MIT OpenCourseWare <http://ocw.mit.edu>

18.175 Theory of Probability Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

Section 19

Strassen's Theorem. Relationships between metrics.

Metric for convergence in probability. Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space, (S, d) - a metric space and $X, Y: \Omega \to S$ - random variables with values in S. The quantity

$$
\alpha(X, Y) = \inf \{ \varepsilon \ge 0 : \mathbb{P}(d(X, Y) > \varepsilon) \le \varepsilon \}
$$

is called the Ky Fan metric on the set $\mathcal{L}^0(\Omega, S)$ of classes of equivalences of such random variables, where two r.v.s are equivalent if they are equal a.s. If we take a sequence

$$
\varepsilon_k \downarrow \alpha = \alpha(X, Y)
$$

then $\mathbb{P}(d(X, Y) > \varepsilon_k) \leq \varepsilon_k$ and since

$$
I(d(X,Y) > \varepsilon_k) \uparrow I(d(X,Y) > \alpha),
$$

by monotone convergence theorem, $\mathbb{P}(d(X, Y) > \alpha) \leq \alpha$. Thus, the infimum in the definition of $\alpha(X, Y)$ is attained.

Lemma 37 α is a metric on $\mathcal{L}^0(\Omega, S)$ which metrizes convergence in probability.

Proof. First of all, clearly, $\alpha(X, Y) = 0$ iff $X = Y$ almost surely. To prove the triangle inequality,

$$
\mathbb{P}(d(X,Z) > \alpha(X,Y) + \alpha(Y,Z)) \leq \mathbb{P}(d(X,Y) > \alpha(X,Y)) + \mathbb{P}(d(Y,Z) > \alpha(Y,Z))
$$

$$
\leq \alpha(Y,Z) + \alpha(Y,Z)
$$

so that $\alpha(X, Z) \leq \alpha(X, Y) + \alpha(Y, Z)$. This proves that α is a metric. Next, if $\alpha_n = \alpha(X_n, X) \to 0$ then for any $\varepsilon > 0$ and large enough n such that $\alpha_n < \varepsilon$,

$$
\mathbb{P}(d(X_n, X) > \varepsilon) \le \mathbb{P}(d(X_n, X) > \alpha_n) \le \alpha_n \to 0.
$$

Conversely, if $X_n \to X$ in probability then for any $m \ge 1$ and large enough $n \ge n(m)$,

$$
\mathbb{P}\Big(d(X_n,X) > \frac{1}{m}\Big) \le \frac{1}{m}
$$

which means that $\alpha_n \leq 1/m$ so that $\alpha_n \to 0$.

Lemma 38 For $X, Y \in \mathcal{L}^0(\Omega, S)$, the Levy-Prohorov metric ρ satisfies

$$
\rho(\mathcal{L}(X), \mathcal{L}(Y)) \le \alpha(X, Y).
$$

 \Box

Proof. Take $\varepsilon > \alpha(X, Y)$ so that $\mathbb{P}(d(X, Y) \geq \varepsilon) \leq \varepsilon$. For any set $A \subseteq S$,

$$
\mathbb{P}(X \in A) = \mathbb{P}(X \in A, d(X, Y) < \varepsilon) + \mathbb{P}(X \in A, d(X, Y) \ge \varepsilon) \le \mathbb{P}(Y \in A^{\varepsilon}) + \varepsilon
$$

which means that $\rho(\mathcal{L}(X), \mathcal{L}(Y)) \leq \varepsilon$. Letting $\varepsilon \downarrow \alpha(X, Y)$ proves the result.

We will now prove that, in some sense, the opposite is also true. Let (S, d) be a metric space and \mathbb{P}, \mathbb{Q} be probability laws on S. Suppose that these laws are close in the Levy-Prohorov metric ρ . Can we construct random variables s_1 and s_2 , with laws $\mathbb P$ and $\mathbb Q$, that are define on the same probability space and are close to each other in the Ky Fan metric α ? We will construct a distribution on the product space $S \times S$ such that the coordinates s_1 and s_2 have marginal distributions $\mathbb P$ and $\mathbb Q$ and the distribution is concentrated in the neighborhood of the diagonal $s_1 = s_2$, where s_1 and s_2 are close in metric d, and the size of the neighborhood is controlled by $\rho(\mathbb{P}, \mathbb{Q})$.

