MIT OpenCourseWare <http://ocw.mit.edu>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

Section 16

Convergence on metric spaces. Portmanteau Theorem. Lipschitz Functions.

Let (S, d) be a metric space and \mathcal{B} - a Borel σ -algebra generated by open sets. Let us recall that $\mathbb{P}_n \to \mathbb{P}$ weakly on β if

$$
\int fd\mathbb{P}_n \to \int fd\mathbb{P}
$$

for all $f \in C_b(S)$ - real-valued bounded continuous functions on S.

For a set $A \subseteq S$, we denote by \overline{A} the closure of A, intA - interior of A and $\partial A = \overline{A} \setminus \text{int}A$ - boundary of A. A is called a *continuity set* of \mathbb{P} if $\mathbb{P}(\partial A) = 0$.

Theorem 36 (Portmanteau theorem) The following are equivalent.

- 1. $\mathbb{P}_n \to \mathbb{P}$ weakly.
- 2. For any open set $U \subseteq S$, $\liminf_{n \to \infty} \mathbb{P}_n(U) \geq \mathbb{P}(U)$.
- 3. For any closed set $F \subseteq S$, $\limsup_{n \to \infty} \mathbb{P}_n(F) \leq \mathbb{P}(F)$.
- 4. For any continuity set A of \mathbb{P} , $\lim_{n\to\infty} \mathbb{P}_n(A) = \mathbb{P}(A)$.

Proof.

1⇒2. Let U be an open set and $F = U^c$. Consider a sequence of functions in $C_b(S)$

$$
f_m(s) = \min(1, md(s, F))
$$

such that $f_m(s) \uparrow I_U(s)$. (This is not necessarily true if U is not open.) Since $\mathbb{P}_n \to \mathbb{P}$,

$$
\mathbb{P}_n(U) \ge \int f_m d\mathbb{P}_n \to \int f_m d\mathbb{P} \text{ as } n \to \infty \text{ and } \liminf_{n \to \infty} \mathbb{P}_n(U) \ge \int f_m d\mathbb{P}.
$$

Letting $m \to \infty$, by monotone convergence theorem.

$$
\liminf_{n \to \infty} \mathbb{P}_n(U) \ge \int I_U d\mathbb{P} = \mathbb{P}(U).
$$

 $2 \Longleftrightarrow 3$. By taking complements.

2, 3⇒4. Since intA is open and \overline{A} is closed and intA $\subseteq \overline{A}$, by 2 and 3,

$$
\mathbb{P}(\text{int} A) \leq \liminf_{n \to \infty} \mathbb{P}_n(\text{int} A) \leq \limsup_{n \to \infty} \mathbb{P}_n(\bar{A}) \leq \mathbb{P}(\bar{A}).
$$

If $\mathbb{P}(\partial A) = 0$ then $\mathbb{P}(\bar{A}) = \mathbb{P}(\text{int}A) = \mathbb{P}(A)$ and, therefore, $\lim \mathbb{P}_n(A) = \mathbb{P}(A)$.

4⇒1. Consider $f \in C_b(S)$ and let $F_y = \{s \in S : f(s) = y\}$ be a level set of f. There exist at most countably many y such that $\mathbb{P}(F_y) > 0$. Therefore, for any $\varepsilon > 0$ we can find a sequence $a_1 \leq \ldots \leq a_N$ such that

 $\max(a_{k+1} - a_k) \leq \varepsilon$, $\mathbb{P}(F_{a_k}) = 0$ for all k

and the range of f is inside the interval (a_1, a_N) . Let

$$
B_k = \{ s \in S : a_k \le f(s) < a_{k+1} \} \quad \text{and} \quad f_{\varepsilon}(s) = \sum a_k I(s \in B_k).
$$

Since f is continuous, $\partial B_k \subseteq F_{a_k} \cup F_{a_{k+1}}$ and $\mathbb{P}(\partial B_k) = 0$. By 4,

$$
\int f_{\varepsilon} d\mathbb{P}_n = \sum_k a_k \mathbb{P}_n(B_k) \to \sum_k a_k \mathbb{P}(B_k) = \int f_{\varepsilon} d\mathbb{P}.
$$

Since, by construction, $|f_{\varepsilon}(s) - f(s)| \leq \varepsilon$, letting $\varepsilon \to 0$ proves that $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$.

