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Section 13 

Martingales. Doob’s Decomposition. 
Uniform Integrability. 

Let (Ω, B, P) be a probability space and let (T, ≤) be a linearly ordered set. Consider a family of σ-algebras 
Bt, t ∈ T such that for t ≤ u, Bt ⊆ Bu ⊆ B. 

Definition. A family (Xt, Bt)t∈T is called a martingale if 

1. Xt : Ω → R is measurable w.r.t. Bt; in other words, Xt is adapted to Bt. 

2. E|Xt| < ∞. 

3. E(Xu|Bt) = Xt for t ≤ u. 

If the last equality is replaced by E(Xu|Bt) ≤ Xt then the process is called a supermartingale and if 
E(Xu|Bt) ≥ Xt then it is called a submartingale. 

Examples. 
1. Consider a sequence (Xn)n≥1 of independent random variables such that EXi = 0 and let Sn = 

i≤n Xi. If Bn = σ(X1, . . . , Xn) is a σ-algebra generated by the first n r.v.s then (Sn, Bn)n≥1 is a martingale 
since 

E(Sn+1|Bn) = E(Xn+1 + Sn|Bn) = 0 + Sn = Sn. 

2. Consider a sequence of σ-algebras 

. . . ⊆ Bm ⊆ Bn ⊆ . . . ⊆ B 

and a r.v. X on B and let Xn = E(X|Bn). Then (Xn, Bn) is a martingale since for m < n 

E(Xn|Bm) = E(E(X|Bn)|Bm) = E(X|Bm) = Xm. 

Definition. If (Xn, Bn) is a martingale and for some r.v. X, Xn = E(X|Bn), then the martingale is called 
right-closable. If X∞ = X, B∞ = B then (X�n, Bn)n≤∞ is called right-closed. 

3. Let (Xi)i≥1 be i.i.d. and let Sn = i≤n Xi. Let us take T = {. . . , −2, −1} and for n ≥ 1 define 

B−n = σ(Sn, Sn+1, . . .) = σ(Sn, Xn+1, Xn+2, . . .). 

Clearly, B−(n+1) ⊆ B−n. For 1 ≤ k ≤ n, by symmetry, 

E(X1|B−n) = E(Xk|B−n). 

Therefore, � Sn
Sn = E(Sn|B−n) = E(Xk|B−n) = nE(X1|B−n) =⇒ Z := 

n 
= E(X1|B−n).−n 

1≤k≤n 
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Thus, (Z−n, B−n)−n≤−1 is a right-closed martingale. 

Lemma 28 Let f : R R be a convex function. Suppose that either one of two conditions holds: → 

1. (Xt, Bt) is a martingale, 

2. (Xt, Bt) is a submartingale and f is increasing. 

Then (f(Xt), Bt) is a submartingale. 

Proof. 1. For t ≤ u, by Jensen’s inequality, 

f(Xt) = f(E(Xu|Bt)) ≤ E(f(Xu)|Bt). 

2. For t ≤ u, since Xt ≤ E(Xu|Bt) and f is increasing, 

f(Xt) ≤ f(E(Xu|Bt)) ≤ E(f(Xu)|Bt), 

where the last step is again Jensen’s inequality. 

Theorem 30 (Doob’s decomposition) If (Xn, Bn)n≥0 is a submartingale then it can be uniquely decomposed 

Xn = Zn + Yn, 

where (Yn, Bn) is a martingale, Z0 = 0, Zn ≤ Zn+1 almost surely and Zn is Bn−1-measurable. 

Proof. Let Dn = Xn − Xn−1 and 

Gn = E(Dn|Bn−1) = E(Xn|Bn−1) − Xn−1 ≥ 0 

by the definition of submartingale. Let, 

Hn = Dn − Gn, Yn = H1 + . . . + Hn, Zn = G1 + + Gn.· · · 

Since Gn ≥ 0 a.s., Zn ≤ Zn+1 and, by construction, Zn is Bn−1-measurable. We have, 

E(Hn|Bn−1) = E(Dn|Bn−1) − Gn = 0 

and, therefore, E(Yn|Bn−1) = Yn−1. Uniqueness follows by construction. Suppose that Xn = Zn + Yn with 
all stated properties. First, since Z0 = 0, Y0 = X0. By induction, given a unique decomposition up to n − 1, 
we can write 

Zn = E(Zn|Bn−1) = E(Xn − Yn|Bn−1) = E(Xn|Bn−1) − Yn−1 

and Yn = Xn − Zn. 

Definition. We say that (Xn)n≥1 is uniformly integrable if 

sup E and sup I( > M) 0 as 
n 
|Xn| < ∞ 

n 
E|Xn| |Xn| → M →∞. 

