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Section 16 

Convergence on metric spaces. 
Portmanteau Theorem. Lipschitz 
Functions. 

Let (S, d) be a metric space and B - a Borel σ-algebra generated by open sets. Let us recall that Pn → P 
weakly on B if 

fdPn fdP→ 

for all f ∈ Cb(S) - real-valued bounded continuous functions on S. 

For a set A ⊆ S, we denote by A ¯ the closure of A, intA - interior of A and ∂A = A ¯ \ intA - boundary 
of A. A is called a continuity set of P if P(∂A) = 0. 

Theorem 36 (Portmanteau theorem) The following are equivalent. 

1. Pn P weakly. → 

2. For any open set U ⊆ S, lim infn→∞ Pn(U) ≥ P(U). 

3. For any closed set F ⊆ S, lim sup Pn(F ) ≤ P(F ).n→∞ 

4. For any continuity set A of P, limn→∞ Pn(A) = P(A). 

Proof. 
1= 2. Let U be an open set and F = U c . Consider a sequence of functions in Cb(S)⇒

fm(s) = min(1, md(s, F )) 

such that fm(s) IU (s). (This is not necessarily true if U is not open.) Since Pn P,↑ → 

Pn(U) ≥ fmdPn fmdP as n →∞ and lim inf Pn(U) ≥ fmdP.→ 
n→∞ 

Letting m →∞, by monotone convergence theorem. 

lim inf Pn(U) ≥ IU dP = P(U). 
n→∞ 

3. By taking complements. ⇐⇒
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2, 3=⇒4. Since intA is open and A ¯ is closed and intA ⊆ Ā, by 2 and 3, 

P(intA) ≤ lim inf Pn(intA) ≤ lim sup Pn(Ā) ≤ P(Ā). 
n→∞ n→∞ 

If P(∂A) = 0 then P(Ā) = P(intA) = P(A) and, therefore, lim Pn(A) = P(A). 
4=⇒1. Consider f ∈ Cb(S) and let Fy = {s ∈ S : f(s) = y} be a level set of f. There exist at most 

countably many y such that P(Fy) > 0. Therefore, for any ε > 0 we can find a sequence a1 ≤ . . . ≤ aN such 
that 

max(ak+1 − ak) ≤ ε, P(Fak ) = 0 for all k 

and the range of f is inside the interval (a1, aN ). Let � 
Bk = {s ∈ S : ak ≤ f(s) < ak+1} and fε(s) = akI(s ∈ Bk). 

Since f is continuous, ∂Bk ⊆ Fak ∪ Fak+1 and P(∂Bk) = 0. By 4, 

fεdPn = akPn(Bk) akP(Bk) = fεdP.→ 
k k 

Since, by construction, |fε(s) − f(s)| ≤ ε, letting ε → 0 proves that fdPn → fdP. 

Lipschitz functions. For a function f : S R, let us define a Lipschitz semi-norm by → 

||f ||L = sup 
|f(x) − f(y)| 

. 
x=y d(x, y) 

Clearly, ||f ||L = 0 iff f is constant so ||f ||L is not a norm. Let us define a bounded Lipschitz norm by 

||f ||BL = ||f ||L + ||f ||∞, 

where ||f ||∞ = sups∈S |f(s)|. Let 

BL(S, d) = f : S → R : ||f ||BL < ∞ 

be a set of all bounded Lipschitz functions. 

Lemma 32 If f, g ∈ BL(S, d) then fg ∈ BL(S, d) and ||fg||BL ≤ ||f ||BL||g||BL. 

Proof. First of all, ||fg||∞ ≤ ||f ||∞||g||∞. We can write, 

|f(x)g(x) − f(y)g(y)| ≤ |f(x)(g(x) − g(y))| + |g(y)(f(x) − f(y))| 
≤ ||f ||∞||g||Ld(x, y) + ||g||∞||f ||Ld(x, y) 

and, therefore, 
||fg||BL ≤ ||f ||∞||g||∞ + ||f ||∞||g||L + ||g||∞||f ||L ≤ ||f ||BL||g||BL. 

