MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Section 17

Metrics for convergence of laws. Empirical measures.

Levy-Prohorov metric. Consider a metric space (S, d). For a set $A \subseteq S$ let us denote by

$$A^{\varepsilon} = \{ y \in S : d(x, y) < \varepsilon \text{ for some } x \in A \}$$

its ε -neighborhood. Let \mathcal{B} be a Borel σ -algebra on S.

Definition. If \mathbb{P}, \mathbb{Q} are probability distributions on \mathcal{B} then

$$\rho(\mathbb{P}, \mathbb{Q}) = \inf\{\varepsilon > 0 : \mathbb{P}(A) \le \mathbb{Q}(A^{\varepsilon}) + \varepsilon \text{ for all } A \in \mathcal{B}\}$$

is called the *Levy-Prohorov distance* between \mathbb{P} and \mathbb{Q} .

Lemma 34 ρ is a metric on the set of probability laws on \mathcal{B} .

Proof. 1. First, let us show that $\rho(\mathbb{Q}, \mathbb{P}) = \rho(\mathbb{P}, \mathbb{Q})$. Suppose that $\rho(\mathbb{P}, \mathbb{Q}) > \varepsilon$. Then there exists a set A such that $\mathbb{P}(A) > \mathbb{Q}(A^{\varepsilon}) + \varepsilon$. Taking complements gives

$$\mathbb{Q}(A^{\varepsilon c}) > \mathbb{P}(A^c) + \varepsilon \ge \mathbb{P}(A^{\varepsilon c\varepsilon}) + \varepsilon,$$

where the last inequality follows from the fact that $A^c \supseteq A^{\varepsilon c \varepsilon}$:

$$\begin{aligned} a \in A^{\varepsilon c\varepsilon} \Longrightarrow d(a, A^{\varepsilon c}) < \varepsilon & \Longrightarrow \quad d(a, b) < \varepsilon \text{ for some } b \in A^{\varepsilon c} \\ \left\{ \text{since } b \notin A^{\varepsilon}, d(b, A) \ge \varepsilon \right\} \\ & \Longrightarrow \quad d(a, A) > 0 \Longrightarrow a \notin A \Longrightarrow a \in A^c \end{aligned}$$

Therefore, for a set $B = A^{\varepsilon c}$, $\mathbb{Q}(B) > \mathbb{P}(B^{\varepsilon}) + \varepsilon$. This means that $\rho(\mathbb{Q}, \mathbb{P}) > \varepsilon$ and, therefore, $\rho(\mathbb{Q}, \mathbb{P}) \geq \rho(\mathbb{P}, \mathbb{Q})$. By symmetry, $\rho(\mathbb{Q}, \mathbb{P}) \leq \rho(\mathbb{P}, \mathbb{Q})$ and $\rho(\mathbb{Q}, \mathbb{P}) = \rho(\mathbb{P}, \mathbb{Q})$.

2. Next, let us show that if $\rho(\mathbb{P}, \mathbb{Q}) = 0$ then $\mathbb{P} = \mathbb{Q}$. For any set F and any $n \ge 1$,

$$\mathbb{P}(F) \le \mathbb{Q}(F^{\frac{1}{n}}) + \frac{1}{n}.$$

If F is closed then $F^{\frac{1}{n}} \downarrow F$ as $n \to \infty$ and by continuity of measure

$$\mathbb{P}(F) \le \mathbb{Q}\left(\bigcap F^{\frac{1}{n}}\right) = \mathbb{Q}(F).$$

Similarly, $\mathbb{P}(F) \ge \mathbb{Q}(F)$ and, therefore, $\mathbb{P}(F) = \mathbb{Q}(F)$.

3. Finally, let us prove the triangle inequality

$$\rho(\mathbb{P}, \mathbb{R}) \le \rho(\mathbb{P}, \mathbb{Q}) + \rho(\mathbb{Q}, \mathbb{R}).$$

If $\rho(\mathbb{P}, \mathbb{Q}) < x$ and $\rho(\mathbb{Q}, \mathbb{R}) < y$ then for any set A,

$$\mathbb{P}(A) \le \mathbb{Q}(A^x) + x \le \mathbb{R}((A^x)^y) + y + x \le \mathbb{R}(A^{x+y}) + x + y,$$

which means that $\rho(\mathbb{P}, \mathbb{R}) \leq x + y$.

