MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Section 14

Optional stopping. Inequalities for martingales.

Consider a sequence of σ -algebras $(\mathcal{B}_n)_{n\geq 0}$ such that $\mathcal{B}_n \subseteq \mathcal{B}_{n+1}$. Integer valued r.v. $\tau \in \{1, 2, ...\}$ is called a *stopping time* if $\{\tau \leq n\} \in \mathcal{B}_n$. Let us denote by \mathcal{B}_{τ} a σ -algebra of the events B such that

$$\{\tau \leq n\} \cap B \in \mathcal{B}_n, \ \forall n \geq 1.$$

If (X_n) is adapted to (\mathcal{B}_n) then random variables such as X_{τ} or $\sum_{k=1}^{\tau} X_k$ are measurable on \mathcal{B}_{τ} . For example,

$$\{X_{\tau} \in A\} = \bigcup_{n \ge 1} \{\tau = n\} \cap \{X_n \in A\} = \bigcup_{n \ge 1} \left(\{\tau \le n\} \setminus \{\tau \le n-1\} \bigcap \{X_n \in A\}\right) \in \mathcal{B}_{\tau}.$$

Theorem 31 (Optional stopping) Let (X_n, \mathcal{B}_n) be a martingale and $\tau_1, \tau_2 < \infty$ be stopping times such that

$$\mathbb{E}|X_{\tau_2}| < \infty, \quad \lim_{n \to \infty} \mathbb{E}|X_n| \mathbf{I}(n \le \tau_2) = 0.$$
(14.0.1)

Then on the event $\{\tau_1 \leq \tau_2\}$

$$\mathbb{E}(X_{\tau_2}|\mathcal{B}_{\tau_1}) = X_{\tau_1}.$$

More precisely, for any set $A \in \mathcal{B}_{\tau_1}$,

$$\mathbb{E}X_{\tau_2}\mathbf{I}_A\mathbf{I}(\tau_1 \le \tau_2) = \mathbb{E}X_{\tau_1}\mathbf{I}_A\mathbf{I}(\tau_1 \le \tau_2).$$

If (X_n, \mathcal{B}_n) is a submartingale then equality is replaced by \geq .

Remark. If stopping times τ_1, τ_2 are bounded then (14.0.1) is satisfied. As the next example shows, without some control of the stopping times the statement is not true.

Example. Consider an i.i.d. sequence (X_n) such that

$$\mathbb{P}(X_n = \pm 2^n) = \frac{1}{2}.$$

If $\mathcal{B}_n = \sigma(X_1, \ldots, X_n)$ then (S_n, \mathcal{B}_n) is a martingale. Let $\tau_1 = 1$ and $\tau_2 = \min\{k \ge 1, S_k > 0\}$. Clearly, $S_{\tau_2} = 2$ because if $\tau_2 = k$ then

$$S_{\tau_2} = S_k = -2 - 2^2 - \dots - 2^{k-1} + 2^k = 2$$

However,

$$2 = \mathbb{E}(S_{\tau_2}|\mathcal{B}_1) \neq S_{\tau_1} = X_1.$$

The second condition in (14.0.1) is violated since $\mathbb{P}(\tau_2 = n) = 2^{-n}$ and

$$\mathbb{E}|S_n|I(n \le \tau_2) = 2\mathbb{P}(\tau_2 = n) + (2^{n+1} - 2)\mathbb{P}(n+1 \le \tau_2) = 2 \not\to 0.$$

Proof of Theorem 31. Consider a set $A \in \mathcal{B}_{\tau_1}$. We have,

$$\mathbb{E}X_{\tau_2}\mathbf{I}_A\mathbf{I}(\tau_1 \le \tau_2) = \sum_{n \ge 1} \mathbb{E}X_{\tau_2}\mathbf{I}(A \cap \{\tau_1 = n\})\mathbf{I}(n \le \tau_2)$$

$$\stackrel{(*)}{=} \sum_{n \ge 1} \mathbb{E}X_n\mathbf{I}(A \cap \{\tau_1 = n\})\mathbf{I}(n \le \tau_2) = \mathbb{E}X_{\tau_1}\mathbf{I}_A\mathbf{I}(\tau_1 \le \tau_2)$$

To prove (*) it is enough to prove that for $A_n = A \cap \{\tau_1 = n\} \in \mathcal{B}_n$,

$$\mathbb{E}X_{\tau_2}\mathbf{I}_{A_n}\mathbf{I}(n \le \tau_2) = \mathbb{E}X_n\mathbf{I}_{A_n}\mathbf{I}(n \le \tau_2).$$
(14.0.2)

