MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Section 16

Convergence on metric spaces. Portmanteau Theorem. Lipschitz Functions.

Let (S, d) be a metric space and \mathcal{B} - a Borel σ -algebra generated by open sets. Let us recall that $\mathbb{P}_n \to \mathbb{P}$ weakly on \mathcal{B} if

$$\int f d\mathbb{P}_n \to \int f d\mathbb{P}$$

for all $f \in C_b(S)$ - real-valued bounded continuous functions on S.

For a set $A \subseteq S$, we denote by \overline{A} the closure of A, intA - interior of A and $\partial A = \overline{A} \setminus \operatorname{int} A$ - boundary of A. A is called a *continuity set* of \mathbb{P} if $\mathbb{P}(\partial A) = 0$.

Theorem 36 (Portmanteau theorem) The following are equivalent.

- 1. $\mathbb{P}_n \to \mathbb{P}$ weakly.
- 2. For any open set $U \subseteq S$, $\liminf_{n \to \infty} \mathbb{P}_n(U) \ge \mathbb{P}(U)$.
- 3. For any closed set $F \subseteq S$, $\limsup_{n \to \infty} \mathbb{P}_n(F) \leq \mathbb{P}(F)$.
- 4. For any continuity set A of \mathbb{P} , $\lim_{n\to\infty} \mathbb{P}_n(A) = \mathbb{P}(A)$.

Proof.

1 \Longrightarrow 2. Let U be an open set and $F = U^c$. Consider a sequence of functions in $C_b(S)$

$$f_m(s) = \min(1, md(s, F))$$

such that $f_m(s) \uparrow I_U(s)$. (This is not necessarily true if U is not open.) Since $\mathbb{P}_n \to \mathbb{P}$,

$$\mathbb{P}_n(U) \ge \int f_m d\mathbb{P}_n \to \int f_m d\mathbb{P} \text{ as } n \to \infty \text{ and } \liminf_{n \to \infty} \mathbb{P}_n(U) \ge \int f_m d\mathbb{P}$$

Letting $m \to \infty$, by monotone convergence theorem.

$$\liminf_{n \to \infty} \mathbb{P}_n(U) \ge \int \mathrm{I}_U d\mathbb{P} = \mathbb{P}(U).$$

 $2 \iff 3$. By taking complements.

2, 3 \Longrightarrow 4. Since intA is open and \overline{A} is closed and int $A \subseteq \overline{A}$, by 2 and 3,

$$\mathbb{P}(\mathrm{int} A) \leq \liminf_{n \to \infty} \mathbb{P}_n(\mathrm{int} A) \leq \limsup_{n \to \infty} \mathbb{P}_n(\bar{A}) \leq \mathbb{P}(\bar{A}).$$

If $\mathbb{P}(\partial A) = 0$ then $\mathbb{P}(\bar{A}) = \mathbb{P}(\operatorname{int} A) = \mathbb{P}(A)$ and, therefore, $\lim \mathbb{P}_n(A) = \mathbb{P}(A)$.

 $4 \Longrightarrow 1$. Consider $f \in C_b(S)$ and let $F_y = \{s \in S : f(s) = y\}$ be a level set of f. There exist at most countably many y such that $\mathbb{P}(F_y) > 0$. Therefore, for any $\varepsilon > 0$ we can find a sequence $a_1 \leq \ldots \leq a_N$ such that

 $\max(a_{k+1} - a_k) \le \varepsilon, \ \mathbb{P}(F_{a_k}) = 0 \quad \text{for all } k$

and the range of f is inside the interval (a_1, a_N) . Let

$$B_k = \{s \in S : a_k \le f(s) < a_{k+1}\}$$
 and $f_{\varepsilon}(s) = \sum a_k \mathbf{I}(s \in B_k).$

Since f is continuous, $\partial B_k \subseteq F_{a_k} \cup F_{a_{k+1}}$ and $\mathbb{P}(\partial B_k) = 0$. By 4,

$$\int f_{\varepsilon} d\mathbb{P}_n = \sum_k a_k \mathbb{P}_n(B_k) \to \sum_k a_k \mathbb{P}(B_k) = \int f_{\varepsilon} d\mathbb{P}.$$

Since, by construction, $|f_{\varepsilon}(s) - f(s)| \leq \varepsilon$, letting $\varepsilon \to 0$ proves that $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$.

