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Section 19 

Strassen’s Theorem. Relationships 
between metrics. 

Metric for convergence in probability. Let (Ω, B, P) be a probability space, (S, d) - a metric space and 
X, Y : Ω S - random variables with values in S. The quantity →


α(X, Y ) = inf{ε ≥ 0 : P(d(X, Y ) > ε) ≤ ε}


is called the Ky Fan metric on the set L0(Ω, S) of classes of equivalences of such random variables, where 
two r.v.s are equivalent if they are equal a.s. If we take a sequence 

εk ↓ α = α(X, Y ) 

then P(d(X, Y ) > εk) ≤ εk and since 

I(d(X, Y ) > εk) I(d(X, Y ) > α),↑ 

by monotone convergence theorem, P(d(X, Y ) > α) ≤ α. Thus, the infimum in the definition of α(X,Y ) is 
attained. 

Lemma 37 α is a metric on L0(Ω, S) which metrizes convergence in probability. 

Proof. First of all, clearly, α(X, Y ) = 0 iff X = Y almost surely. To prove the triangle inequality, 

P(d(X, Z) > α(X, Y ) + α(Y,Z)) ≤ P(d(X, Y ) > α(X, Y )) + P(d(Y,Z) > α(Y,Z)) 
≤ α(Y,Z) + α(Y,Z) 

so that α(X,Z) ≤ α(X, Y ) + α(Y,Z). This proves that α is a metric. Next, if αn = α(Xn, X) → 0 then for 
any ε > 0 and large enough n such that αn < ε, 

P(d(Xn, X) > ε) ≤ P(d(Xn, X) > αn) ≤ αn → 0. 

Conversely, if Xn → X in probability then for any m ≥ 1 and large enough n ≥ n(m), � 1 � 1
P d(Xn, X) >

m 
≤ 

m 

which means that αn ≤ 1/m so that αn → 0. 

Lemma 38 For X, Y ∈ L0(Ω, S), the Levy-Prohorov metric ρ satisfies 

ρ(L(X), L(Y )) ≤ α(X, Y ). 
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Proof. Take ε > α(X, Y ) so that P(d(X, Y ) ≥ ε) ≤ ε. For any set A ⊆ S, 

P(X ∈ A) = P(X ∈ A, d(X,Y ) < ε) + P(X ∈ A, d(X, Y ) ≥ ε) ≤ P(Y ∈ Aε) + ε 

which means that ρ(L(X), L(Y )) ≤ ε. Letting ε ↓ α(X, Y ) proves the result. 

We will now prove that, in some sense, the opposite is also true. Let (S, d) be a metric space and P, Q be 
probability laws on S. Suppose that these laws are close in the Levy-Prohorov metric ρ. Can we construct 
random variables s1 and s2, with laws P and Q, that are define on the same probability space and are close 
to each other in the Ky Fan metric α? We will construct a distribution on the product space S × S such that 
the coordinates s1 and s2 have marginal distributions P and Q and the distribution is concentrated in the 
neighborhood of the diagonal s1 = s2, where s1 and s2 are close in metric d, and the size of the neighborhood 
is controlled by ρ(P, Q). 

Consider two sets X and Y. Given a subset K ⊆ X × Y and A ⊆ X we define a K-image of A by 

AK = {y ∈ Y : ∃x ∈ A, (x, y) ∈ K}. 

A K-matching f of X into Y is a one-to-one function f : X Y such that (x, f(x)) ∈ K. We will need the 
following well known matching theorem. 

→ 

Theorem 45 If X,Y are finite and for all A ⊆ X, 

card(AK ) ≥ card(A) (19.0.1) 

then there exists a K-matching f of X into Y . 

Proof. We will prove the result by induction on m = card(X). The case of m = 1 is obvious. For each x ∈ X 
there exists y ∈ Y such that (x, y) ∈ K. If there is a matching f of X \{x} into Y \{y} then defining f(x) = y 
extends f to X. If not, then since card(X \{x}) < m, by induction assumption, condition (19.0.1) is violated, 
i.e. there exists a set A ⊆ X \ {x} such that card(AK \ {y}) < card(A). But because we also know that 
card(AK ) ≥ card(A) this implies that card(AK ) = card(A). Since card(A) < m, by induction there exists a 
matching of A onto AK . If there is a matching of X \ A into Y \ AK we can combine it with a matching of A 
and AK . If not, again by induction assumption, there exists D ∈ X \ A such that card(DK \ AK ) < card(D). 
But then 

card (A ∪ D)K = card(DK \ AK ) + card(AK ) < card(D) + card(A) = card(D ∪ A), 

which contradicts the assumption (19.0.1). 