Consider two sets X and Y. Given a subset $K \subseteq X \times Y$ and $A \subseteq X$ we define a K-image of A by

$$
A^K = \{ y \in Y : \exists x \in A, (x, y) \in K \}.
$$

A K-matching f of X into Y is a one-to-one function $f: X \to Y$ such that $(x, f(x)) \in K$. We will need the following well known matching theorem.

Theorem 45 If X, Y are finite and for all $A \subseteq X$,

$$
card(A^K) \geq card(A) \tag{19.0.1}
$$

then there exists a K-matching f of X into Y .

Proof. We will prove the result by induction on $m = \text{card}(X)$. The case of $m = 1$ is obvious. For each $x \in X$ there exists $y \in Y$ such that $(x, y) \in K$. If there is a matching f of $X \setminus \{x\}$ into $Y \setminus \{y\}$ then defining $f(x) = y$ extends f to X. If not, then since $\text{card}(X \setminus \{x\}) < m$, by induction assumption, condition (19.0.1) is violated, i.e. there exists a set $A \subseteq X \setminus \{x\}$ such that $card(A^K \setminus \{y\}) < card(A)$. But because we also know that $card(A^K) \geq card(A)$ this implies that $card(A^K) = card(A)$. Since $card(A) < m$, by induction there exists a matching of A onto A^K . If there is a matching of $X \setminus A$ into $Y \setminus A^K$ we can combine it with a matching of A and A^K . If not, again by induction assumption, there exists $D \in X \setminus A$ such that $card(D^K \setminus A^K) < card(D)$. But then

$$
card((A \cup D)^K) = card(D^K \setminus A^K) + card(A^K) < card(D) + card(A) = card(D \cup A),
$$

which contradicts the assumption (19.0.1).

 \Box

 \Box

Theorem 46 (Strassen) Suppose that (S, d) is a separable metric space and $\alpha, \beta > 0$. Suppose that laws \mathbb{P} and $\mathbb Q$ are such that for all measurable sets $F \subseteq S$,

$$
\mathbb{P}(F) \le \mathbb{Q}(F^{\alpha}) + \beta \tag{19.0.2}
$$

Then for any $\varepsilon > 0$ there exist two non-negative measures η, γ on $S \times S$ such that

- 1. $\mu = \eta + \gamma$ is a law on $S \times S$ with marginals $\mathbb P$ and $\mathbb Q$.
- 2. $\eta(d(x, y) > \alpha + \varepsilon) = 0.$
- 3. $\gamma(S \times S) \leq \beta + \varepsilon$.
- 4. µ is a finite sum of product measures.

Remark. Condition (19.0.2) is a relaxation of the definition of the Levy-Prohorov metric, one can take any $\alpha, \beta > \rho(\mathbb{P}, \mathbb{Q})$. Conditions 1 - 3 mean that we can construct a measure μ on $S \times S$ such that coordinates x, y have marginal distributions \mathbb{P}, \mathbb{Q} , concentrated within distance $\alpha + \varepsilon$ of each other (condition 2) except for the set of measure at most $\beta + \varepsilon$ (condition 3).

Proof. The proof will proceed in several steps.

Case A. We will start with the simplest case which is, however, at the core of everything else. Given small $\varepsilon > 0$, take $n \ge 1$ such that $n\varepsilon > 1$. Suppose that laws \mathbb{P}, \mathbb{Q} are uniform on finite subsets $M, N \subseteq S$ of equal cardinality,

$$
card(M) = card(N) = n, \ \mathbb{P}(x) = \mathbb{Q}(y) = \frac{1}{n} < \varepsilon, \ x \in M, y \in N.
$$

Using condition (19.0.2), we would like to match as many points from M and N as possible, but only points that are within distance α from each other. To use the matching theorem, we will introduce some auxiliary sets U and V that are not too big, with size controlled by parameter β , and the union of these sets with M and N satisfies a certain matching condition.

