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Section 19

Strassen’s Theorem. Relationships
between metrics.

Metric for convergence in probability. Let (2, B,P) be a probability space, (5, d) - a metric space and
XY : Q — S - random variables with values in S. The quantity

a(X,Y)=inf{e > 0:P(d(X,Y) >¢) <&}

is called the Ky Fan metric on the set £°(Q,S) of classes of equivalences of such random variables, where
two r.v.s are equivalent if they are equal a.s. If we take a sequence

ex l a=a(X,)Y)
then P(d(X,Y) > 1) < & and since
I(d(Xa Y) > Ek) T I(d(X7 Y) > Oé),

by monotone convergence theorem, P(d(X,Y) > «) < a. Thus, the infimum in the definition of a(X,Y) is
attained.

Lemma 37 « is a metric on L°(Q, S) which metrizes convergence in probability.

Proof. First of all, clearly, a(X,Y) =0 iff X =Y almost surely. To prove the triangle inequality,

PA(X,Z) > a(X,Y) + (Y, Z)) PA(X,Y) > a(X,Y)) + PA(Y, Z) > oY, Z))

<
< oY, Z)+a(Y,2)

so that (X, Z) < a(X,Y) + «(Y, Z). This proves that « is a metric. Next, if a,, = a(X,,, X) — 0 then for
any € > 0 and large enough n such that a,, < ¢,

P(d(X,,X) >e) <PA(X,, X) > an) < a, — 0.

Conversely, if X,, — X in probability then for any m > 1 and large enough n > n(m),
1 1

P(d(Xn,X) > —) <=

m m

which means that «,, < 1/m so that a,, — 0.

Lemma 38 For X,Y € L°(,S), the Levy-Prohorov metric p satisfies
p(L(X),L(Y)) < a(X,Y).
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Proof. Take ¢ > a(X,Y) so that P(d(X,Y) > ¢) <e. For any set A C S,
P(X € A) = P(X € A,d(X,Y) <)+ P(X € A, d(X,Y) > &) <P(Y € A%) +¢

which means that p(L£(X), L(Y)) < e. Letting € | a(X,Y") proves the result.

mi
We will now prove that, in some sense, the opposite is also true. Let (.5, d) be a metric space and P,Q be
probability laws on S. Suppose that these laws are close in the Levy-Prohorov metric p. Can we construct
random variables s; and so, with laws P and Q, that are define on the same probability space and are close
to each other in the Ky Fan metric a? We will construct a distribution on the product space S x .S such that
the coordinates s; and s, have marginal distributions P and Q and the distribution is concentrated in the
neighborhood of the diagonal s; = s, where s; and so are close in metric d, and the size of the neighborhood
is controlled by p(P, Q).

Consider two sets X and Y. Given a subset K C X x Y and A C X we define a K-image of A by
AR ={yeY :3zec A (z,y) € K}.

A K-matching f of X into Y is a one-to-one function f : X — Y such that (z, f(z)) € K. We will need the
following well known matching theorem.

Theorem 45 If XY are finite and for all A C X,
card(A%) > card(A) (19.0.1)

then there exists a K-matching f of X into Y.

Proof. We will prove the result by induction on m = card(X). The case of m = 1 is obvious. For each x € X
there exists y € Y such that (z,y) € K. If there is a matching f of X \ {z} into Y\ {y} then defining f(z) =y
extends f to X. If not, then since card(X \ {z}) < m, by induction assumption, condition (19.0.1) is violated,
i.e. there exists a set A C X \ {z} such that card(A¥ \ {y}) < card(A). But because we also know that
card(AX) > card(A) this implies that card(AX) = card(A). Since card(A) < m, by induction there exists a
matching of A onto AX. If there is a matching of X \ A into Y\ A% we can combine it with a matching of A
and AKX If not, again by induction assumption, there exists D € X \ A such that card(D¥ \ AX) < card(D).
But then

card((A U D)K) = card(D¥ \ A%) + card(AX) < card(D) + card(A) = card(D U A),

which contradicts the assumption (19.0.1).
m

Theorem 46 (Strassen) Suppose that (S,d) is a separable metric space and o, 3 > 0. Suppose that laws P
and Q are such that for all measurable sets F' C S,

P(F)<QF*)+p (19.0.2)
Then for any € > 0 there exist two non-negative measures 1,y on S x S such that

1. p=n+~visalaw on S xS with marginals P and Q.
2. n(d(z,y) >a+¢e)=0.
3. y(Sx8)<B+e.

4. 1 18 a finite sum of product measures.
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Remark. Condition (19.0.2) is a relaxation of the definition of the Levy-Prohorov metric, one can take any
a,B > p(P,Q). Conditions 1 - 3 mean that we can construct a measure g on S x S such that coordinates
x,y have marginal distributions P, Q, concentrated within distance « + ¢ of each other (condition 2) except
for the set of measure at most § + ¢ (condition 3).

Proof. The proof will proceed in several steps.

