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Section 14 

Optional stopping. Inequalities for 
martingales. 

Consider a sequence of σ-algebras (Bn)n≥0 such that Bn ⊆ Bn+1. Integer valued r.v. τ ∈ {1, 2, . . .} is called 
a stopping time if {τ ≤ n} ∈ Bn. Let us denote by Bτ a σ-algebra of the events B such that 

{τ ≤ n} ∩ B ∈ Bn, ∀n ≥ 1. 

If (Xn) is adapted to (Bn) then random variables such as Xτ or 
�τ

k=1 Xk are measurable on Bτ . For example, 

{Xτ ∈ A} = {τ = n} ∩ {Xn ∈ A} = {τ ≤ n} \ {τ ≤ n − 1} {Xn ∈ A} ∈ Bτ . 
n≥1 n≥1 

Theorem 31 (Optional stopping) Let (Xn, Bn) be a martingale and τ1, τ2 < ∞ be stopping times such that 

E Xτ2 < ∞, lim E Xn I(n ≤ τ2) = 0. (14.0.1)| | 
n→∞ 

| |

Then on the event {τ1 ≤ τ2} 
E(Xτ2 |Bτ1 ) = Xτ1 . 

More precisely, for any set A ∈ Bτ1 , 

EXτ2 IAI(τ1 ≤ τ2) = EXτ1 IAI(τ1 ≤ τ2). 

If (Xn, Bn) is a submartingale then equality is replaced by ≥ . 

Remark. If stopping times τ1, τ2 are bounded then (14.0.1) is satisfied. As the next example shows, 
without some control of the stopping times the statement is not true. 

Example. Consider an i.i.d. sequence (Xn) such that 

1
P(Xn = ±2n) = 

2 
. 

If Bn = σ(X1, . . . , Xn) then (Sn, Bn) is a martingale. Let τ1 = 1 and τ2 = min{k ≥ 1, Sk > 0}. Clearly, 
Sτ2 = 2 because if τ2 = k then 

Sτ2 = Sk = −2 − 22 − . . . − 2k−1 + 2k = 2. 

However, 
2 = E(Sτ2 |B1) =� Sτ1 = X1. 
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The second condition in (14.0.1) is violated since P(τ2 = n) = 2−n and 

E|Sn|I(n ≤ τ2) = 2P(τ2 = n) + (2n+1 − 2)P(n + 1 ≤ τ2) = 2 �→ 0. 

Proof of Theorem 31. Consider a set A ∈ Bτ1 . We have, 

EXτ2 IAI(τ1 ≤ τ2) = EXτ2 I A ∩ {τ1 = n} I(n ≤ τ2) 
n≥1 

(∗)
= EXnI A ∩ {τ1 = n} I(n ≤ τ2) = EXτ1 IAI(τ1 ≤ τ2). 

n≥1 

To prove (*) it is enough to prove that for An = A ∩ {τ1 = n} ∈ Bn, 

EXτ2 IAn I(n ≤ τ2) = EXnIAn I(n ≤ τ2). (14.0.2) 

We can write 

EXnIAn I(n ≤ τ2) = EXnIAn I(τ2 = n) + EXnIAn I(n + 1 ≤ τ2) 
= EXτ2 IAn I(τ2 = n) + EXnIAn I(n + 1 ≤ τ2) 

since {n + 1 ≤ τ2} = {τ2 ≤ n}c ∈ Bn, by martingale property 

= EXτ2 IAn I(τ2 = n) + EXn+1IAn I(n + 1 ≤ τ2) 

by induction = EXτ2 IAn I(τ2 = k) + EXmIAn I(m ≤ τ2) 
n≤k<m 

= EXτ2 IAn I(n ≤ τ2 < m) + EXmIAn I(m ≤ τ2). 

By (14.0.1), the last term 

�EXmIAn I(m ≤ τ2)� ≤ E|Xm|I(m ≤ τ2) → 0 as m →∞. 

Since 
Xτ2 IAn I(n ≤ τ2 ≤ m) → Xτ2 IAn I(n ≤ τ2) as m →∞ 

and E|Xτ2 | < ∞, by dominated convergence theorem, 

EXτ2 IAn I(n ≤ τ2 < m) → EXτ2 IAn I(n ≤ τ2). 

This proves (14.0.2). 

Theorem 32 (Doob’s inequality) If (Xn, Bn) is a submartingale then for Yn = max1≤k≤n Xk and M > 0 � � 1 1
P Yn ≥ M ≤ 

M 
EXnI(Yn ≥ M) ≤ 

M 
EXn 

+ . (14.0.3) 

Proof. Define a stopping time 

min{k : Xk ≥ M,k ≤ n} if such k exists,
τ1 = 

n otherwise. 