We can write

$$\begin{split} \mathbb{E}X_{n}\mathbf{I}_{A_{n}}\mathbf{I}(n \leq \tau_{2}) &= \mathbb{E}X_{n}\mathbf{I}_{A_{n}}\mathbf{I}(\tau_{2}=n) + \mathbb{E}X_{n}\mathbf{I}_{A_{n}}\mathbf{I}(n+1 \leq \tau_{2}) \\ &= \mathbb{E}X_{\tau_{2}}\mathbf{I}_{A_{n}}\mathbf{I}(\tau_{2}=n) + \mathbb{E}X_{n}\mathbf{I}_{A_{n}}\mathbf{I}(n+1 \leq \tau_{2}) \\ \left\{ \text{ since } \{n+1 \leq \tau_{2}\} = \{\tau_{2} \leq n\}^{c} \in \mathcal{B}_{n}, \text{ by martingale property} \right\} \\ &= \mathbb{E}X_{\tau_{2}}\mathbf{I}_{A_{n}}\mathbf{I}(\tau_{2}=n) + \mathbb{E}X_{n+1}\mathbf{I}_{A_{n}}\mathbf{I}(n+1 \leq \tau_{2}) \\ \left\{ \text{ by induction } \right\} &= \sum_{n \leq k < m} \mathbb{E}X_{\tau_{2}}\mathbf{I}_{A_{n}}\mathbf{I}(\tau_{2}=k) + \mathbb{E}X_{m}\mathbf{I}_{A_{n}}\mathbf{I}(m \leq \tau_{2}) \\ &= \mathbb{E}X_{\tau_{2}}\mathbf{I}_{A_{n}}\mathbf{I}(n \leq \tau_{2} < m) + \mathbb{E}X_{m}\mathbf{I}_{A_{n}}\mathbf{I}(m \leq \tau_{2}). \end{split}$$

By (14.0.1), the last term

$$\left|\mathbb{E}X_m \mathbf{I}_{A_n} \mathbf{I}(m \le \tau_2)\right| \le \mathbb{E}|X_m| \mathbf{I}(m \le \tau_2) \to 0 \text{ as } m \to \infty$$

Since

$$X_{\tau_2} \mathbf{I}_{A_n} \mathbf{I}(n \le \tau_2 \le m) \to X_{\tau_2} \mathbf{I}_{A_n} \mathbf{I}(n \le \tau_2) \text{ as } m \to \infty$$

and $\mathbb{E}|X_{\tau_2}| < \infty$, by dominated convergence theorem,

$$\mathbb{E} X_{\tau_2} \mathbf{I}_{A_n} \mathbf{I}(n \le \tau_2 < m) \to \mathbb{E} X_{\tau_2} \mathbf{I}_{A_n} \mathbf{I}(n \le \tau_2).$$

This proves (14.0.2).

Theorem 32 (Doob's inequality) If (X_n, \mathcal{B}_n) is a submartingale then for $Y_n = \max_{1 \le k \le n} X_k$ and M > 0

$$\mathbb{P}\Big(Y_n \ge M\Big) \le \frac{1}{M} \mathbb{E}X_n I(Y_n \ge M) \le \frac{1}{M} \mathbb{E}X_n^+.$$
(14.0.3)

Proof. Define a stopping time

$$\tau_1 = \begin{cases} \min\{k : X_k \ge M, k \le n\} & \text{if such } k \text{ exists,} \\ n & \text{otherwise.} \end{cases}$$

Let $\tau_2 = n$ so that $\tau_1 \leq \tau_2$. By Theorem 31,

$$\mathbb{E}(X_n|\mathcal{B}_{\tau_1}) = \mathbb{E}(X_{\tau_2}|\mathcal{B}_{\tau_1}) \ge X_{\tau_1}$$

Let us apply this to the set $A = \{Y_n = \max_{1 \le k \le n} X_n \ge M\}$ which belongs to \mathcal{B}_{τ_1} because

$$A \cap \{\tau_1 \le k\} = \left\{\max_{1 \le i \le k} X_i \ge M\right\} \in \mathcal{B}_k$$

On the event $A, X_{\tau_1} \geq M$ and, therefore,

$$\mathbb{E}X_n \mathbf{I}_A = \mathbb{E}X_{\tau_2} \mathbf{I}_A \ge \mathbb{E}X_{\tau_1} \mathbf{I}_A \ge M\mathbb{E}\mathbf{I}_A = M\mathbb{P}(A).$$

On the other hand, $\mathbb{E}X_n I_A \leq \mathbb{E}X_n^+$ and this finishes the proof.

As a corollary we obtain the second Kolmogorov's inequality. If (X_i) are independent and $\mathbb{E}X_i = 0$ then $S_n = \sum_{1 \le i \le n} X_i$ is a martingale and S_n^2 is a submartingale. Therefore,

$$\mathbb{P}\Big(\max_{1\leq k\leq n}|S_k|\geq M\Big)=\mathbb{P}\Big(\max_{1\leq k\leq n}S_k^2\geq M^2\Big)\leq \frac{1}{M^2}\mathbb{E}S_n^2=\frac{1}{M^2}\sum_{1\leq k\leq n}\operatorname{Var}(X_k).$$

Exercises.

