 If Pn → P on Rk and Qn → Q on Rm then Pn × Qn → P × Q on Rk+m . 

Proof. By Fubini theorem, The c.f. 

e i(t,x)dPn × Qn(x) = e i(t1,x1)dPn e i(t2,x2)dQn e i(t1,x1)dP e i(t2,x2)dQ = e i(t,x)dP × Q.→ 

By Lemma 19 it remains to show that (Pn × Qn) is uniformly tight. By Theorem 21, since Pn → P, (Pn) is 
uniformly tight. Therefore, there exists a compact K on Rk such that Pn(K) > 1 − ε. Similarly, for some 
compact K � on Rm , Qn(K �) > 1 − ε. We have, 

Pn × Qn(K × K �) > 1 − 2ε 

and K × K � is a compact on Rk+m . 

Corollary 1 If Pn P and Qn Q both on Rk then Pn ∗ Qn P ∗ Q.→ → → 

Proof. Since a function G : Rk+k Rk given by G(x, y) = x + y is continuous, by continuous mapping 
lemma, 

→ 

Pn ∗ Qn = (Pn × Qn) ◦ G−1 → (P × Q) ◦ G−1 = P ∗ Q. 
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