Lemma 29 The following holds. 

1. If (Xn, Bn) is a right-closable martingale then (Xn) is uniformly integrable. 

2. If (Xn, Bn)n≤∞ is a submartingale then for any a ∈ R, (max(Xn, a)) is uniformly integrable. 

52 



�� �� � � 

�� �� � � � � 

Proof. 1. If Xn = E(Y |Bn) then 

|Xn| = |E(Y |Bn)| ≤ E(|Y ||Bn) and E|Xn| ≤ E|Y | < ∞. 

Since {|Xn| > M} ∈ Bn, 

XnI(|Xn| > M) = I(|Xn| > M)E(Y |Bn) = E(Y I(|Xn| > M)|Bn) 

and, therefore, 

E|Xn|I(|Xn| > M) ≤ E|Y |I(|Xn| > M) ≤ KP(|Xn| > M) + E|Y |I(|Y | > K) 

K 
E|Xn| + E Y I( Y > K) ≤ K 

E|Y | 
+ E Y I( Y > K).≤ 

M 
| | | | 

M 
| | | | 

Letting M →∞, K →∞ proves that sup E|Xn|I(|Xn| > M) → 0 as M →∞.n 

2. Since (Xn, Bn)n≤∞ is a submartingale, for Y = X∞ we have Xn ≤ E(Y |Bn). Below we will use the 
following observation. Since a function max(a, x) is convex and increasing in x, by Jensen’s inequality 

max(a, Xn) ≤ E(max(a, Y )|Bn). (13.0.1) 

Since,
max(Xn, a) ≤ |a| + XnI Xn > |a| 

and {|Xn > a|} ∈ Bn we can write | |

E max(Xn, a) + EXnI Xn > a a + EY I + E|Y | < ∞.Xn > |a| ≤ |a|≤ |a| | | ≤ | | 

If we take M > |a| then 

E| max(Xn, a)|I(| max(Xn, a)| > M) = EXnI(Xn > M ) ≤ EY I(Xn > M) 
KP(Xn > M) + E|Y I( Y > K)≤ 

E max(Xn, 0) 
| | | 

≤ K
M 

+ E|Y |I(|Y | > K) 

E max(Y, 0)
by (13.0.1) ≤ K

M 
+ E|Y |I(|Y | > K). 

Letting M →∞ and K →∞ finishes the proof. 

Uniform integrability plays an important role when studying the convergence of martingales. The following 
strengthening of the dominated convergence theorem will be useful. 

Lemma 30 Consider r.v.s (Xn) and X such that E|Xn| < ∞, E|X| < ∞. Then the following are equivalent: 

1. E|Xn − X| → 0, 

2. (Xn) is uniformly integrable and Xn X in probability. → 

Proof. 2= 1. We can write, ⇒

E|Xn − X| ≤ ε + E|Xn − X|I(|Xn − X| > ε) 
≤ ε + 2KP(|Xn − X| > ε) + 2E|Xn|I(|Xn| > K) + 2E|X|I(|X| > K) 

ε + 2KP( > ε) + 2 sup E Xn I( Xn > K) + 2E X|I( X > K).≤ |Xn − X| 
n 
| | | | | | | 

Letting n →∞ and then ε → 0, K →∞ proves the result. 
1= 2. By Chebyshev’s inequality, ⇒

1
P(|Xn − X| > ε) ≤ 

ε 
E|Xn − X| → 0 
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as n → ∞ so Xn → X in probability. To prove uniform integrability let us first show that for any ε > 0 
there exists δ > 0 such that 

P(A) < δ = ⇒ E|X|IA < ε. 

Suppose not. Then, for some ε > 0 one can find a sequence of events A(n) such that 

1
P(A(n)) ≤ 

2n 
and E|X|IA(n) > ε. 

Since n≥1 P(A(n)) < ∞, by Borel-Cantelli lemma, P(A(n) i.o.) = 0. This means that |X|IA(n) → 0 almost 
surely and by the dominated convergence theorem E|X|IA(n) → 0 - a contradiction. 

Given ε > 0, take δ as above and take M > 0 large enough so that for all n ≥ 1 

P( Xn > M) ≤ 
E|Xn| 

< δ. | | 
M 

Then, 
E|Xn|I(|Xn| > M) ≤ E|Xn − X| + E|X|I(|Xn| > M) ≤ E|Xn − X| + ε. 

For large enough n ≥ n0, E|Xn − X| ≤ ε and, therefore, 

E|Xn|I(|Xn| > M) ≤ 2ε. 

We can also choose M large enough so that E|Xn|I(|Xn| > M) ≤ 2ε for n ≤ n0 and this finishes the proof. 
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