MIT OpenCourseWare <http://ocw.mit.edu>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

Section 13

Martingales. Doob's Decomposition. Uniform Integrability.

Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space and let (T, \leq) be a linearly ordered set. Consider a family of σ -algebras $\mathcal{B}_t, t \in T$ such that for $t \leq u, \mathcal{B}_t \subseteq \mathcal{B}_u \subseteq \mathcal{B}$.

Definition. A family $(X_t, \mathcal{B}_t)_{t \in T}$ is called a *martingale* if

- 1. $X_t : \Omega \to \mathbb{R}$ is measurable w.r.t. \mathcal{B}_t ; in other words, X_t is adapted to \mathcal{B}_t .
- 2. $\mathbb{E}|X_t| < \infty$.
- 3. $\mathbb{E}(X_u|\mathcal{B}_t) = X_t$ for $t \leq u$.

If the last equality is replaced by $\mathbb{E}(X_u|\mathcal{B}_t) \leq X_t$ then the process is called a *supermartingale* and if $\mathbb{E}(X_u|\mathcal{B}_t) \geq X_t$ then it is called a *submartingale*.

Examples.

 $\sum_{i\leq n}X_i$. If $\mathcal{B}_n=\sigma(X_1,\ldots,X_n)$ is a σ -algebra generated by the first n r.v.s then $(S_n,\mathcal{B}_n)_{n\geq 1}$ is a martingale 1. Consider a sequence $(X_n)_{n\geq 1}$ of independent random variables such that $\mathbb{E}X_i = 0$ and let $S_n =$ since

$$
\mathbb{E}(S_{n+1}|\mathcal{B}_n) = \mathbb{E}(X_{n+1} + S_n|\mathcal{B}_n) = 0 + S_n = S_n.
$$

2. Consider a sequence of σ -algebras

$$
\ldots \subseteq \mathcal{B}_m \subseteq \mathcal{B}_n \subseteq \ldots \subseteq \mathcal{B}
$$

and a r.v. X on B and let $X_n = \mathbb{E}(X|\mathcal{B}_n)$. Then (X_n, \mathcal{B}_n) is a martingale since for $m < n$

$$
\mathbb{E}(X_n|\mathcal{B}_m)=\mathbb{E}(\mathbb{E}(X|\mathcal{B}_n)|\mathcal{B}_m)=\mathbb{E}(X|\mathcal{B}_m)=X_m.
$$

Definition. If (X_n, \mathcal{B}_n) is a martingale and for some r.v. X, $X_n = \mathbb{E}(X|\mathcal{B}_n)$, then the martingale is called right-closable. If $X_{\infty} = X$, $\mathcal{B}_{\infty} = \mathcal{B}$ then $(X_n, \mathcal{B}_n)_{n \leq \infty}$ is called *right-closed.*
3. Let $(X_i)_{i \geq 1}$ be i.i.d. and let $S_n = \sum_{i \leq n} X_i$. Let us take $T = \{ \dots, -1 \}$

3. Let $(X_i)_{i\geq 1}$ be i.i.d. and let $S_n = \sum_{i\leq n} X_i$. Let us take $T = \{\ldots, -2, -1\}$ and for $n \geq 1$ define

$$
\mathcal{B}_{-n}=\sigma(S_n, S_{n+1}, \ldots)=\sigma(S_n, X_{n+1}, X_{n+2}, \ldots).
$$

Clearly, $\mathcal{B}_{-(n+1)} \subseteq \mathcal{B}_{-n}$. For $1 \leq k \leq n$, by symmetry,

$$
\mathbb{E}(X_1|\mathcal{B}_{-n}) = \mathbb{E}(X_k|\mathcal{B}_{-n}).
$$

Therefore,

$$
S_n = \mathbb{E}(S_n | \mathcal{B}_{-n}) = \sum_{1 \leq k \leq n} \mathbb{E}(X_k | \mathcal{B}_{-n}) = n \mathbb{E}(X_1 | \mathcal{B}_{-n}) \Longrightarrow Z_{-n} := \frac{S_n}{n} = \mathbb{E}(X_1 | \mathcal{B}_{-n}).
$$

Thus, $(Z_{-n}, \mathcal{B}_{-n})_{-n \le -1}$ is a right-closed martingale.

 \Box

Lemma 28 Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Suppose that either one of two conditions holds:

- 1. (X_t, \mathcal{B}_t) is a martingale,
- 2. (X_t, \mathcal{B}_t) is a submartingale and f is increasing.

Then $(f(X_t), \mathcal{B}_t)$ is a submartingale.

