MIT OpenCourseWare <http://ocw.mit.edu>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

Section 12

Levy's Continuity Theorem. Poisson Approximation. Conditional Expectation.

Let us start with the following bound.

Lemma 27 Let X be a real-valued r.v. with distribution $\mathbb P$ and let

$$
f(t) = \mathbb{E}e^{itX} = \int e^{itx} d\mathbb{P}(x).
$$

Then,

$$
\mathbb{P}\Big(|X| > \frac{1}{u}\Big) \le \frac{7}{u} \int_0^u (1 - \mathbf{Re}f(t)) dt.
$$

Proof. Since

$$
\mathbf{Re}f(t) = \int \cos tx d\mathbb{P}(x)
$$

we have

$$
\frac{1}{u} \int_{0}^{u} \int_{\mathbb{R}} (1 - \cos tx) d\mathbb{P}(x) dt = \frac{1}{u} \int_{\mathbb{R}} \int_{0}^{u} (1 - \cos tx) dt d\mathbb{P}(x)
$$
\n
$$
= \int_{\mathbb{R}} \left(1 - \frac{\sin xu}{xu}\right) d\mathbb{P}(x)
$$
\n
$$
\geq \int_{|xu| \geq 1} \left(1 - \frac{\sin xu}{xu}\right) d\mathbb{P}(x)
$$
\n
$$
\left\{\text{since } \frac{\sin y}{y} < \frac{\sin 1}{1} \text{ if } y > 1\right\} \geq (1 - \sin 1) \int_{|xu| \geq 1} 1 d\mathbb{P}(x) \geq \frac{1}{7} \mathbb{P}\left(|X| \geq \frac{1}{u}\right).
$$

Theorem 28 (Levy continuity) Let (X_n) be a sequence of r.v. on \mathbb{R}^k . Suppose that

$$
f_n(t) = \mathbb{E}e^{i(t,X_n)} \to f(t)
$$

 \Box

and $f(t)$ is continuous at 0 along each axis. Then there exists a probability distribution $\mathbb P$ such that

$$
f(t) = \int e^{i(t,x)} d\mathbb{P}(x)
$$

and $\mathcal{L}(X_n) \to \mathbb{P}$.

Proof. By Lemma 19 we only need to show that $\{\mathcal{L}(X_n)\}\$ is uniformly tight. If we denote

$$
X_n = (X_{n,1}, \ldots, X_{n,k})
$$

then the c.f.s along the ith coordinate:

$$
f_n^i(t_i) := f_n(0,\ldots,t_i,0,\ldots,0) = \mathbb{E}e^{it_i X_{n,i}} \to f(0,\ldots,t_i,\ldots,0) =: f^i(t_i).
$$

Since $f_n(0) = 1$ and, therefore, $f(0) = 1$, for any $\varepsilon > 0$ we can find $\delta > 0$ such that for all $i \leq k$

$$
|f^{i}(t_{i})-1| \leq \varepsilon \quad \text{if} \quad |t_{i}| \leq \delta.
$$

This implies that for large enough n

$$
|f_n^i(t_i) - 1| \le 2\varepsilon \quad \text{if} \quad |t_i| \le \delta.
$$

Using previous Lemma,

$$
\mathbb{P}\Big(|X_{n,i}| > \frac{1}{\delta}\Big) \leq \frac{7}{\delta}\int_0^{\delta} \Big(1 - \mathbf{Re} f_n^i(t_i)\Big) dt_i \leq \frac{7}{\delta}\int_0^{\delta} \left|1 - f_n^i(t_i)\right| dt_i \leq 7 \cdot 2\varepsilon.
$$

The union bound implies that

$$
\mathbb{P}\Big(|X_n| > \frac{\sqrt{k}}{\delta} \Big) \le 14k\varepsilon
$$

and $\{\mathcal{L}(X_n)\}_{n\geq 1}$ is uniformly tight.