Take integer k such that $\beta n \leq k < (\beta + \varepsilon)n$. Let us take sets U and V such that $k = \text{card}(U) = \text{card}(V)$ and U, V are disjoint from M, N . Define

$$
X = M \cup U, \ Y = N \cup V.
$$

Let us define a subset $K \subseteq X \times Y$ such that $(x, y) \in K$ if and only if one of the following holds:

1. $x \in U$, 2. $y \in V$, 3. $d(x, y) \leq \alpha$ if $x \in M, y \in N$.

This means that small auxiliary sets can be matched with any points but only close points, $d(x, y) \leq \alpha$, can be matched in the main sets M and N. Consider a set $A \subseteq X$ with cardinality card $(A) = r$. If $A \nsubseteq M$ then by 1, $A^K = Y$ and card $(A^K) \geq r$. Suppose now that $A \subseteq M$ and we would like to show that again $card(A^{K}) \geq r$. By (19.0.2),

$$
\frac{r}{n} = \mathbb{P}(A) \le \mathbb{Q}(A^{\alpha}) + \beta = \frac{1}{n} \text{card}(A^{\alpha} \cap N) + \beta \le \frac{1}{n} \text{card}(A^K \cap N) + \beta
$$

since by 3, $A^{\alpha} \subset A^{K}$. Therefore,

$$
r = \text{card}(A) \le n\beta + \text{card}(A^K \cap N) \le k + \text{card}(A^K \cap N) = \text{card}(A^K),
$$

since $k = \text{card}(V)$ and $A^K = V \cup (A^K \cap N)$. By matching theorem, there exists a K-matching f of X and Y. Let

$$
T = \{ x \in M : f(x) \in N \},\
$$

i.e. close points, $d(x, y) \leq \alpha$, from M that are matched with points in N. Clearly, card $(T) \geq n - k$ and for $x \in T$, by 3, $d(x, f(x)) \leq \alpha$. For $x \in M \setminus T$, redefine $f(x)$ to match x with arbitrary points in N that are not matched with points in T. This defines a matching of M onto N. We define measures η and γ by

$$
\eta = \frac{1}{n} \sum_{x \in T} \delta(x, f(x)), \ \ \gamma = \frac{1}{n} \sum_{x \in M \setminus T} \delta(x, f(x)),
$$

and let $\mu = \eta + \gamma$. First of all, obviously, μ has marginals $\mathbb P$ and $\mathbb Q$ because each point in M or N appears in the sum $\eta + \gamma$ only once with weight $1/n$. Also,

$$
\eta(d(x, f(x)) > \alpha) = 0, \ \ \gamma(S \times S) \le \frac{\operatorname{card}(M \setminus T)}{n} \le \frac{k}{n} < \beta + \varepsilon. \tag{19.0.3}
$$

Finally, both η and γ are finite sums of point masses which are product measures of point masses.

Case B. Suppose now that $\mathbb P$ and $\mathbb Q$ are concentrated on finitely many points with rational probabilities. Then we can artificially split all points into "smaller" points of equal probabilities as follows. Let n be such that $n\varepsilon > 1$ and

$$
n\mathbb{P}(x), n\mathbb{Q}(x) \in J = \{1, 2, \dots, n\}.
$$

Define a discrete metric on J by $f(i, j) = \varepsilon I(i \neq j)$ and define a metric on $S \times J$ by

$$
e((x, i), (y, j)) = d(x, y) + f(i, j).
$$

Define a measure \mathbb{P}' on $S \times J$ as follows. If $\mathbb{P}(x) = \frac{j}{n}$ then

$$
\mathbb{P}'\big((x,i)\big)=\frac{1}{n} \quad \text{for} \quad i=1,\ldots,j.
$$

Define \mathbb{Q}' similarly. Let us check that laws \mathbb{P}', \mathbb{Q}' satisfy the assumptions of Case A. Given a set $F \subseteq S \times J$, define

$$
F_1 = \{ x \in S : (x, j) \in F \text{ for some } j \}.
$$

Using (19.0.2),

$$
\mathbb{P}'(F) \le \mathbb{P}(F_1) \le \mathbb{Q}(F_1^{\alpha}) + \beta \le \mathbb{Q}'(F^{\alpha + \varepsilon}) + \beta,
$$

because $f(i, j) \leq \varepsilon$. By Case A in (19.0.3), we can construct $\mu' = \eta' + \gamma'$ with marginals \mathbb{P}' and \mathbb{Q}' such that

$$
\eta'\big(e((x,i),(y,j))>\alpha+\varepsilon\big)=0,\ \ \gamma'\big((S\times J)\times(S\times J)\big)<\beta+\varepsilon.
$$

