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Section 17 

Metrics for convergence of laws. 
Empirical measures. 

Levy-Prohorov metric. Consider a metric space (S, d). For a set A ⊆ S let us denote by 

Aε = {y ∈ S : d(x, y) < ε for some x ∈ A} 

its ε-neighborhood. Let B be a Borel σ-algebra on S. 

Definition. If P, Q are probability distributions on B then 

ρ(P, Q) = inf{ε > 0 : P(A) ≤ Q(Aε) + ε for all A ∈ B} 

is called the Levy-Prohorov distance between P and Q. 

Lemma 34 ρ is a metric on the set of probability laws on B. 

Proof. 1. First, let us show that ρ(Q, P) = ρ(P, Q). Suppose that ρ(P, Q) > ε. Then there exists a set A 
such that P(A) > Q(Aε) + ε. Taking complements gives 

Q(Aεc) > P(Ac) + ε ≥ P(Aεcε) + ε, 

where the last inequality follows from the fact that Ac ⊇ Aεcε : 

a ∈ Aεcε = ⇒ d(a, Aεc) < ε = ⇒ d�(a, b) < ε for some b ∈ A� 
εc 

since b /∈ Aε, d(b, A) ≥ ε 

= ⇒ d(a, A) > 0 =⇒ a /∈ A = ⇒ a ∈ Ac . 

Therefore, for a set B = Aεc , Q(B) > P(Bε) + ε. This means that ρ(Q, P) > ε and, therefore, ρ(Q, P) ≥
ρ(P, Q). By symmetry, ρ(Q, P) ≤ ρ(P, Q) and ρ(Q, P) = ρ(P, Q). 

2. Next, let us show that if ρ(P, Q) = 0 then P = Q. For any set F and any n ≥ 1, 

1 1
P(F ) ≤ Q(F n ) + . 

n 

If F is closed then F 
1 ↓ F as n →∞ and by continuity of measure n 

1 
nP(F ) ≤ Q F = Q(F ). 

Similarly, P(F ) ≥ Q(F ) and, therefore, P(F ) = Q(F ). 
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3. Finally, let us prove the triangle inequality 

ρ(P, R) ≤ ρ(P, Q) + ρ(Q, R). 

If ρ(P, Q) < x and ρ(Q, R) < y then for any set A, 

P(A) ≤ Q(Ax) + x ≤ R (Ax)y + y + x ≤ R Ax+y + x + y, 

which means that ρ(P, R) ≤ x + y. 

Bounded Lipschitz metric. Given probability distributions P, Q on the metric space (S, d) we define a 
bounded Lipschitz distance between them by ��� � � � 

β(P, Q) = sup �� fdP − fdQ�� : ||f ||BL ≤ 1 . 

Lemma 35 β is a metric on the set of probability laws on B. 

Proof. β(P, Q) = β(Q, P) and the triangle inequality are obvious. It remains to prove that β(P, Q) = 0 
implies P = Q. Given a closed set F, the sequence of functions fm(x) = md(x, F ) ∧ 1 converges fm IU ,� � ↑
where U = F c . Obviously, ||fm||BL ≤ m + 1 and, therefore, fmdP = fmdQ. Letting m →∞ proves that 
P(U) = Q(U). 

The law P on (S, d) is tight if for any ε > 0 there exists a compact K ⊆ S such that P(S \ K) ≤ ε. 

Theorem 40 (Ulam) If (S, d) is separable then for any law P on B there exists a closed totally bounded set 
K ⊆ S such that P(S \ K) ≤ ε. If (S, d) is complete and separable then K is compact and, therefore, every 
law is tight. 

1Proof. Consider a sequence {x1, x2, . . .} that is dense in S. For any m ≥ 1, S = 
�∞

B ¯ xi, , where B ¯ 
i=1 m 

denotes a closed ball, and by continuity of measure, for large enough n(m), 

n(m)� 

 � 1 �� ε

P S \ B ¯ xi,

m 
≤ 

2m 
.


i=1 

If we take 
n(m)� 

 

¯ 
� 1 � 

K = B xi, 
m 

m≥1 i=1 

then � ε
P(S \ K) ≤ 

2m 
= ε. 

m≥1 

K is closed and totally bounded by construction. If S is complete, K is compact. 

Theorem 41 Suppose that either (S, d) is separable or P is tight. Then the following are equivalent. 

1. Pn P.→ 

2. For all f ∈ BL(S, d), fdPn → fdP. 

3. β(Pn, P) 0.→ 

4. ρ(Pn, P) 0.→ 
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Proof. 1= 2. Obvious. ⇒
3= 4. In fact, we will prove that ⇒

ρ(Pn, P) ≤ 2 β(Pn, P). (17.0.1) 

Given a Borel set A ⊆ S, consider a function � 1 � 
f(x) = 0 ∨ 1 − 

ε
d(x, A) such that IA ≤ f ≤ IAε . 

Obviously, ||f ||BL ≤ 1 + ε−1 and we can write � � �� � � 
Pn(A) ≤ fdPn = fdP + fdPn − fdP ��� � � � 

≤ P(Aε) + (1 + ε−1) sup �� fdPn − fdP�� : ||f ||BL ≤ 1 

= P(Aε) + (1 + ε−1)β(Pn, P) ≤ P(Aδ) + δ, 

where δ = max(ε, (1 + ε−1)β(Pn, P)). This implies that ρ(Pn, P) ≤ δ. Since ε is arbitrary we can minimize 
δ = δ(ε) over ε. If we take ε = 

√
β then δ = max(

√
β, β + 

√
β) = β + 

√
β and 

β ≤ 1 =⇒ ρ ≤ 2 β; β ≥ 1 =⇒ ρ ≤ 1 ≤ 2 β. 

