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Section 10

Multivariate normal distributions and
CLT.

Let P be a probability distribution on R* and let
g(t) = / ') dP ().

We proved that P7 = P % N'(0,02I) has density

- —i(t,x)—Lo2|¢t]?
pg(x) = (277—) k/g(t)e (t’ ) 2 ‘t| dt

Lemma 20 (Fourier inversion formula) If [ |g(t)|dt < oo then P has density
(o) = (20 [ gl at

Proof. Since
g(t)e_i(t’m)_%HQ‘tlz N g(t)e—i(t,.t)
pointwise as ¢ — 0 and

lg(f)efi(t’””)*%UQM2 <|g(t)| - integrable,

by dominated convergence theorem p°(z) — p(x). Since P — P weakly, for any f € Cy(R¥),
/ F(@)p? (z)dz — / F(2)dP(z

b (@) < <2w>*’{/ l9(t)]dt < oo,

On the other hand, since

by dominated convergence theorem, for any compactly supported f € Cy(RF),

[t @~ [ s
[ r@ee) = [ s
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Therefore, for any such f,



It is now a simple exercise to show that for any bounded open set U,
/ dP(z) = / p(x)dx.
U U
This means that P restricted to bounded sets has density p(z) and, hence, on entire R”.

For a random vector X = (X1,..., X3) € R¥ we denote EX = (EX1,...,EX}).

Theorem 24 Consider a sequence (X;)i>1 of i.i.d. random vectors on R such that EX; = 0,E|X;[? < .

Then E(\‘s}ﬁ) converges weakly to distribution P which has characteristic function

fplt) = e~ 2@ yhere C = Cov(X;) = (EXl,in’j) . (10.0.1)

1<i,j<k

Proof. Consider any t € R¥. Then Z; = (¢, X;) is i.i.d. real-valued sequence and by the proof of the CLT on
the real line,

Eei(t,%) — Reivm Di(tXa) o~ Var((6,X:) _ ,—5(Ctt)

as n — 00, since
V&I‘(thLl + -+ thl,k> = ZtitjEXl,in,j = (Ct,t) = tTCt.

,J

The sequence {E(s—\/%)} is uniformly tight on R* since

It remains to apply Lemma 19 from previous section.

1
~ nMz

2 1 1 M—»oo
]E‘(Sn’l,...,sn’k)' = W E ESEL,Z: W]E|X1|2 0
i<k

2 ) < 5B 2

The covariance matrix C' = Cov(X) is symmetric and non-negative definite, (Ct,t) = E(¢, X)? > 0.

The unique distribution with c.f. in (10.0.1) is called a multivariate normal distribution with covariance
C and is denoted by A/ (0, C). It can also be defined more constructively as follows. Consider an i.i.d. sequence
g1y, gn of N(0,1) r.v. and let g = (g1,...,gn)". Given a k x n matrix the covariance matrix of Ag € R¥ is

C = Cov(Ag) = EAg(Ag)T = AEggT AT = AAT.

The c.f. of Ag is
Eei(t-Ag) — Eei(ATt,g) _ e—%|ATt\2 _ e—%tTAATt _ e—%(Ct,t).

This means that Ag ~ N(0,C). Interestingly, the distribution of Ag depends only on AAT and does not
depend on the choice of n and A.

Exercise. Show constructively, using linear algebra, that the distribution of Ag and Bg’ is the same if

AAT = BBT.
i

On the other hand, given a covariance matrix C' one can always find A such that C = AAT. For
example, let C' = QDQT be its eigenvalue decomposition for orthogonal matrix @ and diagonal D. Since
C is nonnegative definite, the elements of D are nonnegative. Then, one can take n = k and A = C/2 .=
QDY2QT or A= QD2

Density in the invertible case. Suppose det(C) # 0. Take A such that C = AAT so that Ag ~
N(0,C). Since the density of g is

I on(-5) = ()" e 3e)
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for any set Q C R* we can write

P(Age Q) =P(gec A7'Q) = /14_19(\/12?>kexp<—;|m2>dx.