Theorem 46 (Strassen) Suppose that (S, d) is a separable metric space and α, β > 0. Suppose that laws P 
and Q are such that for all measurable sets F ⊆ S, 

P(F ) ≤ Q(F α) + β (19.0.2) 

Then for any ε > 0 there exist two non-negative measures η, γ on S × S such that 

1. µ = η + γ is a law on S × S with marginals P and Q. 

2. η(d(x, y) > α + ε) = 0. 

3. γ(S × S) ≤ β + ε. 

4. µ is a finite sum of product measures. 
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Remark. Condition (19.0.2) is a relaxation of the definition of the Levy-Prohorov metric, one can take any 
α, β > ρ(P, Q). Conditions 1 - 3 mean that we can construct a measure µ on S × S such that coordinates 
x, y have marginal distributions P, Q, concentrated within distance α + ε of each other (condition 2) except 
for the set of measure at most β + ε (condition 3). 

Proof. The proof will proceed in several steps. 
Case A. We will start with the simplest case which is, however, at the core of everything else. Given 

small ε > 0, take n ≥ 1 such that nε > 1. Suppose that laws P, Q are uniform on finite subsets M, N ⊆ S of 
equal cardinality, 

1
card(M) = card(N) = n, P(x) = Q(y) = < ε, x ∈ M,y ∈ N. 

n 

Using condition (19.0.2), we would like to match as many points from M and N as possible, but only points 
that are within distance α from each other. To use the matching theorem, we will introduce some auxiliary 
sets U and V that are not too big, with size controlled by parameter β, and the union of these sets with M 
and N satisfies a certain matching condition. 

Take integer k such that βn ≤ k < (β +ε)n. Let us take sets U and V such that k = card(U ) = card(V ) 
and U, V are disjoint from M,N . Define 

X = M ∪ U, Y = N ∪ V. 

Let us define a subset K ⊆ X × Y such that (x, y) ∈ K if and only if one of the following holds: 

1. x ∈ U, 

2. y ∈ V, 

3. d(x, y) ≤ α if x ∈ M,y ∈ N. 

This means that small auxiliary sets can be matched with any points but only close points, d(x, y) ≤ α, 
can be matched in the main sets M and N. Consider a set A ⊆ X with cardinality card(A) = r. If A �⊆ M 
then by 1, AK = Y and card(AK ) ≥ r. Suppose now that A ⊆ M and we would like to show that again 
card(AK ) ≥ r. By (19.0.2), 

r 1 1 
= P(A) ≤ Q(Aα) + β = card(Aα ∩ N) + β ≤ card(AK ∩ N) + β 

n n n 

since by 3, Aα ⊆ AK . Therefore, 

r = card(A) ≤ nβ + card(AK ∩ N) ≤ k + card(AK ∩ N) = card(AK ), 

since k = card(V ) and AK = V ∪ (AK ∩ N). By matching theorem, there exists a K-matching f of X and 
Y . Let 

T = {x ∈ M : f(x) ∈ N}, 

i.e. close points, d(x, y) ≤ α, from M that are matched with points in N . Clearly, card(T ) ≥ n − k and for 
x ∈ T, by 3, d(x, f(x)) ≤ α. For x ∈ M \ T, redefine f(x) to match x with arbitrary points in N that are 
not matched with points in T. This defines a matching of M onto N. We define measures η and γ by 

1 � 1 � 
η = δ(x, f(x)), γ = δ(x, f(x)), 

n n 
x∈T x∈M\T 

and let µ = η + γ. First of all, obviously, µ has marginals P and Q because each point in M or N appears 
in the sum η + γ only once with weight 1/n. Also, 

card(M \ T ) k 
η(d(x, f(x)) > α) = 0, γ(S × S) ≤ 

n 
≤ 

n 
< β + ε. (19.0.3) 
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Finally, both η and γ are finite sums of point masses which are product measures of point masses. 
Case B. Suppose now that P and Q are concentrated on finitely many points with rational probabilities. 

Then we can artificially split all points into ”smaller” points of equal probabilities as follows. Let n be such 
that nε > 1 and 

nP(x), nQ(x) ∈ J = {1, 2, . . . , n}. 