Case A. We will start with the simplest case which is, however, at the core of everything else. Given
small € > 0, take n > 1 such that ne > 1. Suppose that laws P, Q are uniform on finite subsets M, N C S of
equal cardinality,

card(M) = card(N) =n, P(x)z@(y):%<5, xreM,yeN.

Using condition (19.0.2), we would like to match as many points from M and N as possible, but only points
that are within distance « from each other. To use the matching theorem, we will introduce some auxiliary
sets U and V that are not too big, with size controlled by parameter 3, and the union of these sets with M
and N satisfies a certain matching condition.

Take integer k such that Sn < k < (8+¢)n. Let us take sets U and V such that k& = card(U) = card(V)
and U,V are disjoint from M, N. Define

X=MUU, Y=NUVW.
Let us define a subset K C X x Y such that (z,y) € K if and only if one of the following holds:

1. zeU,

2. yev,

3. d(z,y) <aifze M,y e N.
This means that small auxiliary sets can be matched with any points but only close points, d(z,y) < «,
can be matched in the main sets M and N. Consider a set A C X with cardinality card(A) =r. If A Z M

then by 1, AX =Y and card(AX) > r. Suppose now that A C M and we would like to show that again
card(A%) > r. By (19.0.2),

% =P(A) <Q(A*) + 8= %card(Aa NN)+8< %card(AK NN)+p3

since by 3, A C AKX . Therefore,
r = card(A) < nf + card(A¥ N N) < k + card(A® N N) = card(AX),

since k = card(V) and AX =V U (AKX N N). By matching theorem, there exists a K-matching f of X and
Y. Let
T={zxeM: f(x) e N},

i.e. close points, d(x,y) < «, from M that are matched with points in N. Clearly, card(T) > n — k and for
x €T, by 3, dx, f(x)) < a. For x € M \ T, redefine f(x) to match = with arbitrary points in N that are
not matched with points in T. This defines a matching of M onto N. We define measures n and v by

= S dw @), = S 8 f@),

zeT z€M\T

and let u = n + . First of all, obviously, p has marginals P and Q because each point in M or N appears
in the sum 7 + v only once with weight 1/n. Also,

n(d(z, f(z)) >a) =0, y(S x8) < <fB+e. (19.0.3)
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Finally, both 1 and ~ are finite sums of point masses which are product measures of point masses.

Case B. Suppose now that P and Q are concentrated on finitely many points with rational probabilities.
Then we can artificially split all points into ”smaller” points of equal probabilities as follows. Let n be such
that ne > 1 and

nP(z),nQ(z) € J ={1,2,...,n}.

Define a discrete metric on J by f(i,7) = €1(i # j) and define a metric on S x J by
e((x,9), (y,4)) = d(z,y) + f(i, ).

Define a measure P’ on S x J as follows. If P(z) = £ then
/ , 1 . ‘
P ((sc,z)) =— for i=1,...,7.
n

Define Q' similarly. Let us check that laws P, Q' satisfy the assumptions of Case A. Given a set FF C S x J,
define
Fy={z€S:(x,j) € F for some j}.

Using (19.0.2),
P(F) <P(F) < Q(F{) + 8 < Q' (F**¢) + 3,

because f(i,j) < e. By Case A in (19.0.3), we can construct p/ = '+’ with marginals P’ and Q' such that
n (e((z,i), (y,5)) > a+¢e) =0, v'((SxJ)x (§xJ)) <B+e.

Let u,n,~y be the projections of ', n,+" back onto S x S by the map ((z,1%), (y,7)) — (x,y). Then, clearly,
=1+, p has marginals P and Q and v(S x S) < 8 + ¢. Finally, since

6(($,i), (:%.7)) = d(xay) + f(Zvj) > d(l‘,y),

we get
n(d(sc,y) >a+ 5) < nl(e«xai)v (yv.])) >a+ E) =0.

Case C. (General case) Let P, Q be the laws on a separable metric space (S,d). Let A be a maximal
set such that for all z,y € A,d(z,y) > . The set A is countable, A = {x;};>1, because S is separable, and
since A is maximal, for all z € S there exists y € A such that d(z,y) < e. Such set A is usually called an
e-packing. Let us create a partition of S using e-balls around {z;} :

By ={ze€ S:d(z,x1) <e}, By={d(z,x2) <e}\ By

and, iteratively for k > 2,
By = {d(m,xk) < E} \ (Bl U---u Bk71)~

{Bi}r>1 is a partition of S. Let us discretize measures P and Q by projecting them onto {z;};>1 :
P'(zy) = P(By), Q'(zx)=Q(B).
Consider any set F' C S. For any point « € F, if € By, then d(z,xy) < ¢, i.e. z; € F¢ and, therefore,
P(F) < P'(F°).
Also, if xp, € F then B, C F*© and, therefore,
P'(F) < P(F°).