Let us now make the change of variables y = Az or x = A~ 'y. Then

P(Ag € Q) = /Sz(\/%)kexp(—;/l_lyﬁ) \dTl(Aﬂdy'

But since
det(C) = det(AAT) = det(A) det(AT) = det(A)?

we have | det(A4)| = +/det(C). Also
[A7ly)? = (A7) (AT y) = yT (A7) ATy = T (AAT) Ty =y Oy,

Therefore, we get

P(Ag € Q) = /Q(\/IZTr)k delt(C) exp(—%yTC’fly)dy.

This means that the distribution A/(0, C') has the density

<\/127r>k delt(C’) exp(féyTofly)'

O

General case. Let us take, for example, a vector X = QD2¢ for i.i.d. standard normal vector g so
that X ~ N(0,C). If q1, . .., gk are the column vectors of @) then

X =QDY?g=\"g)a + ...+ N gn)ar.

Therefore, in the orthonormal coordinate basis ¢1, . . ., gx a random vector X has coordinates )\1/ 2 G1y- -y )\]1€/ 2 G-
These coordinates are independent with normal distributions with variances Aq,...,A; correspondingly.
When det(C) = 0, i.e. C is not invertible, some of its eigenvalues will be zero, say, Ap41 = ... = A\ = 0.
Then the random X vector will be concentrated on the subspace spanned by vectors q1,...,q, but it will
not have density on the entire space R*. On the subspace spanned by vectors g, . .., g, a vector X will have

a density
n 2

flxr, ... zn) = H 2;)% exp(—;)ii).

i=1
i
Let us look at a couple of properties of normal distributions.
Lemma 21 If X ~ N(0,C) on R* and A : R¥ — R™ is linear then AX ~ N(0, ACAT) on R™,
Proof. The c.f. of AX is
Eei(t-AX) _ Eei(ATt,X) _ e—%(CATt,ATt) _ e—%(ACATt,t).
i

Lemma 22 X is normal on R¥ iff (t, X) is normal on R for all t € R¥.
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Proof. ”=>". The c.f. of real-valued random variable (¢, X) is
fQ) = EeMtX) = FeiX) — =3 (CALA) =327 (CLt)

which means that (t, X) ~ N (0, (Ct,t)).

7«="_1f (t,X) is normal then
Eei(t,X) _ e—%(Ct,t)

because the variance of (¢, X) is (Ct, t).
m

Lemma 23 Let Z = (X,Y) where X = (X1,...,X;) and Y = (Y1,...,Y;) and suppose that Z is normal
on R, Then X and Y are independent iff Cov(X,,,Yy) = 0 for all m,n.

Proof. One way is obvious. The other way around, suppose that

(J:Cov(Z):{lo) 1{1}

Then the c.f. of Z is

Eeit2) — 67%(Ct,t) _ efé(Dtl,tl)fé(FtQ,tz) _ IEei(tl,X)H,Eei(tz,y)7

where ¢t = (¢1,t2). By uniqueness, X and Y are independent.
O

Lemma 24 (Continuous Mapping.) Suppose that P, — P on X and G : X — 'Y is a continuous map. Then
P,oG™ ! - PoG™! onY. In other words, if r.v. Z, — Z weakly then G(Z,) — G(Z) weakly.

Proof. This is obvious, because for any f € Cy(Y), we have f o G € C,(X) and therefore,
Ef(G(Zn)) = Ef(G(2)).

Lemma 25 IfP, — P on R* and Q,, — Q on R™ then P, x Q,, — P x Q on RFt+™,

Proof. By Fubini theorem, The c.f.

/ei(t,w)d]P)n % Qn(w) :/ei(tl,:pl)d]P)n/ei(tz,wg)dQn _)/ei(t17w1)dP/ei(t27w2)dQ:/ei(t,a:)d]P;X Q

By Lemma 19 it remains to show that (P,, x Q,,) is uniformly tight. By Theorem 21, since P,, — P, (P,) is
uniformly tight. Therefore, there exists a compact K on R¥ such that P,(K) > 1 — . Similarly, for some
compact K’ on R™, Q,(K’) > 1 —e. We have,

P, x Qu(K x K') >1—2¢

and K x K’ is a compact on RFt

Corollary 1 IfP,, — P and Q, — Q both on R then P, xQ,, — PxQ.
Proof. Since a function G : R*** — RF given by G(z,y) = = + y is continuous, by continuous mapping

lemma,

Pn*@n:(Ian@n)OG_l%(PXQ)OG_lz[P*(@.
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