Proof. 1. For $t \leq u$, by Jensen's inequality,

$$
f(X_t) = f(\mathbb{E}(X_u | \mathcal{B}_t)) \leq \mathbb{E}(f(X_u) | \mathcal{B}_t).
$$

2. For $t \leq u$, since $X_t \leq \mathbb{E}(X_u|\mathcal{B}_t)$ and f is increasing,

$$
f(X_t) \le f(\mathbb{E}(X_u|\mathcal{B}_t)) \le \mathbb{E}(f(X_u)|\mathcal{B}_t),
$$

where the last step is again Jensen's inequality.

Theorem 30 (Doob's decomposition) If $(X_n, \mathcal{B}_n)_{n\geq 0}$ is a submartingale then it can be uniquely decomposed

$$
X_n = Z_n + Y_n,
$$

where (Y_n, \mathcal{B}_n) is a martingale, $Z_0 = 0, Z_n \leq Z_{n+1}$ almost surely and Z_n is \mathcal{B}_{n-1} -measurable.

Proof. Let $D_n = X_n - X_{n-1}$ and

$$
G_n = \mathbb{E}(D_n|\mathcal{B}_{n-1}) = \mathbb{E}(X_n|\mathcal{B}_{n-1}) - X_{n-1} \ge 0
$$

by the definition of submartingale. Let,

$$
H_n = D_n - G_n, \ \ Y_n = H_1 + \ldots + H_n, \ \ Z_n = G_1 + \cdots + G_n.
$$

Since $G_n \geq 0$ a.s., $Z_n \leq Z_{n+1}$ and, by construction, Z_n is \mathcal{B}_{n-1} -measurable. We have,

$$
\mathbb{E}(H_n|\mathcal{B}_{n-1}) = \mathbb{E}(D_n|\mathcal{B}_{n-1}) - G_n = 0
$$

and, therefore, $\mathbb{E}(Y_n|\mathcal{B}_{n-1}) = Y_{n-1}$. Uniqueness follows by construction. Suppose that $X_n = Z_n + Y_n$ with all stated properties. First, since $Z_0 = 0$, $Y_0 = X_0$. By induction, given a unique decomposition up to $n - 1$, we can write

$$
Z_n = \mathbb{E}(Z_n | \mathcal{B}_{n-1}) = \mathbb{E}(X_n - Y_n | \mathcal{B}_{n-1}) = \mathbb{E}(X_n | \mathcal{B}_{n-1}) - Y_{n-1}
$$

and $Y_n = X_n - Z_n$.

Definition. We say that $(X_n)_{n\geq 1}$ is uniformly integrable if

$$
\sup_n \mathbb{E} |X_n| < \infty \quad \text{and} \quad \sup_n \mathbb{E} |X_n| \mathcal{I}(|X_n| > M) \to 0 \quad \text{as} \quad M \to \infty.
$$

Lemma 29 The following holds.

- 1. If (X_n, \mathcal{B}_n) is a right-closable martingale then (X_n) is uniformly integrable.
- 2. If $(X_n, \mathcal{B}_n)_{n \leq \infty}$ is a submartingale then for any $a \in \mathbb{R}$, $(\max(X_n, a))$ is uniformly integrable.

 \Box

Proof. 1. If $X_n = \mathbb{E}(Y|\mathcal{B}_n)$ then

$$
|X_n| = |\mathbb{E}(Y|\mathcal{B}_n)| \le \mathbb{E}(|Y||\mathcal{B}_n) \text{ and } \mathbb{E}|X_n| \le \mathbb{E}|Y| < \infty.
$$

Since $\{|X_n| > M\} \in \mathcal{B}_n$,

$$
X_n\mathrm{I}(|X_n|>M)=\mathrm{I}(|X_n|>M)\mathbb{E}(Y|\mathcal{B}_n)=\mathbb{E}(Y\mathrm{I}(|X_n|>M)|\mathcal{B}_n)
$$

and, therefore,

$$
\mathbb{E}|X_n|\mathcal{I}(|X_n| > M) \leq \mathbb{E}|Y|\mathcal{I}(|X_n| > M) \leq K\mathbb{P}(|X_n| > M) + \mathbb{E}|Y|\mathcal{I}(|Y| > K) \leq K\frac{\mathbb{E}|X_n|}{M} + \mathbb{E}|Y|\mathcal{I}(|Y| > K) \leq K\frac{\mathbb{E}|Y|}{M} + \mathbb{E}|Y|\mathcal{I}(|Y| > K).
$$

Letting $M \to \infty, K \to \infty$ proves that $\sup_n \mathbb{E}|X_n|I(|X_n| > M) \to 0$ as $M \to \infty$.