Let us recall the notations a ∨ b = max(a, b) and a ∧ b = min(a, b) and let ∗ = ∧ or ∨. 

Lemma 33 The following hold. 

1. ||f1 ∗ · · · ∗ fk||L ≤ max1≤i≤k ||fi||L. 

2. ||f1 ∗ · · · ∗ fk||BL ≤ 2 max1≤i≤k ||fi||BL. 
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Proof. Proof of 1. It is enough to consider k = 2. For specificity, take ∗ = ∨. Given x, y ∈ S, suppose that 

f1 ∨ f2(x) ≥ f1 ∨ f2(y) = f1(y). 

Then 

f1(x) − f1(y), if f1(x) ≥ f2(x)|f1 ∨ f2(y) − f1 ∨ f2(x)| = f1 ∨ f2(x) − f1 ∨ f2(y) ≤ 
f2(x) − f2(y), otherwise 

≤ ||f1||L ∨ ||f2||Ld(x, y). 

This finishes the proof of 1. 
Proof of 2. First of all, obviously, 

max||f1 ∗ · · · ∗ fk||∞ ≤ 
1≤i≤k 

||fi||∞. 

Therefore, using 1, 

i i i 
||fi||BL.||f1 ∗ · · · ∗ fk||BL ≤ max ||fi||∞ + max ||fi||L ≤ 2 max 

Theorem 37 (Extension theorem) Given a set A ⊆ S and a bounded Lipschitz function f ∈ BL(A, d) on 
A, there exists an extension h ∈ BL(S, d) such that 

f = h on A and ||h||BL = ||f ||BL. 

Proof. Let us first find an extension such that ||h||L = ||f ||L. We will start by extending f to one point 
x ∈ S \ A. The value y = h(x) must satisfy 

|y − f(s)| ≤ �f�Ld(x, s) for all s ∈ A 

or, equivalently, 
inf (f(s) + ||f ||Ld(x, s)) ≥ y ≥ sup(f(s) − ||f ||Ld(x, s)). 
s∈A s∈A 

Such y exists iff for all s1, s2 ∈ A, 

f(s1) + ||f ||Ld(x, s1) ≥ f(s2) − ||f ||Ld(x, s2). 

This inequality is satisfied because by triangle inequality 

f(s2) − f(s1) ≤ ||f ||Ld(s1, s2) ≤ ||f ||L(d(s1, x) + d(s2, x)). 

It remains to apply Zorn’s lemma to show that f can be extended to the entire S. Define order by inclusion: 

f1 � f2 if f1 is defined on A1, f2 - on A2, A1 ⊆ A2, f1 = f2 on A1 and �f1�L = �f2�L. � 
For any chain {fα}, f = fα � fα. By Zorn’s lemma there exists a maximal element h. It is defined on the 
entire S because, otherwise, we could extend to one more point. To extend preserving BL norm take 

h� = (h ∧ ||f ||∞) ∨ (−||f ||∞). 

By part 1 of previous lemma, it is easy to see that ||h�||BL = ||f ||BL. 

Stone-Weierstrass Theorem. 
A set A ⊆ S is totally bounded if for any ε > 0 there exists a finite ε-cover of A, i.e. a set of points 

a1, . . . , aN such that 

 
A ⊆ B(ai, ε), 

i≤N 

where B(a, ε) = {y ∈ S : d(a, y) ≤ ε} is a ball of radius ε centered at a. Let us recall the following theorem 
from analysis. 
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Theorem 38 (Arzela-Ascoli) Let (S, d) be a compact metric space and let (C(S), d ) be the space of con­∞
tinuous real-valued functions on S with uniform convergence metric 

d (f, g) = sup .∞
x∈S 
|f(x) − g(x)|

A subset F ⊆ C(S) is totally bounded in d∞ metric iff F is equicontinuous and uniformly bounded. 

Remark. Equicontinuous means that for any ε > there exists δ > 0 such that if d(x, y) ≤ δ then for all 
f ∈ F , |f(x) − f(y)| ≤ ε.