Lipschitz functions. For a function $f: S \to \mathbb{R}$, let us define a Lipschitz semi-norm by

$$||f||_{\mathcal{L}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}$$

Clearly, $||f||_{L} = 0$ iff f is constant so $||f||_{L}$ is not a norm. Let us define a bounded Lipschitz norm by

$$||f||_{\mathrm{BL}} = ||f||_{\mathrm{L}} + ||f||_{\infty},$$

where $||f||_{\infty} = \sup_{s \in S} |f(s)|$. Let

$$BL(S,d) = \left\{ f: S \to \mathbb{R} : ||f||_{\mathrm{BL}} < \infty \right\}$$

be a set of all bounded Lipschitz functions.

Lemma 32 If $f, g \in BL(S, d)$ then $fg \in BL(S, d)$ and $||fg||_{BL} \leq ||f||_{BL}||g||_{BL}$.

Proof. First of all, $||fg||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$. We can write,

$$\begin{aligned} |f(x)g(x) - f(y)g(y)| &\leq |f(x)(g(x) - g(y))| + |g(y)(f(x) - f(y))| \\ &\leq ||f||_{\infty} ||g||_{\mathcal{L}} d(x, y) + ||g||_{\infty} ||f||_{\mathcal{L}} d(x, y) \end{aligned}$$

and, therefore,

$$||fg||_{\mathrm{BL}} \leq ||f||_{\infty} ||g||_{\infty} + ||f||_{\infty} ||g||_{\mathrm{L}} + ||g||_{\infty} ||f||_{\mathrm{L}} \leq ||f||_{\mathrm{BL}} ||g||_{\mathrm{BL}}.$$

Let us recall the notations $a \lor b = \max(a, b)$ and $a \land b = \min(a, b)$ and let $* = \land$ or \lor .

Lemma 33 The following hold.

- 1. $||f_1 * \cdots * f_k||_{\mathcal{L}} \le \max_{1 \le i \le k} ||f_i||_{\mathcal{L}}.$
- 2. $||f_1 * \cdots * f_k||_{\mathrm{BL}} \le 2 \max_{1 \le i \le k} ||f_i||_{\mathrm{BL}}$.

Proof. Proof of 1. It is enough to consider k = 2. For specificity, take $* = \vee$. Given $x, y \in S$, suppose that

$$f_1 \lor f_2(x) \ge f_1 \lor f_2(y) = f_1(y)$$

Then

$$|f_1 \vee f_2(y) - f_1 \vee f_2(x)| = f_1 \vee f_2(x) - f_1 \vee f_2(y) \leq \begin{cases} f_1(x) - f_1(y), & \text{if } f_1(x) \ge f_2(x) \\ f_2(x) - f_2(y), & \text{otherwise} \end{cases}$$
$$\leq ||f_1||_{\mathcal{L}} \vee ||f_2||_{\mathcal{L}} d(x, y).$$

This finishes the proof of 1.

Proof of 2. First of all, obviously,

$$||f_1 * \dots * f_k||_{\infty} \le \max_{1 \le i \le k} ||f_i||_{\infty}$$

Therefore, using 1,

$$|f_1 * \dots * f_k||_{BL} \le \max_i ||f_i||_{\infty} + \max_i ||f_i||_{L} \le 2 \max_i ||f_i||_{BL}$$

	-	-	

Theorem 37 (Extension theorem) Given a set $A \subseteq S$ and a bounded Lipschitz function $f \in BL(A, d)$ on A, there exists an extension $h \in BL(S, d)$ such that

$$f = h$$
 on A and $||h||_{BL} = ||f||_{BL}$.