CLT describes how sums of independent r.v.s are approximated by normal distribution. We will now give a simple example of a different approximation. Consider independent Bernoulli random variables $X_i^n \sim B(p_i^n)$ for $i \leq n$, i.e. $\mathbb{P}(X_i^n = 1) = p_i^n$ and $\mathbb{P}(X_i^n = 0) = 1 - p_i^n$. If $p_i^n = p > 0$ then by CLT

 \Box

$$
\frac{S_n - np}{\sqrt{np(1-p)}} \to \mathcal{N}(0, 1).
$$

However, if $p = p_i^n \to 0$ fast enough then, for example, the Lindeberg conditions will be violated. It is well-known that if $p_i^n = p_n$ and $np_n \to \lambda$ then S_n has approximately Poisson distribution Π_λ with p.f.

$$
f(k) = \frac{\lambda^k}{k!} e^{-\lambda}
$$
 for $k = 0, 1, 2, \dots$

Here is a version of this result.

Theorem 29 Consider independent X_i ∼ B(p_i) for $i \leq n$ and let

$$
S_n = X_1 + \ldots + X_n \text{ and } \lambda = p_1 + \ldots + p_n.
$$

Then for any subset of integers $B \subseteq \mathbb{Z}$,

$$
|\mathbb{P}(S_n \in B) - \Pi_{\lambda}(B)| \leq \sum_{i \leq n} p_i^2.
$$

Proof. The proof is based on the construction on "one probability space". Let us construct Bernoulli r.v. $X_i \sim B(p_i)$ and Poisson r.v. $X_i^* \sim \Pi_{p_i}$ on the same probability space as follows. Let us consider a probability space $([0, 1], \mathcal{B}, \lambda)$ with Lebesque measure λ . Define

$$
X_i = X_i(x) = \begin{cases} 0, & 0 \le x \le 1 - p_i, \\ 1, & 1 - p_i < x \le 1. \end{cases}
$$

Clearly, $X_i \sim B(p_i)$. Let us construct X_i^* as follows. If for $k \geq 0$ we define

$$
c_k = \sum_{0 \le l \le k} \frac{(p_i)^l}{l!} e^{-p_i}
$$

then

$$
X_i = X_i(x) = \begin{cases} 0, & 0 \le x \le c_0, \\ 1, & c_0 < x \le c_1, \\ 2, & c_1 < x \le c_2, \\ \dots \end{cases}
$$

Clearly, $X_i^* \sim \Pi_{p_i}$. When $X_i \neq X_i^*$? Since $1 - p_j \leq e^{-p_j} = c_0$, this can only happen for

$$
1 - p_i < x \leq c_0
$$
 and $c_1 < x \leq 1$,

i.e.

$$
\mathbb{P}(X_j \neq X_j^*) = e^{p_j} - (1 - p_j) + (1 - e^{-p_j} - p_j e^{-p_j}) = p_j (1 - e^{-p_j}) \leq p_j^2
$$

We construct pairs (X_i, X_i^*) on separate coordinates of a product space, thus, making them independent for $i \leq n$. It is well-known that $\sum_{i \leq n} X_i^* \sim \Pi_{\lambda}$ and, finally, we get

$$
\mathbb{P}(S_n \neq S_n^*) \leq \sum_{j \leq n} \mathbb{P}(X_j \neq X_j^*) \leq \sum_{j \leq n} p_j^2.
$$

 \Box

Conditional expectation. Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space and $X : \Omega \to \mathbb{R}$ be a random variable such that $\mathbb{E}|X| < \infty$. Let A be a σ -subalgebra of B, $A \subseteq \mathcal{B}$.

Definition. $Y = \mathbb{E}(X|\mathcal{A})$ is called *conditional expectation* of X given A if

- 1. $Y : \Omega \to \mathbb{R}$ is measurable on A, i.e. if B is a Borel set on \mathbb{R} then $Y^{-1}(B) \in \mathcal{A}$.
- 2. For any set $A \in \mathcal{A}$ we have $\mathbb{E} X I_A = \mathbb{E} Y I_A$, where $I_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A. \end{cases}$

Definition. If X, Z are random variables then conditional expectation of X given Z is defined by

$$
Y = \mathbb{E}(X|Z) = \mathbb{E}(X|\sigma(Z)).
$$

Since Y is measurable on $\sigma(Z)$, $Y = f(Z)$ for some measurable function f.