Let μ, η, γ be the projections of μ', η', γ' back onto $S \times S$ by the map $((x, i), (y, j)) \rightarrow (x, y)$. Then, clearly, $\mu = \eta + \gamma$, μ has marginals $\mathbb P$ and $\mathbb Q$ and $\gamma(S \times S) < \beta + \varepsilon$. Finally, since

$$
e((x, i), (y, j)) = d(x, y) + f(i, j) \ge d(x, y),
$$

we get

$$
\eta(d(x,y) > \alpha + \varepsilon) \le \eta'(e((x,i),(y,j)) > \alpha + \varepsilon) = 0.
$$

Case C. (General case) Let \mathbb{P}, \mathbb{Q} be the laws on a separable metric space (S, d) . Let A be a maximal set such that for all $x, y \in A$, $d(x, y) \geq \varepsilon$. The set A is countable, $A = \{x_i\}_{i \geq 1}$, because S is separable, and since A is maximal, for all $x \in S$ there exists $y \in A$ such that $d(x, y) < \varepsilon$. Such set A is usually called an ε-packing. Let us create a partition of S using ε-balls around $\{x_i\}$:

$$
B_1 = \{x \in S : d(x, x_1) < \varepsilon\}, \ B_2 = \{d(x, x_2) < \varepsilon\} \setminus B_1
$$

and, iteratively for $k \geq 2$,

$$
B_k = \{d(x, x_k) < \varepsilon\} \setminus (B_1 \cup \dots \cup B_{k-1}).
$$

 ${B_k}_{k\geq 1}$ is a partition of S. Let us discretize measures P and Q by projecting them onto ${x_i}_{i\geq 1}$:

$$
\mathbb{P}'(x_k) = \mathbb{P}(B_k), \ \mathbb{Q}'(x_k) = \mathbb{Q}(B_k).
$$

Consider any set $F \subseteq S$. For any point $x \in F$, if $x \in B_k$ then $d(x, x_k) < \varepsilon$, i.e. $x_k \in F^{\varepsilon}$ and, therefore,

$$
\mathbb{P}(F) \le \mathbb{P}'(F^{\varepsilon}).
$$

Also, if $x_k \in F$ then $B_k \subseteq F^{\varepsilon}$ and, therefore,

$$
\mathbb{P}'(F) \le \mathbb{P}(F^{\varepsilon}).
$$

To apply Case B, we need to approximate \mathbb{P}' by a measure on a finite number of points with rationals probabilities. For large enough $n \geq 1$, let

$$
\mathbb{P}''(x_k) = \frac{\lfloor n \mathbb{P}'(x_k) \rfloor}{n}.
$$

Clearly, as $n \to \infty$, $\mathbb{P}''(x_k) \uparrow \mathbb{P}'(x_k)$. Since only a finite number of points carry non-zero weights $\mathbb{P}''(x_k) > 0$, let x_0 be one of the other points in the sequence $\{x_k\}$. Let us assign to it a probability

$$
\mathbb{P}''(x_0) = 1 - \sum_{k \ge 1} \mathbb{P}''(x_k).
$$

If we take *n* large enough so that $\mathbb{P}''(x_0) < \varepsilon/2$ then

$$
\sum_{k\geq 0} |\mathbb{P}''(x_k) - \mathbb{P}'(x_k)| \leq \varepsilon.
$$

All the relations above also hold true for \mathbb{Q}, \mathbb{Q}' and \mathbb{Q}'' that are defined similarly. We can write for $F \subseteq S$

$$
\mathbb{P}''(F) \le \mathbb{P}'(F) + \varepsilon \le \mathbb{P}(F^{\varepsilon}) + \varepsilon \le \mathbb{Q}(F^{\varepsilon+\alpha}) + \beta + \varepsilon \le \mathbb{Q}'(F^{\alpha+2\varepsilon}) + \beta + \varepsilon \le \mathbb{Q}''(F^{\alpha+2\varepsilon}) + \beta + 2\varepsilon.
$$