2. Since $(X_n, \mathcal{B}_n)_{n \leq \infty}$ is a submartingale, for $Y = X_\infty$ we have $X_n \leq \mathbb{E}(Y|\mathcal{B}_n)$. Below we will use the following observation. Since a function $\max(a, x)$ is convex and increasing in x, by Jensen's inequality

$$
\max(a, X_n) \le \mathbb{E}(\max(a, Y)|\mathcal{B}_n). \tag{13.0.1}
$$

Since,

$$
\left|\max(X_n, a)\right| \le |a| + X_n \mathbb{I}\big(X_n > |a|\big)
$$

and $\{|X_n| > |a|\} \in \mathcal{B}_n$ we can write

$$
\mathbb{E}\left|\max(X_n, a)\right| \leq |a| + \mathbb{E}X_n \mathbf{I}(X_n > |a|) \leq |a| + \mathbb{E}Y \mathbf{I}(X_n > |a|) \leq |a| + \mathbb{E}|Y| < \infty.
$$

If we take $M > |a|$ then

$$
\mathbb{E}|\max(X_n, a)|I(|\max(X_n, a)| > M) = \mathbb{E}X_nI(X_n > M) \le \mathbb{E}YI(X_n > M)
$$

\n
$$
\leq K\mathbb{P}(X_n > M) + \mathbb{E}|Y|I(|Y| > K)
$$

\n
$$
\leq K\frac{\mathbb{E} \max(X_n, 0)}{M} + \mathbb{E}|Y|I(|Y| > K)
$$

\nby (13.0.1)
$$
\leq K\frac{\mathbb{E} \max(Y, 0)}{M} + \mathbb{E}|Y|I(|Y| > K).
$$

Letting $M \to \infty$ and $K \to \infty$ finishes the proof.

Uniform integrability plays an important role when studying the convergence of martingales. The following strengthening of the dominated convergence theorem will be useful.

Lemma 30 Consider r.v.s (X_n) and X such that $\mathbb{E}|X_n| < \infty$, $\mathbb{E}|X| < \infty$. Then the following are equivalent:

- 1. $\mathbb{E}|X_n X| \to 0$,
- 2. (X_n) is uniformly integrable and $X_n \to X$ in probability.

Proof. 2 \Longrightarrow 1. We can write,

$$
\mathbb{E}|X_n - X| \leq \varepsilon + \mathbb{E}|X_n - X|\mathbf{I}(|X_n - X| > \varepsilon)
$$

\n
$$
\leq \varepsilon + 2K\mathbb{P}(|X_n - X| > \varepsilon) + 2\mathbb{E}|X_n|\mathbf{I}(|X_n| > K) + 2\mathbb{E}|X|\mathbf{I}(|X| > K)
$$

\n
$$
\leq \varepsilon + 2K\mathbb{P}(|X_n - X| > \varepsilon) + 2\sup_n \mathbb{E}|X_n|\mathbf{I}(|X_n| > K) + 2\mathbb{E}|X|\mathbf{I}(|X| > K).
$$

Letting $n \to \infty$ and then $\varepsilon \to 0, K \to \infty$ proves the result.

 $1 \implies 2$. By Chebyshev's inequality,

$$
\mathbb{P}(|X_n - X| > \varepsilon) \le \frac{1}{\varepsilon} \mathbb{E}|X_n - X| \to 0
$$

 \Box

as $n \to \infty$ so $X_n \to X$ in probability. To prove uniform integrability let us first show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$
\mathbb{P}(A) < \delta \Longrightarrow \mathbb{E}|X|\mathcal{I}_A < \varepsilon.
$$

Suppose not. Then, for some $\varepsilon > 0$ one can find a sequence of events $A(n)$ such that

$$
\mathbb{P}(A(n)) \le \frac{1}{2^n} \quad \text{and} \quad \mathbb{E}|X|\mathcal{I}_{A(n)} > \varepsilon.
$$

Since $\sum_{n\geq 1} \mathbb{P}(A(n)) < \infty$, by Borel-Cantelli lemma, $\mathbb{P}(A(n) \text{ i.o.}) = 0$. This means that $|X| I_{A(n)} \to 0$ almost surely and by the dominated convergence theorem $\mathbb{E}[X|I_{A(n)} \to 0]$ - a contradiction.

Given $\varepsilon > 0$, take δ as above and take $M > 0$ large enough so that for all $n \ge 1$

$$
\mathbb{P}(|X_n| > M) \le \frac{\mathbb{E}|X_n|}{M} < \delta.
$$

Then,

$$
\mathbb{E}|X_n|\mathcal{I}(|X_n| > M) \le \mathbb{E}|X_n - X| + \mathbb{E}|X|\mathcal{I}(|X_n| > M) \le \mathbb{E}|X_n - X| + \varepsilon.
$$

For large enough $n \ge n_0$, $\mathbb{E}|X_n - X| \le \varepsilon$ and, therefore,

$$
\mathbb{E}|X_n|\mathcal{I}(|X_n| > M) \le 2\varepsilon.
$$

We can also choose M large enough so that $\mathbb{E}|X_n|I(|X_n| > M) \leq 2\varepsilon$ for $n \leq n_0$ and this finishes the proof.

 \Box