Define a discrete metric on J by f(i, j) = ε I(i =� j) and define a metric on S × J by 

e (x, i), (y, j) = d(x, y) + f(i, j). 

Define a measure P� on S × J as follows. If P(x) = j then n � � 1
P� (x, i) = for i = 1, . . . , j. 

n 

Define Q� similarly. Let us check that laws P�, Q� satisfy the assumptions of Case A. Given a set F ⊆ S × J, 
define 

F1 = {x ∈ S : (x, j) ∈ F for some j}. 

Using (19.0.2), 
P�(F ) ≤ P(F1) ≤ Q(F α) + β ≤ Q�(F α+ε) + β, 1 

because f(i, j) ≤ ε. By Case A in (19.0.3), we can construct µ� = η� + γ� with marginals P� and Q� such that 

η� e((x, i), (y, j)) > α + ε = 0, γ� (S × J) × (S × J) < β + ε. 

Let µ, η, γ be the projections of µ�, η�, γ� back onto S × S by the map ((x, i), (y, j)) (x, y). Then, clearly, 
µ = η + γ, µ has marginals P and Q and γ(S × S) < β + ε. Finally, since 

→ 

e (x, i), (y, j) = d(x, y) + f(i, j) ≥ d(x, y), 

we get � � � � 
η d(x, y) > α + ε ≤ η� e((x, i), (y, j)) > α + ε = 0. 

Case C. (General case) Let P, Q be the laws on a separable metric space (S, d). Let A be a maximal 
set such that for all x, y ∈ A, d(x, y) ≥ ε. The set A is countable, A = {xi}i≥1, because S is separable, and 
since A is maximal, for all x ∈ S there exists y ∈ A such that d(x, y) < ε. Such set A is usually called an 
ε-packing. Let us create a partition of S using ε-balls around {xi} : 

B1 = {x ∈ S : d(x, x1) < ε}, B2 = {d(x, x2) < ε} \ B1 

and, iteratively for k ≥ 2, 
Bk = {d(x, xk) < ε} \ (B1 ∪ · · · ∪ Bk−1). 

{Bk}k≥1 is a partition of S. Let us discretize measures P and Q by projecting them onto {xi}i≥1 : 

P�(xk) = P(Bk), Q�(xk) = Q(Bk). 

Consider any set F ⊆ S. For any point x ∈ F, if x ∈ Bk then d(x, xk) < ε, i.e. xk ∈ F ε and, therefore, 

P(F ) ≤ P�(F ε). 

Also, if xk ∈ F then Bk ⊆ F ε and, therefore, 

P�(F ) ≤ P(F ε). 

To apply Case B, we need to approximate P� by a measure on a finite number of points with rationals 
probabilities. For large enough n ≥ 1, let 

P��(xk) = 
�nP�(xk)� 

. 
n 
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Clearly, as n →∞, P��(xk) ↑ P�(xk). Since only a finite number of points carry non-zero weights P��(xk) > 0, 
let x0 be one of the other points in the sequence {xk}. Let us assign to it a probability 

P��(x0) = 1 − P��(xk). 
k≥1 

If we take n large enough so that P��(x0) < ε/2 then 

|P��(xk) − P�(xk)| ≤ ε. 
k≥0 

All the relations above also hold true for Q, Q� and Q�� that are defined similarly. We can write for F ⊆ S 

P��(F ) ≤ P�(F ) + ε ≤ P(F ε) + ε ≤ Q(F ε+α) + β + ε ≤ Q�(F α+2ε) + β + ε ≤ Q��(F α+2ε) + β + 2ε. 

By Case B, there exists a decomposition µ�� = η�� + γ�� on S × S with marginals P�� and Q�� such that 

η�� d(x, y) > α + 3ε = 0, γ��(S × S) ≤ β + 3ε. 

Let us also assume that the points (x0, xi) and (xi, x0) for i ≥ 0 are included in the support of γ��. Since the 
total weight of these points is at most ε, the total weight of γ�� does no increase much: 

γ��(S × S) ≤ β + 5ε. 