By Case B, there exists a decomposition $\mu'' = \eta'' + \gamma''$ on $S \times S$ with marginals \mathbb{P}'' and \mathbb{Q}'' such that

$$
\eta''(d(x,y) > \alpha + 3\varepsilon) = 0, \ \gamma''(S \times S) \le \beta + 3\varepsilon.
$$

Let us also assume that the points (x_0, x_i) and (x_i, x_0) for $i \geq 0$ are included in the support of γ'' . Since the total weight of these points is at most ε , the total weight of γ'' does no increase much:

$$
\gamma''(S \times S) \le \beta + 5\varepsilon.
$$

It remains to redistribute these measures from sequence $\{x_i\}_{i\geq 0}$ to S in a way that recovers marginal distributions $\mathbb P$ and $\mathbb Q$ and so that not much accuracy is lost. Define a sequence of measures on S by

$$
\mathbb{P}_{i}(C) = \frac{\mathbb{P}(C B_{i})}{\mathbb{P}(B_{i})} \text{ if } \mathbb{P}(B_{i}) > 0 \text{ and } \mathbb{P}_{i}(C) = 0 \text{ otherwise}
$$

and define \mathbb{Q}_i similarly. The measures \mathbb{P}_i and \mathbb{Q}_i are concentrated on B_i . Define

$$
\eta = \sum_{i,j \geq 1} \eta''(x_i, x_j)(\mathbb{P}_i \times \mathbb{Q}_j)
$$

The marginals of η satisfy

$$
u(C) = \eta(C \times S) \le \sum_{i,j \ge 1} \eta''(x_i, x_j) \mathbb{P}_i(C) = \sum_{i \ge 1} \eta''(x_i, S) \mathbb{P}_i(C)
$$

$$
\le \sum_{i \ge 1} \mathbb{P}''(x_i) \mathbb{P}_i(C) \le \sum_{i \ge 1} \mathbb{P}'(x_i) \mathbb{P}_i(C) = \sum_{i \ge 1} \mathbb{P}(B_i) \mathbb{P}_i(C) = \mathbb{P}(C)
$$

and, similarly,

$$
v(C) = \eta(S \times C) \le \mathbb{Q}(C).
$$

Since $\eta''(x_i, x_j) = 0$ unless $d(x_i, x_j) \leq \alpha + 3\varepsilon$, the measure

$$
\eta = \sum_{i,j \geq 1} \eta''(x_i, x_j)(\mathbb{P}_i \times \mathbb{Q}_j)
$$

is concentrated on the set $\{d(x, y) \le \alpha + 5\varepsilon\}$ because for $x \in B_i, y \in B_j$,

$$
d(x, y) \le d(x, x_i) + d(x_i, x_j) + d(x_j, y) \le \varepsilon + \alpha + 3\varepsilon + \varepsilon = \alpha + 5\varepsilon.
$$

If $u(S) = v(S) = 1$ then $\eta(S \times S) = 1$ and η has marginals $\mathbb P$ and $\mathbb Q$ so we can take $\gamma = 0$. Otherwise, take $t = 1 - u(S)$ and define

$$
\gamma = \frac{1}{t}(\mathbb{P} - u) \times (\mathbb{Q} - v).
$$

It is easy to check that $\mu = \eta + \gamma$ has marginals $\mathbb P$ and $\mathbb Q$. Also,

$$
\gamma(S \times S) = t = 1 - \eta(S \times S) = 1 - \eta''(S \times S) = \gamma''(S \times S) \le \beta + 5\varepsilon.
$$

Relationships between metrics. The following relationship between Ky Fan and Levy-Prohorov metrics is an immediate consequence of Strassen's theorem. We already saw that $\rho(\mathcal{L}(X),\mathcal{L}(Y)) \leq \alpha(X,Y)$.