Lipschitz functions. For a function $f : S \to \mathbb{R}$, let us define a Lipschitz semi-norm by

$$
||f||_{\mathcal{L}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}
$$

.

Clearly, $||f||_L = 0$ iff f is constant so $||f||_L$ is not a norm. Let us define a *bounded Lipschitz* norm by

$$
||f||_{\text{BL}} = ||f||_{\text{L}} + ||f||_{\infty},
$$

where $||f||_{\infty} = \sup_{s \in S} |f(s)|$. Let

$$
BL(S, d) = \left\{ f : S \to \mathbb{R} : ||f||_{BL} < \infty \right\}
$$

be a set of all bounded Lipschitz functions.

Lemma 32 If $f, g \in BL(S, d)$ then $fg \in BL(S, d)$ and $||fg||_{BL} \leq ||f||_{BL}||g||_{BL}$.

Proof. First of all, $||fg||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$. We can write,

$$
|f(x)g(x) - f(y)g(y)| \le |f(x)(g(x) - g(y))| + |g(y)(f(x) - f(y))|
$$

\n
$$
\le ||f||_{\infty}||g||_{\mathcal{L}}d(x, y) + ||g||_{\infty}||f||_{\mathcal{L}}d(x, y)
$$

and, therefore,

$$
||fg||_{\text{BL}} \leq ||f||_{\infty}||g||_{\infty} + ||f||_{\infty}||g||_{\text{L}} + ||g||_{\infty}||f||_{\text{L}} \leq ||f||_{\text{BL}}||g||_{\text{BL}}.
$$

Let us recall the notations $a \vee b = \max(a, b)$ and $a \wedge b = \min(a, b)$ and let $* = \wedge$ or \vee .

Lemma 33 The following hold.

- 1. $||f_1 * \cdots * f_k||_L \leq \max_{1 \leq i \leq k} ||f_i||_L$.
- 2. $||f_1 * \cdots * f_k||_{BL} \leq 2 \max_{1 \leq i \leq k} ||f_i||_{BL}.$

 \Box

 \Box

Proof. Proof of 1. It is enough to consider $k = 2$. For specificity, take $* = \vee$. Given $x, y \in S$, suppose that

$$
f_1 \vee f_2(x) \ge f_1 \vee f_2(y) = f_1(y).
$$

Then

$$
|f_1 \vee f_2(y) - f_1 \vee f_2(x)| = f_1 \vee f_2(x) - f_1 \vee f_2(y) \le \begin{cases} f_1(x) - f_1(y), & \text{if } f_1(x) \ge f_2(x) \\ f_2(x) - f_2(y), & \text{otherwise} \end{cases}
$$

$$
\le ||f_1||_{\mathcal{L}} \vee ||f_2||_{\mathcal{L}} d(x, y).
$$

This finishes the proof of 1.

Proof of 2. First of all, obviously,

$$
||f_1 * \cdots * f_k||_{\infty} \leq \max_{1 \leq i \leq k} ||f_i||_{\infty}.
$$

Therefore, using 1,

$$
||f_1 * \cdots * f_k||_{\text{BL}} \leq \max_i ||f_i||_{\infty} + \max_i ||f_i||_{\text{L}} \leq 2 \max_i ||f_i||_{\text{BL}}.
$$

Theorem 37 (Extension theorem) Given a set $A \subseteq S$ and a bounded Lipschitz function $f \in BL(A, d)$ on A, there exists an extension $h \in BL(S, d)$ such that

$$
f = h
$$
 on A and $||h||_{BL} = ||f||_{BL}$.