To apply Case B, we need to approximate P’ by a measure on a finite number of points with rationals
probabilities. For large enough n > 1, let

[P (1))

]P” —
(zk) -
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Clearly, as n — oo, P”(z) 1 P’(x). Since only a finite number of points carry non-zero weights P’ (z) > 0,
let 2o be one of the other points in the sequence {x}. Let us assign to it a probability

IP)// -1— ZP//

k>1

If we take n large enough so that P”(z¢) < /2 then

Z”PW xk)| <e.

k>0
All the relations above also hold true for Q, Q" and Q” that are defined similarly. We can write for F C S
P'(F) <P(F)+e <P(F)+e <QF ')+ 8+ <Q(F**™)++e <Q'(F*") + 4 2.
By Case B, there exists a decomposition p”/ =7" ++"” on S x S with marginals P and Q" such that
0 (d(z,y) > a+3c) =0, 7'(SxS)<B+3e.

Let us also assume that the points (xg, ;) and (z;, x¢) for ¢ > 0 are included in the support of 4. Since the
total weight of these points is at most &, the total weight of v/ does no increase much:

7'(S x ) < B+ 5e.

It remains to redistribute these measures from sequence {z;};>0 to S in a way that recovers marginal
distributions P and Q and so that not much accuracy is lost. Define a sequence of measures on S by

P(CB;)
P(B;)

and define QQ; similarly. The measures P; and Q; are concentrated on B;. Define

n=Y_ n'(@,;) (P x Q))

i,j2>1

P;(C) = it P(B;) > 0 and P;(C) = 0 otherwise

The marginals of 7 satisfy

u(C) =n(Cx5) < Zn (@4, ;)P Zn”x“ P;(C)

< ZPN(%)R(C) < ZPI(%)R(C) = ZP(Bi)Pi(C) =P(0)

and, similarly,
v(C) = (S x C) < Q(C).

Since 1’ (x;, ;) = 0 unless d(z;, z;) < a + 3¢, the measure

n= > n'(w,z;) (P x Q)

1,521
is concentrated on the set {d(x,y) < a+ 5e¢} because for x € B;,y € Bj,
d(z,y) < d(z, ;) + d(x;, ;) + d(zj,y) <e4+a+3e+e=a+be.

If u(S) = v(S) =1 then n(S x S) =1 and n has marginals P and Q so we can take v = 0. Otherwise, take
t=1—u(S) and define

7= (F—w)x (@),
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It is easy to check that u = n + v has marginals P and Q. Also,
V(S xS)=t=1-n(SxS)=1-70"(SxS)=+"(S x8S) <3+ 5e.

mi
Relationships between metrics. The following relationship between Ky Fan and Levy-Prohorov metrics
is an immediate consequence of Strassen’s theorem. We already saw that p(L(X),L(Y)) < a(X,Y).

Theorem 47 If (S,d) is a separable metric space and P,Q are laws on S then for any e > 0 there exist
random variables X and Y with distributions L(X) =P and L(Y) = Q such that

a(X,Y) < p(P,Q) +e.
If P and Q are tight, one can take € = 0.

Proof. Let us take @ = 8 = p(P, Q). Then, by definition of the Levy-Prohorov metric, for any € > 0 and for
any set A,
P(A) < Q(APT%) +p+e.

By Strassen’s theorem, there exists a measure p on S x S with marginals P, Q such that
p(d(z,y) > p+2e) < p+ 2e. (19.0.4)
Therefore, if X and Y are the coordinates of S x 5, i.e.
XY:SxS5—=8, X(z,y) ==z, Y(z,y) =y,

then by definition of the Ky Fan metric, a(X,Y) < p+ 2¢. If P and Q are tight then there exists a compact
K such that P(K),Q(K) > 1 — 4. For ¢ = 1/n find p, as in (19.0.4). Since pu,, has marginals P and Q,
pn (K x K) > 1 — 26, which means that (u,)n>1 are uniformly tight. By selection theorem, there exists a
convergent subsequence fi, () — i. Obviously, p has marginals P and Q. Since by construction,

2 2
un(d(x,y) >p+7) <p+ -
n n

and {d(z,y) > p+2/n} is an open set on S x S, by portmanteau theorem,
2 o 2
u(d(w,y) P+ ﬁ) < Hminf g, k) (d(x,y) >p+ %) < p.

Letting n — oo we get pu(d(x,y) > p) < p and, therefore, a(X,Y) < p.
mi
This also implies the relationship between the Bounded Lipschitz metric 8 and Levy-Prohorov metric p.

Lemma 39 If (S,d) is a separable metric space then

%ﬁ(]P’, Q) < p(P,Q) < 2/B(P,Q).

Proof. We already proved the second inequality. To prove the first one, given € > 0 take random variables
X and Y such that o(X,Y) < p+ . Consider a bounded Lipschitz function f, ||f||gr < co. Then

[t~ [ raq

[Ef(X) —Ef(Y)] <E[f(X) = f(Y)]

1£llL(o+€) + 201 (X, Y) > p+ <)
£l (o +€) + 2[[ flloo(p + ) < 2[|fl[BL(p + €)-
Thus, 8(P,Q) < 2(p(P,Q) + ) and letting € — 0 finishes the proof.
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