Theorem 47 If (S, d) is a separable metric space and \mathbb{P}, \mathbb{Q} are laws on S then for any $\varepsilon > 0$ there exist random variables X and Y with distributions $\mathcal{L}(X) = \mathbb{P}$ and $\mathcal{L}(Y) = \mathbb{Q}$ such that

$$
\alpha(X, Y) \le \rho(\mathbb{P}, \mathbb{Q}) + \varepsilon.
$$

If $\mathbb P$ and $\mathbb Q$ are tight, one can take $\varepsilon = 0$.

Proof. Let us take $\alpha = \beta = \rho(\mathbb{P}, \mathbb{Q})$. Then, by definition of the Levy-Prohorov metric, for any $\varepsilon > 0$ and for any set A,

$$
\mathbb{P}(A) \le \mathbb{Q}(A^{\rho+\varepsilon}) + \rho + \varepsilon.
$$

By Strassen's theorem, there exists a measure μ on $S \times S$ with marginals \mathbb{P}, \mathbb{Q} such that

$$
\mu(d(x, y) > \rho + 2\varepsilon) \le \rho + 2\varepsilon. \tag{19.0.4}
$$

Therefore, if X and Y are the coordinates of $S \times S$, i.e.

$$
X, Y: S \times S \to S, \ X(x, y) = x, \ Y(x, y) = y,
$$

then by definition of the Ky Fan metric, $\alpha(X, Y) \leq \rho + 2\varepsilon$. If $\mathbb P$ and $\mathbb Q$ are tight then there exists a compact K such that $\mathbb{P}(K)$, $\mathbb{Q}(K) \geq 1 - \delta$. For $\varepsilon = 1/n$ find μ_n as in (19.0.4). Since μ_n has marginals \mathbb{P} and \mathbb{Q} , $\mu_n(K \times K) \geq 1-2\delta$, which means that $(\mu_n)_{n>1}$ are uniformly tight. By selection theorem, there exists a convergent subsequence $\mu_{n(k)} \to \mu$. Obviously, μ has marginals $\mathbb P$ and $\mathbb Q$. Since by construction,

$$
\mu_n\left(d(x,y) > \rho + \frac{2}{n}\right) \le \rho + \frac{2}{n}
$$

and $\{d(x,y) > \rho + 2/n\}$ is an open set on $S \times S$, by portmanteau theorem,

$$
\mu\Big(d(x,y) > \rho + \frac{2}{n}\Big) \le \liminf_{k \to \infty} \mu_{n(k)}\Big(d(x,y) > \rho + \frac{2}{n(k)}\Big) \le \rho.
$$

Letting $n \to \infty$ we get $\mu(d(x, y) > \rho) \leq \rho$ and, therefore, $\alpha(X, Y) \leq \rho$.

This also implies the relationship between the Bounded Lipschitz metric β and Levy-Prohorov metric ρ .

Lemma 39 If (S, d) is a separable metric space then

$$
\frac{1}{2}\beta(\mathbb{P},\mathbb{Q}) \leq \rho(\mathbb{P},\mathbb{Q}) \leq 2\sqrt{\beta(\mathbb{P},\mathbb{Q})}.
$$

Proof. We already proved the second inequality. To prove the first one, given $\varepsilon > 0$ take random variables X and Y such that $\alpha(X, Y) \leq \rho + \varepsilon$. Consider a bounded Lipschitz function f, $||f||_{BL} < \infty$. Then

$$
\left| \int f d\mathbb{P} - \int f d\mathbb{Q} \right| = |\mathbb{E}f(X) - \mathbb{E}f(Y)| \le \mathbb{E}|f(X) - f(Y)|
$$

\n
$$
\le \|f\|_{\mathcal{L}}(\rho + \varepsilon) + 2\|f\|_{\infty} \mathbb{P}\Big(d(X, Y) > \rho + \varepsilon\Big)
$$

\n
$$
\le \|f\|_{\mathcal{L}}(\rho + \varepsilon) + 2\|f\|_{\infty}(\rho + \varepsilon) \le 2\|f\|_{\mathcal{BL}}(\rho + \varepsilon).
$$

Thus, $\beta(\mathbb{P}, \mathbb{Q}) \leq 2(\rho(\mathbb{P}, \mathbb{Q}) + \varepsilon)$ and letting $\varepsilon \to 0$ finishes the proof.

 \Box

 \Box