Bounded Lipschitz metric. Given probability distributions \mathbb{P}, \mathbb{Q} on the metric space (S, d) we define a *bounded Lipschitz* distance between them by

$$\beta(\mathbb{P}, \mathbb{Q}) = \sup \left\{ \left| \int f d\mathbb{P} - \int f d\mathbb{Q} \right| : ||f||_{\mathrm{BL}} \le 1 \right\}.$$

Lemma 35 β is a metric on the set of probability laws on \mathcal{B} .

Proof. $\beta(\mathbb{P}, \mathbb{Q}) = \beta(\mathbb{Q}, \mathbb{P})$ and the triangle inequality are obvious. It remains to prove that $\beta(\mathbb{P}, \mathbb{Q}) = 0$ implies $\mathbb{P} = \mathbb{Q}$. Given a closed set F, the sequence of functions $f_m(x) = md(x, F) \wedge 1$ converges $f_m \uparrow I_U$, where $U = F^c$. Obviously, $||f_m||_{\mathrm{BL}} \leq m+1$ and, therefore, $\int f_m d\mathbb{P} = \int f_m d\mathbb{Q}$. Letting $m \to \infty$ proves that $\mathbb{P}(U) = \mathbb{Q}(U)$.

The law \mathbb{P} on (S, d) is *tight* if for any $\varepsilon > 0$ there exists a compact $K \subseteq S$ such that $\mathbb{P}(S \setminus K) \leq \varepsilon$.

Theorem 40 (Ulam) If (S, d) is separable then for any law \mathbb{P} on \mathcal{B} there exists a closed totally bounded set $K \subseteq S$ such that $\mathbb{P}(S \setminus K) \leq \varepsilon$. If (S, d) is complete and separable then K is compact and, therefore, every law is tight.

Proof. Consider a sequence $\{x_1, x_2, \ldots\}$ that is dense in S. For any $m \ge 1$, $S = \bigcup_{i=1}^{\infty} \bar{B}\left(x_i, \frac{1}{m}\right)$, where \bar{B} denotes a closed ball, and by continuity of measure, for large enough n(m),

$$\mathbb{P}\Big(S \setminus \bigcup_{i=1}^{n(m)} \bar{B}\Big(x_i, \frac{1}{m}\Big)\Big) \leq \frac{\varepsilon}{2^m}.$$

If we take

$$K = \bigcap_{m \ge 1} \bigcup_{i=1}^{n(m)} \bar{B}\left(x_i, \frac{1}{m}\right)$$

then

$$\mathbb{P}(S \setminus K) \le \sum_{m \ge 1} \frac{\varepsilon}{2^m} = \varepsilon.$$

K is closed and totally bounded by construction. If S is complete, K is compact.

П

Theorem 41 Suppose that either (S, d) is separable or \mathbb{P} is tight. Then the following are equivalent.

- 1. $\mathbb{P}_n \to \mathbb{P}$.
- 2. For all $f \in BL(S, d)$, $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$.
- 3. $\beta(\mathbb{P}_n, \mathbb{P}) \to 0.$
- 4. $\rho(\mathbb{P}_n, \mathbb{P}) \to 0.$

Proof. $1 \Longrightarrow 2$. Obvious.

 $3 \Longrightarrow 4$. In fact, we will prove that

$$\rho(\mathbb{P}_n, \mathbb{P}) \le 2\sqrt{\beta(\mathbb{P}_n, \mathbb{P})}.$$
(17.0.1)

Given a Borel set $A \subseteq S$, consider a function

$$f(x) = 0 \lor \left(1 - \frac{1}{\varepsilon}d(x, A)\right)$$
 such that $I_A \le f \le I_{A^{\varepsilon}}$.