Theorem 39 (Stone-Weierstrass) Let (S, d) be a compact metric space and F ⊆ C(S) is such that


1. F is algebra, i.e. for all f, g ∈ F , c ∈ R, we have cf + g ∈ F , fg ∈ F . 

2. F separates points, i.e. if x =� y ∈ S then there exists f ∈ F such that f(x) =� f(y). 

3. F contains constants. 

Then F is dense in C(S). 

Corollary 3 If (S, d) is a compact space then BL(S, d) is dense in C(S). 

Proof. For F = BL(S, d) in the Stone-Weierstrass theorem, 3 is obvious, 1 follows from Lemma 32 and 2 
follows from the extension Theorem 37, since a function defined on two points x =� y such that f(x) =� f(y) 
can be extended to the entire S. 

Proof of Theorem 39. Consider bounded f ∈ F , i.e. |f(x)| ≤ M. A function x → |x| defined on the 
interval [−M, M ] can be uniformly approximated by polynomials of x by the Weierstrass theorem on the 
real line or, for example, using Bernstein’s polynomials. Therefore, |f(x)| can be uniformly approximated by 
polynomials of f(x), and by properties 1 and 3, by functions in F . Therefore, if F ̄ is the closure of F in d

¯ ¯ ¯ 
∞

norm then for any f ∈ F its absolute value |f | ∈ F . Therefore, for any f, g ∈ F we have 

min(f, g) = 
1
2
(f + g) − 

1
2 
|f − g| ∈ F̄ , max(f, g) = 

1
2
(f + g) + 

1
2 
|f − g| ∈ F̄ . (16.0.1) 

Given any points x =� y and c, d ∈ R one can always find f ∈ F such that f(x) = c and f(y) = d. Indeed, by 
property 2 we can find g ∈ F such that g(x) =� g(y) and, as a result, a system of equations 

ag(x) + b = c, ag(y) + b = d 

has a solution a, b. Then the function f = ag + b satisfies the above and it is in F by 1. 
Take h ∈ C(S) and fix x. For any y let fy ∈ F be such that 

fy(x) = h(x), fy(y) = h(y). 

By continuity of fy, for any y ∈ S there exists an open neighborhood Uy of y such that 

fy(s) ≥ h(s) − ε for s ∈ Uy. 

Since (Uy ) is an open cover of the compact S, there exists a finite subcover Uy1 , . . . , UyN . Let us define a 
function 

fx(s) = max(fy1 (s), . . . , fyN (s)) ∈ F ̄ by (16.0.1). 

By construction, it has the following properties: 

fx(x) = h(x), fx(s) ≥ h(s) − ε for all s ∈ S. 
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Again, by continuity of fx(s) there exists an open neighborhood Ux of x such that 

fx(s) ≤ h(s) + ε for s ∈ Ux. 

Take a finite subcover Ux1 , . . . , UxM and define 

h�(s) = min 
� 
fx1 (s), . . . , fxM (s) 

� 
∈ F ̄ by (16.0.1). 

By construction, h�(s) ≤ h(s) + ε and h�(s) ≥ h(s) − ε for all s ∈ S which means that d (h�, h) ≤ ε. Since 
h� ∈ F̄ , this proves that F ̄ is dense in C(S). 

∞

Corollary 4 If (S, d) is a compact space then C(S) is separable in d∞. 

Remark. Recall that this fact was used in the proof of the Selection Theorem, which was proved for 
general metric spaces. 

Proof. By the above theorem, BL(S, d) is dense in C(S). For any integer n ≥ 1, the set {f : ||f ||BL ≤ n}
is uniformly bounded and equicontinuous. By the Arzela-Ascoli theorem, it is totally bounded and, therefore, 
separable which can be seen by taking finite 1/m-covers for all m ≥ 1. The union 

 

{||f ||BL ≤ n} = BL(S, d) 

is therefore separable in C(S) which is, as a result, also separable. 
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