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Section 12 

Levy’s Continuity Theorem. Poisson 
Approximation. Conditional 
Expectation. 

Let us start with the following bound. 

Lemma 27 Let X be a real-valued r.v. with distribution P and let 

f(t) = Ee itX = e itxdP(x). 

Then, � 1 � 7 
� u 

P |X| >
u 
≤ 

u 0 
(1 − Ref(t))dt. 

Proof. Since � 
Ref(t) = cos txdP(x) 

we have �u � � �u 
1 1

(1 − cos tx)dP(x)dt = (1 − cos tx)dtdP(x) 
u u 

0 R R 0� � sin xu � 
= 1 − 

xu 
dP(x) 

R � � sin xu � 
≥ 1 − 

xu 
dP(x) 

� sin y sin 1 � 
|xu|≥1 � 

1 � 1 � 
since 

y
< 

1 
if y > 1 ≥ (1 − sin 1) 1dP(x) ≥ 

7 
P |X| ≥ 

u
. 

|xu|≥1 

Theorem 28 (Levy continuity) Let (Xn) be a sequence of r.v. on Rk. Suppose that 

fn(t) = Ee i(t,Xn ) f(t)→ 
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and f(t) is continuous at 0 along each axis. Then there exists a probability distribution P such that 

f(t) = e i(t,x)dP(x) 

and L(Xn) → P. 

Proof. By Lemma 19 we only need to show that {L(Xn)} is uniformly tight. If we denote 

Xn = (Xn,1, . . . , Xn,k) 

then the c.f.s along the ith coordinate: 

f i (ti) := fn(0, . . . , ti, 0, . . . 0) = Ee itiXn,i f(0, . . . , ti, . . . 0) =: f i(ti).n → 

Since fn(0) = 1 and, therefore, f(0) = 1, for any ε > 0 we can find δ > 0 such that for all i ≤ k 

|f i(ti) − 1| ≤ ε if |ti| ≤ δ. 

This implies that for large enough n 

|fn
i (ti) − 1| ≤ 2ε if |ti| ≤ δ. 

Using previous Lemma, � 1 � 7 
� δ� � 7 

� δ � � 
P |Xn,i| >

δ 
≤ 

δ 0 
1 − Ref i (ti) dti ≤ 

δ 0 

�1 − f i (ti)� dti ≤ 7 · 2ε.n n

The union bound implies that � √
k � 

P |Xn| >
δ 
≤ 14kε 

and {L(Xn)}n≥1 is uniformly tight.


CLT describes how sums of independent r.v.s are approximated by normal distribution. We will now give a

nsimple example of a different approximation. Consider independent Bernoulli random variables Xi

n ∼ B(pi ) 
n n nfor i ≤ n, i.e. P(Xn = 1) = p and P(Xn = 0) = 1 − pi . If p = p > 0 then by CLT i i i i


Sn − np


np(1 − p) 
→ N (0, 1). 

nHowever, if p = pi 0 fast enough then, for example, the Lindeberg conditions will be violated. It is 
well-known that if pn

i 

→ 
= pn and npn → λ then Sn has approximately Poisson distribution Πλ with p.f. 

λk 

f(k) = e−λ for k = 0, 1, 2, . . . 
k! 

Here is a version of this result. 

Theorem 29 Consider independent Xi ∼ B(pi) for i ≤ n and let 

Sn = X1 + . . . + Xn and λ = p1 + . . . + pn. 

Then for any subset of integers B ⊆ Z, 

|P(Sn ∈ B) − Πλ(B)| ≤ pi 
2 . 

i≤n 
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Proof. The proof is based on the construction on ”one probability space”. Let us construct Bernoulli r.v. 
Xi ∼ B(pi) and Poisson r.v. Xi 

∗ ∼ Πpi on the same probability space as follows. Let us consider a probability 
space ([0, 1], B, λ) with Lebesque measure λ. Define 

0, 0 ≤ x ≤ 1 − pi,Xi = Xi(x) = 1, 1 − pi < x ≤ 1. 

Clearly, Xi ∼ B(pi). Let us construct Xi 
∗ as follows. If for k ≥ 0 we define 

(pi)l 

e−pick = 
l! 

0≤l≤k 

then 

Xi = Xi(x) = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

0, 0 ≤ x ≤ c0, 
1, c0 < x ≤ c1, 
2, c1 < x ≤ c2, 
. . . 

Clearly, Xi 
∗ ∼ Πpi . When Xi =� Xi 

∗? Since 1 − pj ≤ e−pj = c0, this can only happen for 

1 − pi < x ≤ c0 and c1 < x ≤ 1, 

i.e. 
P(Xj �= X∗) = epj − (1 − pj ) + (1 − e−pj − pj e

−pj ) = pj (1 − e−pj ) ≤ p 2 
j j 

We construct pairs (Xi, Xi 
∗) on separate coordinates of a product space, thus, making them independent fo�

It is well-known thati ≤ n. i≤n Xi 
∗ ∼ Πλ and, finally, we get 

P(Sn �= Sn
∗ ) ≤ P(Xj �= Xj 

∗) ≤ pj 
2 . 

j≤n j≤n 

Conditional expectation. Let (Ω, B, P) be a probability space and X : Ω R be a random variable such 
that E|X| < ∞. Let A be a σ-subalgebra of B, A ⊆ B. 