4= 1. Suppose that ρ(Pn, P) 0 which means that there exists a sequence εn 0 such that ⇒ → ↓ 

Pn(A) ≤ P(Aεn ) + εn for all measurable A ⊆ S. 

If A is closed, then n≥1 A
εn = A and, by continuity of measure, 

lim sup Pn(A) ≤ lim sup P(Aεn ) + εn = P(A). 
n→∞ n→∞ 

By the portmanteau theorem, Pn P.→
2=⇒3. If P is tight, let K be a compact such that P(S \ K) ≤ ε. If (S, d) is separable, by Ulam’s 

theorem, let K be a closed totally bounded set such that P(S \ K) ≤ ε. If we consider a function � 1 � 1 
f(x) = 0 ∨ 1 − d(x, K) with ||f ||BL ≤ 1 + 

ε ε 

then � � 
Pn(Kε) ≥ fdPn → fdP ≥ P(K) ≥ 1 − ε, 

which implies that for n large enough, Pn(Kε) ≥ 1 − 2ε. This means that all Pn are essentially concentrated 
on Kε . Let � � � � � 

B = f : ||f ||BL(S,d) ≤ 1 , BK = f � : f ∈ B ⊆ C(K),
K 

where f � 
K 

denotes the restriction of f to K. If K is compact then, by the Arzela-Ascoli theorem, BK is totally 
bounded with respect to d∞. If K is totally bounded then we can isometrically identify functions in BK with 
their unique extensions to the completion K � of K and, by the Arzela-Ascoli theorem for the compact K �, 
BK is again totally bounded with respect to d∞. In any case, given ε > 0, we can find f1, . . . , fk ∈ B such 
that for all f ∈ B 

sup f(x) − fj (x) ≤ ε for some j ≤ k. 
x∈K 
| | 

This uniform approximation can also be extended to Kε . Namely, for any x ∈ Kε take y ∈ K such that 
d(x, y) ≤ ε. Then 

|f(x) − fj (x)| ≤ |f(x) − f(y)| + |f(y) − fj (y)| + |fj (y) − fj (x)| 
≤ ||f ||Ld(x, y) + ε + ||fj ||Ld(x, y) ≤ 3ε. 
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Therefore, for any f ∈ B, 

+ ||f ||∞ Pn(Kεc) + P(Kεc)fdPn − fdP fdPn − fdP 
Kε

≤ 
Kε 

+ 2ε + εfdPn − fdP 
Kε

≤ 
Kε 

+ 3ε + 3ε + 2ε + εfj dPn − fj dP 
Kε

≤ 
Kε 

+ 3ε + 3ε + 3ε + 2ε + εfj dPn − 

fj dPn − fj dP 

fj dP≤ 

+ 12ε.max≤ 
1≤j≤k 

Finally, 

+ 12εβ(Pn, P) = sup fdPn − fdP fj dPn − fj dPmax≤ 
1≤j≤kf ∈B 

and, using assumption 2, lim supn→∞ β(Pn, P) ≤ 12ε. Letting ε → 0 finishes the proof. 

Convergence of empirical measures. Let (Ω, P) be a probability space and X1, X2, . . . : Ω S be an 
i.i.d. sequence of random variables with values in a metric space (S, d). Let µ be the law of Xi on 

→
S. Let us 

define the random empirical measures µn on the Borel σ-algebra B on S by 

n

n 
i=1 

1
(A)(ω) = I(Xi(ω) ∈ A), A ∈ B.µn

By the strong law of large numbers, for any f ∈ Cb(S), 

n

n 
i=1 

1 
f(Xi) Ef(X1) = fdµn = fdµ a.s.→ 

However, the set of measure zero where this convergence is violated depends on f and it is not obvious that 
the convergence holds for all f ∈ Cb(S) with probability one. 

Theorem 42 (Varadarajan) Let (S, d) be a separable metric space. Then µn converges to µ weakly almost 
surely, 

P ω : µn( )(ω) µ weakly = 1.· → 

Proof. Since (S, d) is separable, by Theorem 2.8.2 in R.A.P., there exists a metric e on S such that (S, e) is 
totally bounded and e and d define the same topology, i.e. e(sn, s) 0 if and only if d(sn, s) 0. This, of → →
course, means that Cb(S, d) = Cb(S, e) and weak convergence of measures does not change. If (T, e) is the 
completion of (S, e) then (T, e) is compact. By the Arzela-Ascoli theorem, BL(T, e) is separable with respect 
to the d norm and, therefore, BL(S, e) is also separable. Let (fm) be a dense subset of BL(S, e). Then, by ∞
the strong law of large number, 

n

fmdµn = fm
1 

(Xi) Efm(X1) = fmdµ a.s.→
n 

i=1 

Therefore, on the set of probability one, 
the same set of probability one, 

fm

fdµn → 
dµn fm→ dµ for all m ≥ 1. Since (fm) is dense in BL(S, e), on 
fdµ for all f ∈ BL(S, e). Since (S, e) is separable, the previous 

theorem implies that µn µ weakly. → 
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