Proof. Let us first find an extension such that $||h||_{L} = ||f||_{L}$. We will start by extending f to one point $x \in S \setminus A$. The value y = h(x) must satisfy

$$|y - f(s)| \le ||f||_{\mathcal{L}} d(x, s)$$
 for all $s \in A$

or, equivalently,

$$\inf_{s \in A} (f(s) + ||f||_{\mathcal{L}} d(x, s)) \ge y \ge \sup_{s \in A} (f(s) - ||f||_{\mathcal{L}} d(x, s)).$$

Such y exists iff for all $s_1, s_2 \in A$,

$$f(s_1) + ||f||_{\mathcal{L}} d(x, s_1) \ge f(s_2) - ||f||_{\mathcal{L}} d(x, s_2)$$

This inequality is satisfied because by triangle inequality

$$f(s_2) - f(s_1) \le ||f||_{\mathcal{L}} d(s_1, s_2) \le ||f||_{\mathcal{L}} (d(s_1, x) + d(s_2, x)).$$

It remains to apply Zorn's lemma to show that f can be extended to the entire S. Define order by inclusion:

 $f_1 \prec f_2$ if f_1 is defined on A_1, f_2 - on $A_2, A_1 \subseteq A_2, f_1 = f_2$ on A_1 and $||f_1||_{\mathcal{L}} = ||f_2||_{\mathcal{L}}$.

For any chain $\{f_{\alpha}\}, f = \bigcup f_{\alpha} \succ f_{\alpha}$. By Zorn's lemma there exists a maximal element h. It is defined on the entire S because, otherwise, we could extend to one more point. To extend preserving BL norm take

$$h' = (h \land ||f||_{\infty}) \lor (-||f||_{\infty}).$$

By part 1 of previous lemma, it is easy to see that $||h'||_{BL} = ||f||_{BL}$.

Stone-Weierstrass Theorem.

A set $A \subseteq S$ is totally bounded if for any $\varepsilon > 0$ there exists a finite ε -cover of A, i.e. a set of points a_1, \ldots, a_N such that

$$A \subseteq \bigcup_{i \le N} B(a_i, \varepsilon).$$

where $B(a, \varepsilon) = \{y \in S : d(a, y) \le \varepsilon\}$ is a ball of radius ε centered at a. Let us recall the following theorem from analysis.

Theorem 38 (Arzela-Ascoli) Let (S,d) be a compact metric space and let $(C(S), d_{\infty})$ be the space of continuous real-valued functions on S with uniform convergence metric

$$d_{\infty}(f,g) = \sup_{x \in S} |f(x) - g(x)|.$$

A subset $\mathcal{F} \subseteq C(S)$ is totally bounded in d_{∞} metric iff \mathcal{F} is equicontinuous and uniformly bounded.

Remark. Equicontinuous means that for any $\varepsilon >$ there exists $\delta > 0$ such that if $d(x, y) \leq \delta$ then for all $f \in \mathcal{F}$, $|f(x) - f(y)| \leq \varepsilon$.

Theorem 39 (Stone-Weierstrass) Let (S, d) be a compact metric space and $\mathcal{F} \subseteq C(S)$ is such that

- 1. \mathcal{F} is algebra, i.e. for all $f, g \in \mathcal{F}, c \in \mathbb{R}$, we have $cf + g \in \mathcal{F}, fg \in \mathcal{F}$.
- 2. \mathcal{F} separates points, i.e. if $x \neq y \in S$ then there exists $f \in \mathcal{F}$ such that $f(x) \neq f(y)$.
- 3. \mathcal{F} contains constants.

Then \mathcal{F} is dense in C(S).

Corollary 3 If (S, d) is a compact space then BL(S, d) is dense in C(S).