→ 

Definition. Y = E(X|A) is called conditional expectation of X given A if 

1. Y : Ω → R is measurable on A, i.e. if B is a Borel set on R then Y −1(B) ∈ A. 

2. For any set A ∈ A we have EXIA = EY IA, where IA(ω) = 
1 ω ∈ A 
0 ω /∈ A. 

Definition. If X,Z are random variables then conditional expectation of X given Z is defined by 

Y = E(X|Z) = E(X|σ(Z)). 

Since Y is measurable on σ(Z), Y = f(Z) for some measurable function f . 
Properties of conditional expectation. 
1. (Existence of conditional expectation.) Let us define 

µ(A) = XdP for A ∈ A. 
A 

µ(A) is a σ-additive signed measure on A. Since X is integrable, if P(A) = 0 then µ(A) = 0 which means 
that µ is absolutely continuous w.r.t. P. By Radon-Nikodym theorem, there exists Y = dµ measurable on AdP 
such that for A ∈ A 

µ(A) = XdP = Y dP. 
A A 
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By definition Y = E(X|A). 
2. (Uniqueness) Suppose there exists Y � = E(X|A) such that P(Y =� Y �) > 0, i.e. 

P(Y > Y �) > 0 or P(Y < Y �) > 0. 

Since both Y, Y � are measurable on A the set A = {Y > Y �} ∈ A. One one hand, E(Y − Y �)IA > 0. On the 
other hand, 

E(Y − Y �)IA = EXIA − EXIA = 0 

- a contradiction. 
3. E(cX + Y |A) = cE(X|A) + E(Y |A). 
4. If σ-algebras C ⊆ A ⊆ B then 

E(E(X|A)|C) = E(X|C). 

Consider a set C ∈ C ⊆ A. Then 

EIC (E(E(X|A)|C)) = EIC E(X|A) = EIC X and EIC (E(X|C)) = EXIC . 

We conclude by uniqueness. 
5. E(X|B) = X, E(X|{∅, Ω}) = EX, E(X|A) = EX if X is independent of A. 

6. If X ≤ Z then E(X|A) ≤ E(Z|A) a.s.; proof is similar to proof of uniqueness. 
7. (Monotone convergence) If E|Xn| < ∞, E|X| < ∞ and Xn ↑ X then E(Xn|A) ↑ E(X|A). Since 

E(Xn|A) ≤ E(Xn+1|A) ≤ E(X|A) 

there exists a limit 
g = lim E(Xn|A) ≤ E(X|A). 

n→∞ 

Since E(Xn|A) are measurable on A, so is g = lim E(Xn|A). It remains to check that 

for any set A ∈ A, EgIA = EXIA. 

Since XnIA ↑ XIA and E(Xn|A)IA ↑ gIA, by monotone convergence theorem, 

EXnIA ↑ EXIA and EIAE(Xn|A) ↑ EgIA. 

But since EIAE(Xn|A) = EXnIA this implies that EgIA = EXIA and, therefore, g = E(X|A) a.s. 
8. (Dominated convergence) If |Xn| ≤ Y, EY < ∞, and Xn → X then


lim E(Xn|A) = E(X|A).


We can write, 
= inf Xm = sup Xm ≤ Y. −Y ≤ gn

m≥n 
≤ Xn ≤ hn

m≥n 

Since 
gn ↑ X, hn ↓ X, |gn| ≤ Y, |hn| ≤ Y 

by monotone convergence 

E(gn|A) ↑ E(X|A), E(hn|A) ↓ E(X|A) =⇒ EXn|A) → E(X|A). 

9. If E|X| < ∞, E|XY | < ∞ and Y is measurable on A then


E(XY |A) = Y E(X|A).
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We can assume that X, Y ≥ 0 by decomposing X = X+ − X−, Y = Y + − Y −. Consider a sequence of simple 
functions � 

Yn = wkICk , Ck ∈ A 

measurable on A such that 0 ≤ Yn ↑ Y. By monotone convergence theorem, it is enough to prove that 

E(XICk |A) = ICk E(X|A). 

Take B ∈ A. Since BCk ∈ A, 

EIB ICk E(X|A) = EIBCk E(X|A) = EXIBCk = E(XICk )IB . 

10. (Jensen’s inequality) If f : R R is convex then → 

f(E(X|A)) ≤ E(f(X|A)). 

By convexity, 
f(X) − f(E(X|A)) ≥ ∂f(E(X|A))(X − E(X|A)). 

Taking condition expectation of both sides, 

E(f(X)|A) − f(E(X|A)) ≥ ∂f(E(X|A))(E(X|A) − E(X|A)) = 0. 
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