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Section 12

Levy’s Continuity Theorem. Poisson
Approximation. Conditional
Expectation.

Let us start with the following bound.

Lemma 27 Let X be a real-valued r.v. with distribution P and let
£ =B = [ (o)

Then, ,
IP’(|X| > %) < %/O (1 - Ref(t))dt.

Proof. Since

Ref(t) = /COS txdP(x)

1// (1 — costx)dP(x = //(lfcostx)dtdIP’(x)
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Theorem 28 (Levy continuity) Let (X,,) be a sequence of r.v. on RF. Suppose that

fult) = EeBXn) — £(1)
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and f(t) is continuous at 0 along each axis. Then there exists a probability distribution P such that

ft) = / ") dP ()
and L(X,) — P.
Proof. By Lemma 19 we only need to show that {£(X,,)} is uniformly tight. If we denote
Xn=Xn1,-- -, Xnk)
then the c.f.s along the ith coordinate:
fi(ti) := £al0,.. . 1;,0,...0) = EetiXmi — £(0,... t;,...0) = fi(t;).
Since f,,(0) =1 and, therefore, f(0) =1, for any € > 0 we can find § > 0 such that for all i < k
Ifit) — 1 <e if Jt;] <6
This implies that for large enough n
|fi(t) — 1] <2e if [t;] <6

Using previous Lemma,

N _7[° ; 70 ;
P(|Xn,i| > 5) < 5/0 (1 _Refn(ti)>dti < 5/0 1= fr(t)| dt; <7-2e.

The union bound implies that
k
]P’(\Xn| > %) < 1dke

and {£(X,,)}n>1 is uniformly tight.

i
CLT describes how sums of independent r.v.s are approximated by normal distribution. We will now give a
simple example of a different approximation. Consider independent Bernoulli random variables X" ~ B(pl)
for i <n,ie P(X=1)=p! and (X =0) =1—p?. If p = p > 0 then by CLT

Sn_np

— N(0,1).
np(l —p) %

However, if p = pI* — 0 fast enough then, for example, the Lindeberg conditions will be violated. It is
well-known that if p} = p,, and np,, — A then S,, has approximately Poisson distribution I with p.f.

)\k
f(k) = ﬁe*A for k=0,1,2,...

Here is a version of this result.
Theorem 29 Consider independent X; ~ B(p;) for i <n and let
Spn=X14+...+Xp and A=p1+ ...+ pn.

Then for any subset of integers B C 7Z,
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Proof. The proof is based on the construction on ”one probability space”. Let us construct Bernoulli r.v.
X, ~ B(p;) and Poisson r.v. X ~ II,, on the same probability space as follows. Let us consider a probability
space ([0, 1], B, A\) with Lebesque measure A. Define

_ _ 07 0§$§1*Pm
‘&_Xxw_{l,l—m<x<1

Clearly, X; ~ B(p;). Let us construct X as follows. If for k > 0 we define

Ay,
crp = Z (pll') e P

0<i<k

then
Oa 0<z< €o,

co <z <,
2, ¢ <zx<Lco,

Clearly, X ~ II,,. When X; # X7 Since 1 — p; < e™P/ = ¢, this can only happen for
l-pi<x<cy and ¢ <z <1,

i.e.
P(X;#X])=e" —(1—pj)+(1—eP —pje ) =p;j(1—e )< p?

We construct pairs (X;, X) on separate coordinates of a product space, thus, making them independent fo
i < n. It is well-known that >, X ~ IIy and, finally, we get

K2

P(Sn # S5) <Y P(X; # X7) <Y ps.

Jj<n j<n

i
Conditional expectation. Let (2, B,P) be a probability space and X :  — R be a random variable such
that E|X| < co. Let A be a o-subalgebra of B, A C 5.

Definition. Y = E(X|A) is called conditional expectation of X given A if

1. Y : Q — R is measurable on A, i.e. if B is a Borel set on R then Y ~!(B) € A.

1 wedAd

2. For any set A € A we have EXT4 = EY1y, where I4(w) = { 0 wgA

Definition. If X, Z are random variables then conditional expectation of X given Z is defined by
Y =E(X|Z2) =E(X|o(2)).

Since Y is measurable on o(Z), Y = f(Z) for some measurable function f.
Properties of conditional expectation.
1. (Existence of conditional expectation.) Let us define

u(A):/Xd]P’ for Aec A
A

u(A) is a o-additive signed measure on A. Since X is integrable, if P(A) = 0 then p(A) = 0 which means
that p is absolutely continuous w.r.t. P. By Radon-Nikodym theorem, there exists ¥ = % measurable on A

such that for A € A
Mm:/xm:/yw
A A
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By definition Y = E(X|A).
2. (Uniqueness) Suppose there exists Y’ = E(X|.A) such that P(Y # Y') > 0, i.e.

PY >Y')>0o0r P(Y <Y’) > 0.

Since both Y, Y are measurable on A the set A ={Y > Y’} € A. One one hand, E(Y —Y’)I4 > 0. On the
other hand,
E(Y — Y')I4 = EXI4 — EXT4 =0

- a contradiction.
3. E(cX +Y|A) = cE(X|A) + E(Y|A).
4. If o-algebras C C A C B then

E(E(X|A)|C) =E(X|C).
Consider a set C € C C A. Then
Elo(E(E(X|A)|C)) = EIcE(X|A) = ElcX and Elo(E(X|C)) = EXIe.

We conclude by uniqueness.
5. E(X|B) = X, E(X|{0,Q}) =EX, E(X|A) = EX if X is independent of A.
6. If X < Z then E(X|A) <E(Z|A) a.s.; proof is similar to proof of uniqueness.
7. (Monotone convergence) If E|X,,| < 00, E|X| < co and X,, T X then E(X,,|A) T E(X].A). Since

E(Xn|A) < E(Xn41]A4) < E(X[A)

there exists a limit

g= nleréoE(Xn|A) <E(X]A).
Since E(X,|A) are measurable on A, so is g = imE(X,|.A). It remains to check that
for any set A € A, Egly = EXI4.
Since X, 14 7 X14 and E(X,,|A)14 T gla, by monotone convergence theorem,
EX,I4 1 EXIy and EI4E(X,|A) ] Egl,.

But since EI4E(X,,|A) = EX,14 this implies that Egl4 = EXI4 and, therefore, g = E(X|A) a.s.
8. (Dominated convergence) If | X,,| < Y,EY < oo, and X,, — X then

ImE(X,|A4) =E(X]|A).
We can write,

m>n

Since
In 1 X, hn L X, |gn| <Y, |hy| <Y

by monotone convergence
E(gnlA) T E(X]A), E(hn|A) | E(X|A) = EX,|4) — E(X]A).
9. If E|X| < 00, E|XY| < 00 and Y is measurable on A then

E(XY|A) = YE(X|A).
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We can assume that X,Y > 0 by decomposing X = X+ — X~ Y = YT —Y~. Consider a sequence of simple
functions

Y, = Zwklcw Cre A

measurable on A such that 0 <Y,, T Y. By monotone convergence theorem, it is enough to prove that
E(XIg,|A) =10, E(X]A).
Take B € A. Since BC), € A,
Elgle, E(X|A) = Elpc, E(X|A) = EXIpe, = E(XI¢, )IB.
10. (Jensen’s inequality) If f : R — R is convex then
FE(X|A) < E(f(X]A)).

By convexity,

F(X) = f(B(X]A)) = O (E(X]A))(X — E(X]A)).

Taking condition expectation of both sides,

E(f(X)|A) = F(E(X]A)) = 0f(E(X]A))(E(X|A) — E(X]A)) = 0.
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