1. Show that for any random variable Y, $\mathbb{E}|Y^p| = \int_0^\infty pt^{p-1}\mathbb{P}(|Y| \ge t)dt$. 2. Let X, Y be two non-negative random variables such that for every t > 0, $\mathbb{P}(Y \ge t) \le t^{-1} \int XI(Y \ge t)d\mathbb{P}$.

For any p > 1, $||f||_p = (\int |f|^p d\mathbb{P})^{1/p}$ and 1/p + 1/q = 1, show that $||Y||_p \le q||X||_p$. 3. Given a non-negative submartingale (X_n, \mathcal{B}_n) , let $X_n^* := \max_{j \le n} X_j$ and $X^* := \max_{j \ge 1} X_j$. Prove that for any p > 1 and 1/p + 1/q = 1, $||X^*||_p \le q \sup_n ||X_n||_p$. *Hint:* use exercise 2 and Doob's maximal inequality.

Doob's upcrossing inequality. Let $(X_n, \mathcal{B}_n)_{n \ge 1}$ be a submartingale. Given two real numbers a < b we will define a sequence of stopping times (τ_n) when X_n is crossing a downward and b upward as in figure 14.1. Namely, we define

Figure 14.1: Stopping times of level crossings.

$$\tau_1 = \min\{n \ge 1, X_n \le a\}, \ \tau_2 = \min\{n > \tau_2 : X_n \ge b\}$$

and, by induction, for $k \geq 2$

$$\tau_{2k-1} = \min\{n > \tau_{2k-2}, X_n \le a\}, \ \tau_{2k} = \min\{n > 2k-1, X_n \ge b\}.$$

Define

$$\nu(a, b, n) = \max\{k : \tau_{2k} \le n\}$$

- the number of upward crossings of [a, b] before time n.

Theorem 33 (Doob's upcrossing inequality) We have,

$$\mathbb{E}\nu(a,b,n) \le \frac{\mathbb{E}(X_n - a)^+}{b - a}.$$
 (14.0.4)

Proof. Since $x \to (x-a)^+$ is increasing convex function, $Z_n = (X_n - a)^+$ is also a submartingale. Clearly,

$$\mu_X(a,b,n) = \nu_Z(0,b-a,n)$$

which means that it is enough to prove (14.0.4) for nonnegative submartingales. From now on we can assume that $0 \leq X_n$ and we would like to show that

$$\mathbb{E}\nu(0,b,n) \le \frac{\mathbb{E}X_n}{b}.$$

Let us define a sequence of r.v.s

$$\eta_j = \begin{cases} 1, & \tau_{2k-1} < j \le \tau_{2k} \text{ for some } k \\ 0, & \text{otherwise,} \end{cases}$$

i.e. η_j is the indicator of the event that at time j the process is crossing [0, b] upward. Define $X_0 = 0$. Then

$$b\nu(0,b,n) \le \sum_{j=1}^{n} \eta_j (X_j - X_{j-1}) = \sum_{j=1}^{n} I(\eta_j = 1)(X_j - X_{j-1}).$$

The event

$$\{\eta_j = 1\} = \bigcup_k \{\tau_{2k-1} < j \le \tau_{2k}\} = \bigcup_k \{\overline{\tau_{2k-1} \le j - 1}\} \setminus \{\overline{\tau_{2k} \le j - 1}\}^c \in \mathcal{B}_{j-1}$$

i.e. the fact that at time j we are crossing upward is determined completely by the sequence up to time j-1. Then

$$b\mathbb{E}\nu(0,b,n) \leq \sum_{j=1}^{n} \mathbb{E}\mathbb{E}\Big(\mathrm{I}(\eta_{j}=1)(X_{j}-X_{j-1})\Big|\mathcal{B}_{j-1}\Big) = \sum_{j=1}^{n} \mathbb{E}\mathrm{I}(\eta_{j}=1)\mathbb{E}(X_{j}-X_{j-1}|\mathcal{B}_{j-1})$$
$$= \sum_{j=1}^{n} \mathbb{E}\mathrm{I}(\eta_{j}=1)(\mathbb{E}(X_{j}|\mathcal{B}_{j-1})-X_{j-1}) \leq \sum_{j=1}^{n} \mathbb{E}(X_{j}-X_{j-1}) = \mathbb{E}X_{n},$$

where in the last inequality we used that (X_j, \mathcal{B}_j) is a submartingale, $\mathbb{E}(X_j | \mathcal{B}_{j-1}) \geq X_{j-1}$, which implies that

$$\mathbf{I}(\eta_j=1)(\mathbb{E}(X_j|\mathcal{B}_{j-1})-X_{j-1}) \le \mathbb{E}(X_j|\mathcal{B}_{j-1})-X_{j-1}.$$

This finishes the proof.