Obviously, $||f||_{\rm BL} \leq 1 + \varepsilon^{-1}$ and we can write

$$\mathbb{P}_{n}(A) \leq \int f d\mathbb{P}_{n} = \int f d\mathbb{P} + \left(\int f d\mathbb{P}_{n} - \int f d\mathbb{P}\right) \\
\leq \mathbb{P}(A^{\varepsilon}) + (1 + \varepsilon^{-1}) \sup\left\{\left|\int f d\mathbb{P}_{n} - \int f d\mathbb{P}\right| : ||f||_{\mathrm{BL}} \leq 1\right\} \\
= \mathbb{P}(A^{\varepsilon}) + (1 + \varepsilon^{-1})\beta(\mathbb{P}_{n}, \mathbb{P}) \leq \mathbb{P}(A^{\delta}) + \delta,$$

where $\delta = \max(\varepsilon, (1 + \varepsilon^{-1})\beta(\mathbb{P}_n, \mathbb{P}))$. This implies that $\rho(\mathbb{P}_n, \mathbb{P}) \leq \delta$. Since ε is arbitrary we can minimize $\delta = \delta(\varepsilon)$ over ε . If we take $\varepsilon = \sqrt{\beta}$ then $\delta = \max(\sqrt{\beta}, \beta + \sqrt{\beta}) = \beta + \sqrt{\beta}$ and

$$\beta \le 1 \Longrightarrow \rho \le 2\sqrt{\beta}; \ \beta \ge 1 \Longrightarrow \rho \le 1 \le 2\sqrt{\beta}.$$

 $4 \Longrightarrow 1$. Suppose that $\rho(\mathbb{P}_n, \mathbb{P}) \to 0$ which means that there exists a sequence $\varepsilon_n \downarrow 0$ such that

$$\mathbb{P}_n(A) \leq \mathbb{P}(A^{\varepsilon_n}) + \varepsilon_n \quad \text{for all measurable } A \subseteq S.$$

If A is closed, then $\bigcap_{n>1} A^{\varepsilon_n} = A$ and, by continuity of measure,

$$\limsup_{n \to \infty} \mathbb{P}_n(A) \le \limsup_{n \to \infty} \left(\mathbb{P}(A^{\varepsilon_n}) + \varepsilon_n \right) = \mathbb{P}(A).$$

By the portmanteau theorem, $\mathbb{P}_n \to \mathbb{P}$.

 $2 \Longrightarrow 3$. If \mathbb{P} is tight, let K be a compact such that $\mathbb{P}(S \setminus K) \leq \varepsilon$. If (S, d) is separable, by Ulam's theorem, let K be a closed totally bounded set such that $\mathbb{P}(S \setminus K) \leq \varepsilon$. If we consider a function

$$f(x) = 0 \lor \left(1 - \frac{1}{\varepsilon}d(x, K)\right) \text{ with } ||f||_{\mathrm{BL}} \le 1 + \frac{1}{\varepsilon}$$

then

$$\mathbb{P}_n(K^{\varepsilon}) \ge \int f d\mathbb{P}_n \to \int f d\mathbb{P} \ge \mathbb{P}(K) \ge 1 - \varepsilon$$

which implies that for n large enough, $\mathbb{P}_n(K^{\varepsilon}) \ge 1 - 2\varepsilon$. This means that all \mathbb{P}_n are essentially concentrated on K^{ε} . Let

$$B = \left\{ f : ||f||_{\mathrm{BL}(S,d)} \le 1 \right\}, \ B_K = \left\{ f \big|_K : f \in B \right\} \subseteq C(K),$$

where $f|_K$ denotes the restriction of f to K. If K is compact then, by the Arzela-Ascoli theorem, B_K is totally bounded with respect to d_{∞} . If K is totally bounded then we can isometrically identify functions in B_K with their unique extensions to the completion K' of K and, by the Arzela-Ascoli theorem for the compact K', B_K is again totally bounded with respect to d_{∞} . In any case, given $\varepsilon > 0$, we can find $f_1, \ldots, f_k \in B$ such that for all $f \in B$

$$\sup_{x \in K} |f(x) - f_j(x)| \le \varepsilon \text{ for some } j \le k.$$

This uniform approximation can also be extended to K^{ε} . Namely, for any $x \in K^{\varepsilon}$ take $y \in K$ such that $d(x, y) \leq \varepsilon$. Then

$$\begin{aligned} |f(x) - f_j(x)| &\leq |f(x) - f(y)| + |f(y) - f_j(y)| + |f_j(y) - f_j(x)| \\ &\leq ||f||_{\mathcal{L}} d(x, y) + \varepsilon + ||f_j||_{\mathcal{L}} d(x, y) \leq 3\varepsilon. \end{aligned}$$