Properties of conditional expectation.

1. (Existence of conditional expectation.) Let us define

$$
\mu(A) = \int_A Xd\mathbb{P} \text{ for } A \in \mathcal{A}.
$$

 $\mu(A)$ is a σ -additive signed measure on A. Since X is integrable, if $\mathbb{P}(A) = 0$ then $\mu(A) = 0$ which means that μ is absolutely continuous w.r.t. P. By Radon-Nikodym theorem, there exists $Y = \frac{d\mu}{dP}$ measurable on A such that for $A \in \mathcal{A}$

$$
\mu(A) = \int_A Xd\mathbb{P} = \int_A Yd\mathbb{P}.
$$

By definition $Y = \mathbb{E}(X|\mathcal{A})$.

2. (Uniqueness) Suppose there exists $Y' = \mathbb{E}(X|\mathcal{A})$ such that $\mathbb{P}(Y \neq Y') > 0$, i.e.

$$
\mathbb{P}(Y > Y') > 0 \text{ or } \mathbb{P}(Y < Y') > 0.
$$

Since both Y, Y' are measurable on A the set $A = \{Y > Y'\} \in A$. One one hand, $\mathbb{E}(Y - Y')I_A > 0$. On the other hand,

$$
\mathbb{E}(Y - Y')I_A = \mathbb{E}XI_A - \mathbb{E}XI_A = 0
$$

- a contradiction.

3. $\mathbb{E}(cX + Y | \mathcal{A}) = c\mathbb{E}(X | \mathcal{A}) + \mathbb{E}(Y | \mathcal{A}).$

4. If σ -algebras $\mathcal{C} \subseteq \mathcal{A} \subseteq \mathcal{B}$ then

$$
\mathbb{E}(\mathbb{E}(X|\mathcal{A})|\mathcal{C}) = \mathbb{E}(X|\mathcal{C}).
$$

Consider a set $C \in \mathcal{C} \subseteq \mathcal{A}$. Then

$$
\mathbb{E}\mathrm{I}_{C}(\mathbb{E}(\mathbb{E}(X|\mathcal{A})|\mathcal{C}))=\mathbb{E}\mathrm{I}_{C}\mathbb{E}(X|\mathcal{A})=\mathbb{E}\mathrm{I}_{C}X \text{ and } \mathbb{E}\mathrm{I}_{C}(\mathbb{E}(X|\mathcal{C}))=\mathbb{E}X\mathrm{I}_{C}.
$$

We conclude by uniqueness.

- 5. $\mathbb{E}(X|\mathcal{B}) = X$, $\mathbb{E}(X|\{\emptyset,\Omega\}) = \mathbb{E}X$, $\mathbb{E}(X|\mathcal{A}) = \mathbb{E}X$ if X is independent of A.
- 6. If $X \leq Z$ then $\mathbb{E}(X|\mathcal{A}) \leq \mathbb{E}(Z|\mathcal{A})$ a.s.; proof is similar to proof of uniqueness.
- 7. (Monotone convergence) If $\mathbb{E}|X_n| < \infty$, $\mathbb{E}|X| < \infty$ and $X_n \uparrow X$ then $\mathbb{E}(X_n|\mathcal{A}) \uparrow \mathbb{E}(X|\mathcal{A})$. Since

$$
\mathbb{E}(X_n|\mathcal{A}) \le \mathbb{E}(X_{n+1}|\mathcal{A}) \le \mathbb{E}(X|\mathcal{A})
$$

there exists a limit

$$
g = \lim_{n \to \infty} \mathbb{E}(X_n | \mathcal{A}) \leq \mathbb{E}(X | \mathcal{A}).
$$

Since $\mathbb{E}(X_n|\mathcal{A})$ are measurable on \mathcal{A} , so is $g = \lim \mathbb{E}(X_n|\mathcal{A})$. It remains to check that

for any set $A \in \mathcal{A}$, $\mathbb{E} qI_A = \mathbb{E} X I_A$.