Let τ2 = n so that τ1 ≤ τ2. By Theorem 31, 

E(Xn|Bτ1 ) = E(Xτ2 |Bτ1 ) ≥ Xτ1 . 

Let us apply this to the set A = {Yn = max1≤k≤n Xn ≥ M} which belongs to Bτ1 because 

max Xi ≥ MA ∩ {τ1 ≤ k} = 
1≤i≤k 

∈ Bk. 
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On the event A, Xτ1 ≥ M and, therefore, 

EXnIA = EXτ2 IA ≥ EXτ1 IA ≥ MEIA = MP(A). 

On the other hand, EXnIA ≤ EX+ and this finishes the proof. n 

As a corollary we obtain the second Kolmogorov’s inequality. If (Xi) are independent and EXi = 0 then 
Sn = 1≤i≤n Xi is a martingale and Sn 

2 is a submartingale. Therefore, � � � � 1 1 � 
P max = P max S2 ES2 = Var(Xk). 

1≤k≤n 
|Sk| ≥ M 

1≤k≤n
k ≥ M 2 ≤ 

M2 n M 2
1≤k≤n 

Exercises. � 
1. Show that for any random variable Y, E|Y p| = 

∞ 
ptp−1P(|Y | ≥ t)dt.

0 � 
2. Let X, Y be two non-negative random variables such that for every t > 0, P(Y ≥ t) ≤ t−1 XI(Y ≥ t)dP. 
For any p > 1, �f�p = ( |f |pdP)1/p and 1/p + 1/q = 1, show that �Y �p ≤ q�X�p. 
3. Given a non-negative submartingale (Xn, Bn), let X∗ := maxj≤n Xj and X∗ := maxj≥1 Xj . Prove that for n 
any p > 1 and 1/p + 1/q = 1, �X∗�p ≤ q supn �Xn�p. Hint: use exercise 2 and Doob’s maximal inequality. 

Doob’s upcrossing inequality. Let (Xn, Bn)n≥1 be a submartingale. Given two real numbers a < b we 
will define a sequence of stopping times (τn) when Xn is crossing a downward and b upward as in figure 14.1. 
Namely, we define 

x

a

b

x x x x

xx

Figure 14.1: Stopping times of level crossings. 

τ1 = min{n ≥ 1, Xn ≤ a}, τ2 = min{n > τ2 : Xn ≥ b}
and, by induction, for k ≥ 2 

τ2k−1 = min{n > τ2k−2, Xn ≤ a}, τ2k = min{n > 2k − 1, Xn ≥ b}. 

Define 
ν(a, b, n) = max{k : τ2k ≤ n}

- the number of upward crossings of [a, b] before time n. 

Theorem 33 (Doob’s upcrossing inequality) We have, 

Eν(a, b, n) ≤ 
E(X

b 
n 

−
− 
a

a)+ 

. (14.0.4) 

Proof. Since x → (x − a)+ is increasing convex function, Zn = (Xn − a)+ is also a submartingale. Clearly,


µX (a, b, n) = νZ (0, b − a, n)


which means that it is enough to prove (14.0.4) for nonnegative submartingales. From now on we can assume

that 0 ≤ Xn and we would like to show that 

Eν(0, b, n) ≤ 
EXn 

. 
b 
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Let us define a sequence of r.v.s 

1, τ2k−1 < j ≤ τ2k for some k 
=ηj 0, otherwise, 

i.e. ηj is the indicator of the event that at time j the process is crossing [0, b] upward. Define X0 = 0. Then 

n n

bν(0, b, n) ≤ ηj (Xj − Xj−1) = I(ηj = 1)(Xj − Xj−1). 
j=1 j=1 

The event 

∈Bj−1∈Bj−1 � �� �� � � � �

 

 c 
{ηj = 1} = {τ2k−1 < j ≤ τ2k} = τ2k−1 ≤ j − 1 τ2k ≤ j − 1 ∈ Bj−1 

k k 

i.e. the fact that at time j we are crossing upward is determined completely by the sequence up to time j − 1. 
Then 

n � � � n

bEν(0, b, n) ≤ EE I(ηj = 1)(Xj − Xj−1)�� Bj−1 = EI(ηj = 1)E(Xj − Xj−1|Bj−1) 
j=1 j=1 

n n

= EI(ηj = 1)(E(Xj |Bj−1) − Xj−1) ≤ E(Xj − Xj−1) = EXn, 
j=1 j=1 

where in the last inequality we used that (Xj , Bj ) is a submartingale, E(Xj |Bj−1) ≥ Xj−1, which implies 
that 

I(ηj = 1)(E(Xj |Bj−1) − Xj−1) ≤ E(Xj |Bj−1) − Xj−1. 

This finishes the proof. 

58 