Therefore, for any $f \in B$,

$$\begin{split} \left| \int f d\mathbb{P}_n - \int f d\mathbb{P} \right| &\leq \left| \int_{K^{\varepsilon}} f d\mathbb{P}_n - \int_{K^{\varepsilon}} f d\mathbb{P} \right| + ||f||_{\infty} \left(\mathbb{P}_n(K^{\varepsilon c}) + \mathbb{P}(K^{\varepsilon c}) \right) \\ &\leq \left| \int_{K^{\varepsilon}} f d\mathbb{P}_n - \int_{K^{\varepsilon}} f d\mathbb{P} \right| + 2\varepsilon + \varepsilon \\ &\leq \left| \int_{K^{\varepsilon}} f_j d\mathbb{P}_n - \int_{K^{\varepsilon}} f_j d\mathbb{P} \right| + 3\varepsilon + 3\varepsilon + 2\varepsilon + \varepsilon \\ &\leq \left| \int f_j d\mathbb{P}_n - \int f_j d\mathbb{P} \right| + 3\varepsilon + 3\varepsilon + 3\varepsilon + 2\varepsilon + \varepsilon \\ &\leq \max_{1 \leq j \leq k} \left| \int f_j d\mathbb{P}_n - \int f_j d\mathbb{P} \right| + 12\varepsilon. \end{split}$$

Finally,

$$\beta(\mathbb{P}_n, \mathbb{P}) = \sup_{f \in B} \left| \int f d\mathbb{P}_n - \int f d\mathbb{P} \right| \le \max_{1 \le j \le k} \left| \int f_j d\mathbb{P}_n - \int f_j d\mathbb{P} \right| + 12\varepsilon$$

and, using assumption 2, $\limsup_{n\to\infty} \beta(\mathbb{P}_n,\mathbb{P}) \leq 12\varepsilon$. Letting $\varepsilon \to 0$ finishes the proof.

Convergence of empirical measures. Let (Ω, \mathbb{P}) be a probability space and $X_1, X_2, \ldots : \Omega \to S$ be an i.i.d. sequence of random variables with values in a metric space (S, d). Let μ be the law of X_i on S. Let us define the random *empirical measures* μ_n on the Borel σ -algebra \mathcal{B} on S by

$$\mu_n(A)(\omega) = \frac{1}{n} \sum_{i=1}^n I(X_i(\omega) \in A), \ A \in \mathcal{B}.$$

By the strong law of large numbers, for any $f \in C_b(S)$,

$$\int f d\mu_n = \frac{1}{n} \sum_{i=1}^n f(X_i) \to \mathbb{E}f(X_1) = \int f d\mu \text{ a.s.}$$

However, the set of measure zero where this convergence is violated depends on f and it is not obvious that the convergence holds for all $f \in C_b(S)$ with probability one.

Theorem 42 (Varadarajan) Let (S, d) be a separable metric space. Then μ_n converges to μ weakly almost surely,

$$\mathbb{P}(\omega:\mu_n(\cdot)(\omega)\to\mu \ weakly)=1.$$

Proof. Since (S, d) is separable, by Theorem 2.8.2 in R.A.P., there exists a metric e on S such that (S, e) is totally bounded and e and d define the same topology, i.e. $e(s_n, s) \to 0$ if and only if $d(s_n, s) \to 0$. This, of course, means that $C_b(S, d) = C_b(S, e)$ and weak convergence of measures does not change. If (T, e) is the completion of (S, e) then (T, e) is compact. By the Arzela-Ascoli theorem, BL(T, e) is separable with respect to the d_{∞} norm and, therefore, BL(S, e) is also separable. Let (f_m) be a dense subset of BL(S, e). Then, by the strong law of large number,

$$\int f_m d\mu_n = \frac{1}{n} \sum_{i=1}^n f_m(X_i) \to \mathbb{E}f_m(X_1) = \int f_m d\mu \text{ a.s.}$$

Therefore, on the set of probability one, $\int f_m d\mu_n \to \int f_m d\mu$ for all $m \ge 1$. Since (f_m) is dense in BL(S, e), on the same set of probability one, $\int f d\mu_n \to \int f d\mu$ for all $f \in BL(S, e)$. Since (S, e) is separable, the previous theorem implies that $\mu_n \to \mu$ weakly.