Since $X_nI_A \uparrow XI_A$ and $\mathbb{E}(X_n|\mathcal{A})I_A \uparrow gI_A$, by monotone convergence theorem,

$$
\mathbb{E} X_n \mathbb{I}_A \uparrow \mathbb{E} X \mathbb{I}_A \text{ and } \mathbb{E} \mathbb{I}_A \mathbb{E} (X_n | \mathcal{A}) \uparrow \mathbb{E} g \mathbb{I}_A.
$$

But since $\mathbb{E}I_A\mathbb{E}(X_n|\mathcal{A}) = \mathbb{E}X_nI_A$ this implies that $\mathbb{E}gI_A = \mathbb{E}XI_A$ and, therefore, $g = \mathbb{E}(X|\mathcal{A})$ a.s. 8. (Dominated convergence) If $|X_n| \le Y$, $E Y < \infty$, and $X_n \to X$ then

$$
\lim \mathbb{E}(X_n|A) = \mathbb{E}(X|A).
$$

We can write,

$$
-Y \le g_n = \inf_{m \ge n} X_m \le X_n \le h_n = \sup_{m \ge n} X_m \le Y.
$$

Since

$$
g_n \uparrow X, \ h_n \downarrow X, \ |g_n| \le Y, |h_n| \le Y
$$

by monotone convergence

$$
\mathbb{E}(g_n|\mathcal{A}) \uparrow \mathbb{E}(X|\mathcal{A}), \ \mathbb{E}(h_n|\mathcal{A}) \downarrow \mathbb{E}(X|\mathcal{A}) \Longrightarrow \mathbb{E}(X_n|\mathcal{A}) \to \mathbb{E}(X|\mathcal{A}).
$$

9. If $\mathbb{E}|X| < \infty$, $\mathbb{E}|XY| < \infty$ and Y is measurable on A then

$$
\mathbb{E}(XY|\mathcal{A}) = Y\mathbb{E}(X|\mathcal{A}).
$$

We can assume that $X, Y \ge 0$ by decomposing $X = X^+ - X^-, Y = Y^+ - Y^-$. Consider a sequence of simple functions

$$
Y_n = \sum w_k \mathbf{I}_{C_k}, \ \ C_k \in \mathcal{A}
$$

measurable on $\mathcal A$ such that $0 \le Y_n \uparrow Y$. By monotone convergence theorem, it is enough to prove that

$$
\mathbb{E}(X\mathrm{I}_{C_k}|\mathcal{A})=\mathrm{I}_{C_k}\mathbb{E}(X|\mathcal{A}).
$$

Take $B \in \mathcal{A}$. Since $BC_k \in \mathcal{A}$,

$$
\mathbb{E}\mathrm{I}_{B}\mathrm{I}_{C_{k}}\mathbb{E}(X|\mathcal{A})=\mathbb{E}\mathrm{I}_{BC_{k}}\mathbb{E}(X|\mathcal{A})=\mathbb{E}X\mathrm{I}_{BC_{k}}=\mathbb{E}(X\mathrm{I}_{C_{k}})\mathrm{I}_{B}.
$$

10. (Jensen's inequality) If $f : \mathbb{R} \to \mathbb{R}$ is convex then

$$
f(\mathbb{E}(X|\mathcal{A})) \leq \mathbb{E}(f(X|\mathcal{A})).
$$

By convexity,

$$
f(X) - f(\mathbb{E}(X|\mathcal{A})) \geq \partial f(\mathbb{E}(X|\mathcal{A}))(X - \mathbb{E}(X|\mathcal{A})).
$$

Taking condition expectation of both sides,

$$
\mathbb{E}(f(X)|\mathcal{A}) - f(\mathbb{E}(X|\mathcal{A})) \geq \partial f(\mathbb{E}(X|\mathcal{A}))(\mathbb{E}(X|\mathcal{A}) - \mathbb{E}(X|\mathcal{A})) = 0.
$$

 \Box