Proof. For $\mathcal{F} = BL(S, d)$ in the Stone-Weierstrass theorem, 3 is obvious, 1 follows from Lemma 32 and 2 follows from the extension Theorem 37, since a function defined on two points $x \neq y$ such that $f(x) \neq f(y)$ can be extended to the entire S.

Proof of Theorem 39. Consider bounded $f \in \mathcal{F}$, i.e. $|f(x)| \leq M$. A function $x \to |x|$ defined on the interval [-M, M] can be uniformly approximated by polynomials of x by the Weierstrass theorem on the real line or, for example, using Bernstein's polynomials. Therefore, |f(x)| can be uniformly approximated by polynomials of f(x), and by properties 1 and 3, by functions in \mathcal{F} . Therefore, if $\bar{\mathcal{F}}$ is the closure of \mathcal{F} in d_{∞} norm then for any $f \in \bar{\mathcal{F}}$ its absolute value $|f| \in \bar{\mathcal{F}}$. Therefore, for any $f, g \in \bar{\mathcal{F}}$ we have

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g| \in \bar{\mathcal{F}}, \ \max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g| \in \bar{\mathcal{F}}.$$
 (16.0.1)

Given any points $x \neq y$ and $c, d \in \mathbb{R}$ one can always find $f \in \mathcal{F}$ such that f(x) = c and f(y) = d. Indeed, by property 2 we can find $g \in \mathcal{F}$ such that $g(x) \neq g(y)$ and, as a result, a system of equations

$$ag(x) + b = c, \ ag(y) + b = d$$

has a solution a, b. Then the function f = ag + b satisfies the above and it is in \mathcal{F} by 1.

Take $h \in C(S)$ and fix x. For any y let $f_y \in \mathcal{F}$ be such that

$$f_y(x) = h(x), \ f_y(y) = h(y).$$

By continuity of f_y , for any $y \in S$ there exists an open neighborhood U_y of y such that

$$f_y(s) \ge h(s) - \varepsilon$$
 for $s \in U_y$.

Since (U_y) is an open cover of the compact S, there exists a finite subcover U_{y_1}, \ldots, U_{y_N} . Let us define a function

$$f^{x}(s) = \max(f_{y_1}(s), \dots, f_{y_N}(s)) \in \mathcal{F}$$
 by (16.0.1)

By construction, it has the following properties:

$$f^x(x) = h(x), \ f^x(s) \ge h(s) - \varepsilon \text{ for all } s \in S.$$

Again, by continuity of $f^x(s)$ there exists an open neighborhood U_x of x such that

$$f^x(s) \le h(s) + \varepsilon$$
 for $s \in U_x$.

Take a finite subcover U_{x_1}, \ldots, U_{x_M} and define

$$h'(s) = \min(f^{x_1}(s), \dots, f^{x_M}(s)) \in \bar{\mathcal{F}}$$
 by (16.0.1).

By construction, $h'(s) \leq h(s) + \varepsilon$ and $h'(s) \geq h(s) - \varepsilon$ for all $s \in S$ which means that $d_{\infty}(h', h) \leq \varepsilon$. Since $h' \in \overline{\mathcal{F}}$, this proves that $\overline{\mathcal{F}}$ is dense in C(S).

Corollary 4 If (S, d) is a compact space then C(S) is separable in d_{∞} .

. .

Remark. Recall that this fact was used in the proof of the Selection Theorem, which was proved for general metric spaces.

Proof. By the above theorem, BL(S, d) is dense in C(S). For any integer $n \ge 1$, the set $\{f : ||f||_{BL} \le n\}$ is uniformly bounded and equicontinuous. By the Arzela-Ascoli theorem, it is totally bounded and, therefore, separable which can be seen by taking finite 1/m-covers for all $m \ge 1$. The union

$$\bigcup\{||f||_{\mathrm{BL}} \le n\} = BL(S,d)$$

is therefore separable in C(S) which is, as a result, also separable.