Proof. Let us first find an extension such that $||h||_L = ||f||_L$. We will start by extending f to one point $x \in S \setminus A$. The value $y = h(x)$ must satisfy

$$
|y - f(s)| \le ||f||_{\mathcal{L}} d(x, s) \quad \text{for all} \quad s \in A
$$

or, equivalently,

$$
\inf_{s \in A} (f(s) + ||f||_{\mathcal{L}} d(x, s)) \ge y \ge \sup_{s \in A} (f(s) - ||f||_{\mathcal{L}} d(x, s)).
$$

Such y exists iff for all $s_1, s_2 \in A$,

$$
f(s_1) + ||f||_{\mathcal{L}}d(x, s_1) \ge f(s_2) - ||f||_{\mathcal{L}}d(x, s_2).
$$

This inequality is satisfied because by triangle inequality

$$
f(s_2) - f(s_1) \le ||f||_{\mathcal{L}} d(s_1, s_2) \le ||f||_{\mathcal{L}} (d(s_1, x) + d(s_2, x)).
$$

It remains to apply Zorn's lemma to show that f can be extended to the entire S . Define order by inclusion:

 $f_1 \prec f_2$ if f_1 is defined on A_1 , f_2 - on A_2 , $A_1 \subseteq A_2$, $f_1 = f_2$ on A_1 and $||f_1||_L = ||f_2||_L$.

For any chain $\{f_{\alpha}\}, f = \bigcup f_{\alpha} \succ f_{\alpha}$. By Zorn's lemma there exists a maximal element h. It is defined on the entire S because, otherwise, we could extend to one more point. To extend preserving BL norm take

$$
h' = (h \wedge ||f||_{\infty}) \vee (-||f||_{\infty}).
$$

By part 1 of previous lemma, it is easy to see that $||h'||_{BL} = ||f||_{BL}$.

Stone-Weierstrass Theorem.

A set $A \subseteq S$ is totally bounded if for any $\varepsilon > 0$ there exists a finite ε -cover of A, i.e. a set of points a_1, \ldots, a_N such that

$$
A \subseteq \bigcup_{i \leq N} B(a_i, \varepsilon),
$$

where $B(a, \varepsilon) = \{y \in S : d(a, y) \leq \varepsilon\}$ is a ball of radius ε centered at a. Let us recall the following theorem from analysis.

 \Box

Theorem 38 (Arzela-Ascoli) Let (S, d) be a compact metric space and let $(C(S), d_{\infty})$ be the space of continuous real-valued functions on S with uniform convergence metric

$$
d_{\infty}(f,g) = \sup_{x \in S} |f(x) - g(x)|.
$$

A subset $\mathcal{F} \subseteq C(S)$ is totally bounded in d_{∞} metric iff \mathcal{F} is equicontinuous and uniformly bounded.

Remark. Equicontinuous means that for any $\varepsilon >$ there exists $\delta > 0$ such that if $d(x, y) \leq \delta$ then for all $f \in \mathcal{F},$ $|f(x) - f(y)| \leq \varepsilon.$

Theorem 39 (Stone-Weierstrass) Let (S, d) be a compact metric space and $\mathcal{F} \subseteq C(S)$ is such that

- 1. F is algebra, i.e. for all $f, g \in \mathcal{F}, c \in \mathbb{R}$, we have $cf + g \in \mathcal{F}, fg \in \mathcal{F}$.
- 2. F separates points, i.e. if $x \neq y \in S$ then there exists $f \in \mathcal{F}$ such that $f(x) \neq f(y)$.
- 3. F contains constants.

Then $\mathcal F$ is dense in $C(S)$.

Corollary 3 If (S, d) is a compact space then $BL(S, d)$ is dense in $C(S)$.

Proof. For $\mathcal{F} = BL(S, d)$ in the Stone-Weierstrass theorem, 3 is obvious, 1 follows from Lemma 32 and 2 follows from the extension Theorem 37, since a function defined on two points $x \neq y$ such that $f(x) \neq f(y)$ can be extended to the entire S.