It remains to redistribute these measures from sequence {xi}i≥0 to S in a way that recovers marginal 
distributions P and Q and so that not much accuracy is lost. Define a sequence of measures on S by 

P(CBi)Pi(C) = if P(Bi) > 0 and Pi(C) = 0 otherwise 
P(Bi) 

and define Qi similarly. The measures Pi and Qi are concentrated on Bi. Define 

η = η��(xi, xj )(Pi × Qj ) 
i,j≥1 

The marginals of η satisfy 

u(C) = η(C × S) ≤ η��(xi, xj )Pi(C) = η��(xi, S)Pi(C)

i,j≥1 i≥1


≤ P��(xi)Pi(C) ≤ P�(xi)Pi(C) = P(Bi)Pi(C) = P(C) 
i≥1 i≥1 i≥1 

and, similarly, 
v(C) = η(S × C) ≤ Q(C). 

Since η��(xi, xj ) = 0 unless d(xi, xj ) ≤ α + 3ε, the measure 

η = η��(xi, xj )(Pi × Qj ) 
i,j≥1 

is concentrated on the set {d(x, y) ≤ α + 5ε} because for x ∈ Bi, y ∈ Bj , 

d(x, y) ≤ d(x, xi) + d(xi, xj ) + d(xj , y) ≤ ε + α + 3ε + ε = α + 5ε. 

If u(S) = v(S) = 1 then η(S × S) = 1 and η has marginals P and Q so we can take γ = 0. Otherwise, take 
t = 1 − u(S) and define 

1 
γ = (P − u) × (Q − v). 

t 
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It is easy to check that µ = η + γ has marginals P and Q. Also, 

γ(S × S) = t = 1 − η(S × S) = 1 − η��(S × S) = γ��(S × S) ≤ β + 5ε. 

Relationships between metrics. The following relationship between Ky Fan and Levy-Prohorov metrics 
is an immediate consequence of Strassen’s theorem. We already saw that ρ(L(X), L(Y )) ≤ α(X, Y ). 

Theorem 47 If (S, d) is a separable metric space and P, Q are laws on S then for any ε > 0 there exist 
random variables X and Y with distributions L(X) = P and L(Y ) = Q such that 

α(X, Y ) ≤ ρ(P, Q) + ε. 

If P and Q are tight, one can take ε = 0. 

Proof. Let us take α = β = ρ(P, Q). Then, by definition of the Levy-Prohorov metric, for any ε > 0 and for 
any set A, 

P(A) ≤ Q(Aρ+ε) + ρ + ε. 

By Strassen’s theorem, there exists a measure µ on S × S with marginals P, Q such that 

µ d(x, y) > ρ + 2ε ≤ ρ + 2ε. (19.0.4) 

Therefore, if X and Y are the coordinates of S × S, i.e. 

X, Y : S × S → S, X(x, y) = x, Y (x, y) = y, 

then by definition of the Ky Fan metric, α(X, Y ) ≤ ρ + 2ε. If P and Q are tight then there exists a compact 
K such that P(K), Q(K) ≥ 1 − δ. For ε = 1/n find µn as in (19.0.4). Since µn has marginals P and Q, 
µn(K × K) ≥ 1 − 2δ, which means that (µn)n≥1 are uniformly tight. By selection theorem, there exists a 
convergent subsequence µn(k) → µ. Obviously, µ has marginals P and Q. Since by construction, � 2 � 2 

µn d(x, y) > ρ + ≤ ρ + 
n n 

and {d(x, y) > ρ + 2/n} is an open set on S × S, by portmanteau theorem, � 2 � � 2 � 
µ d(x, y) > ρ + ≤ lim inf d(x, y) > ρ + ≤ ρ. 

n k→∞ 
µn(k) 

n(k) 

Letting n →∞ we get µ(d(x, y) > ρ) ≤ ρ and, therefore, α(X, Y ) ≤ ρ. 

This also implies the relationship between the Bounded Lipschitz metric β and Levy-Prohorov metric ρ. 

Lemma 39 If (S, d) is a separable metric space then 

1 � 

2 
β(P, Q) ≤ ρ(P, Q) ≤ 2 β(P, Q). 

Proof. We already proved the second inequality. To prove the first one, given ε > 0 take random variables 
X and Y such that α(X, Y ) ≤ ρ + ε. Consider a bounded Lipschitz function f , ||f ||BL < ∞. Then 

� fdP − fdQ� = |Ef(X) − Ef(Y )| ≤ E|f(X) − f(Y )| 

≤ �f�L(ρ + ε) + 2�f�∞P d(X,Y ) > ρ + ε 

≤ �f�L(ρ + ε) + 2�f�∞(ρ + ε) ≤ 2�f�BL(ρ + ε). 

Thus, β(P, Q) ≤ 2(ρ(P, Q) + ε) and letting ε → 0 finishes the proof. 
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