Proof of Theorem 39. Consider bounded $f \in \mathcal{F}$, i.e. $|f(x)| \leq M$. A function $x \to |x|$ defined on the interval $[-M, M]$ can be uniformly approximated by polynomials of x by the Weierstrass theorem on the real line or, for example, using Bernstein's polynomials. Therefore, $|f(x)|$ can be uniformly approximated by polynomials of $f(x)$, and by properties 1 and 3, by functions in F. Therefore, if $\overline{\mathcal{F}}$ is the closure of \mathcal{F} in d_{∞} norm then for any $f \in \bar{\mathcal{F}}$ its absolute value $|f| \in \bar{\mathcal{F}}$. Therefore, for any $f, g \in \bar{\mathcal{F}}$ we have

$$
\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g| \in \bar{\mathcal{F}}, \quad \max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g| \in \bar{\mathcal{F}}.
$$
 (16.0.1)

 \Box

Given any points $x \neq y$ and $c, d \in \mathbb{R}$ one can always find $f \in \mathcal{F}$ such that $f(x) = c$ and $f(y) = d$. Indeed, by property 2 we can find $g \in \mathcal{F}$ such that $g(x) \neq g(y)$ and, as a result, a system of equations

$$
ag(x) + b = c, \quad ag(y) + b = d
$$

has a solution a, b. Then the function $f = ag + b$ satisfies the above and it is in F by 1.

Take $h \in C(S)$ and fix x. For any y let $f_y \in \mathcal{F}$ be such that

$$
f_y(x) = h(x), f_y(y) = h(y).
$$

By continuity of f_y , for any $y \in S$ there exists an open neighborhood U_y of y such that

$$
f_y(s) \ge h(s) - \varepsilon \text{ for } s \in U_y.
$$

Since (U_y) is an open cover of the compact S, there exists a finite subcover U_{y_1}, \ldots, U_{y_N} . Let us define a function

$$
f^x(s) = \max(f_{y_1}(s), \ldots, f_{y_N}(s)) \in \bar{\mathcal{F}}
$$
 by (16.0.1).

By construction, it has the following properties:

$$
f^x(x) = h(x), \ f^x(s) \ge h(s) - \varepsilon
$$
 for all $s \in S$.

Again, by continuity of $f^x(s)$ there exists an open neighborhood U_x of x such that

$$
f^x(s) \le h(s) + \varepsilon \quad \text{for} \quad s \in U_x.
$$

Take a finite subcover U_{x_1}, \ldots, U_{x_M} and define

$$
h'(s) = \min(f^{x_1}(s), \dots, f^{x_M}(s)) \in \bar{\mathcal{F}}
$$
 by (16.0.1).

By construction, $h'(s) \leq h(s) + \varepsilon$ and $h'(s) \geq h(s) - \varepsilon$ for all $s \in S$ which means that $d_{\infty}(h', h) \leq \varepsilon$. Since By construction, $h(s) \leq h(s) + \varepsilon$ and $h(s) \geq h(s) - \varepsilon$ for all $s \in S$ which means that a_{∞}
 $h' \in \overline{\mathcal{F}}$, this proves that $\overline{\mathcal{F}}$ is dense in $C(S)$.

 \Box

Corollary 4 If (S, d) is a compact space then $C(S)$ is separable in d_{∞} .

 \mathbf{L}

Remark. Recall that this fact was used in the proof of the Selection Theorem, which was proved for general metric spaces.

Proof. By the above theorem, $BL(S, d)$ is dense in $C(S)$. For any integer $n \geq 1$, the set $\{f : ||f||_{BL} \leq n\}$ is uniformly bounded and equicontinuous. By the Arzela-Ascoli theorem, it is totally bounded and, therefore, separable which can be seen by taking finite $1/m$ -covers for all $m \ge 1$. The union

$$
\bigcup \{ ||f||_{\text{BL}} \le n \} = BL(S, d)
$$

is therefore separable in $C(S)$ which is, as a result, also separable.

 \Box