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Section 20 

Kantorovich-Rubinstein Theorem. 

Let (S, d) be a separable metric space. Denote by P1(S) the set of all laws on S such that for some z ∈ S 
(equivalently, for all z ∈ S), 

d(x, z)P(x) < ∞. 
S 

Let us denote by � � 
M(P, Q) = µ : µ is a law on S × S with marginals P and Q . 

Definition. For P, Q ∈ P1(S), the quantity 

W (P, Q) = inf d(x, y)dµ(x, y) : µ ∈ M(P, Q) 

is called the Wasserstein distance between P and Q. 

A measure µ ∈ M(P, Q) represents a transportation between measures P and Q. We can think of the 
conditional distribution µ(y|x) as a way to redistribute the mass in the neighborhood of a point x so that 
the distribution P will be redistributed to the distribution Q. If the distance d(x, y) represents the cost of 
moving x to y then the Wasserstein distance gives the optimal total cost of transporting P to Q. 

Given any two laws P and Q on S, let us define ��� � � � 
γ(P, Q) = sup �� fdP − fdQ�� : ||f ||L ≤ 1 

and �� � � 
md(P, Q) = sup fdP + gdQ : f, g ∈ C(S), f(x) + g(y) < d(x, y) . 

Lemma 40 We have γ(P, Q) = md(P, Q). 

Proof. Given a function f such that ||f ||L ≤ 1 let us take a small ε > 0 and g(y) = −f(y) − ε. Then 

f(x) + g(y) = f(x) − f(y) − ε ≤ d(x, y) − ε < d(x, y) 

and � � � � 
fdP + gdQ = fdP − fdQ − ε. 

Combining with the choice of −f(x) and g(y) = f(y) − ε we get �� � � �� � � � fdP − fdQ� ≤ sup fdP + gdQ : f(x) + g(y) < d(x, y) + ε 

82 



�� � � 

� � � � 

� � 

� � 

� � 

which, of course, proves that 

γ(P, Q) ≤ sup fdP + gdQ : f(x) + g(y) < d(x, y) . 

Let us now consider functions f, g such that f(x) + g(y) < d(x, y). Define 

e(x) = inf (d(x, y) − g(y)) = − sup(g(y) − d(x, y)) 
y y 

Clearly, 
f(x) ≤ e(x) ≤ d(x, x) − g(x) = −g(x) 

and, therefore, � � � � 
fdP + gdQ ≤ edP − edQ. 

Function e satisfies 

e(x) − e(x�) = sup g(y) − d(x�, y) − sup g(y) − d(x, y) 
y y 

sup d(x, y) − d(x�, y) ≤ d(x, x�)≤ 
y 

which means that ||e||L = 1. This finishes the proof. 

We will need the following version of the Hahn-Banach theorem. 

Theorem 48 (Hahn-Banach) Let V be a normed vector space, E - a linear subspace of V and U - an open 
convex set in V such that U ∩ E =� ∅. If r : E → R is a linear non-zero functional on E then there exists a 
linear functional ρ : V → R such that ρ|E = r and supU ρ(x) = supU∩E r(x). 

Proof. Let t = sup{r(x) : x ∈ U ∩ E} and let B = {x ∈ E : r(x) > t}. Since B is convex and U ∩ B = ∅, 
the Hahn-Banach separation theorem implies that there exists a linear functional q : V R such that → 
supU q(x) ≤ infB q(x). For any x0 ∈ U ∩ E let F = {x ∈ E : q(x) = q(x0)}. Since q(x0) < infB q(x), 
F ∩ B = ∅. This means that the hyperplanes {x ∈ E : q(x) = q(x0)} and {x ∈ E : r(x) = t} in the subspace 
E are parallel and this implies that q(x) = αr(x) on E for some α = 0� . Let ρ = q/α. Then r = ρ|E and 

1 1 
sup ρ(x) = sup q(x) ≤ inf q(x) = inf r(x) = t = sup r(x). 
U α U α B B U∩E 

Since r = ρ|E , this finishes the proof. 

Theorem 49 If S is a compact metric space then W (P, Q) = md(P, Q) for P, Q ∈ P1(S). 

Proof. Consider a vector space V = C(S × S) equipped with � · �∞ norm and let 

U = f ∈ V : f(x, y) < d(x, y) . 

Obviously, U is convex and open because S × S is compact and any continuous function on a compact 
achieves its maximum. Consider a linear subspace E of V defined by 

E = φ ∈ V : φ(x, y) = f(x) + g(y) 

so that � � 
U ∩ E = f(x) + g(y) < d(x, y) . 
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Define a linear functional r on E by 

r(φ) = fdP + gdQ if φ = f(x) + g(y). 

By the above Hahn-Banach theorem, r can be extended to ρ : V R such that ρ|E = r and→ 

sup ρ(φ) = sup r(φ) = md(P, Q). 
U U ∩E 

Let us look at the properties of this functional. First of all, if a(x, y) ≥ 0 then ρ(a) ≥ 0. Indeed, for any c ≥ 0 

U � d(x, y) − c a(x, y) − ε < d(x, y)· 

and, therefore, for all c ≥ 0 

ρ(d − ca − ε) = ρ(d) − cρ(a) − ρ(ε) ≤ sup ρ < ∞. 
U 

This can hold only if ρ(a) ≥ 0. This implies that if φ1 ≤ φ2 then ρ(φ1) ≤ ρ(φ2). For any function φ, both 
−φ, φ ≤ �φ�∞ · 1 and, by monotonicity of ρ, 

|ρ(φ)| ≤ ||φ||∞ρ(1) = ||φ||∞. 

Since S × S is compact and ρ is a continuous functional on (C(S × S), � · �∞), by the Reisz representation 
theorem there exists a unique measure µ on the Borel σ-algebra on S × S such that 

ρ(f) = f(x, y)dµ(x, y). 

Since ρ|E = r, � � � 
(f(x) + g(y))dµ(x, y) = fdP + gdQ 

which implies that µ ∈ M(P, Q). We have 

md(P, Q) = sup ρ(φ) = sup f(x, y)dµ(x, y) : f(x, y) < d(x, y) = d(x, y)dµ(x, y) ≥ W (P, Q). 
U 

The opposite inequality is easy because for any f, g such that f(x) + g(y) < d(x, y) and any ν ∈ M(P, Q), 

fdP + gdQ = (f(x) + g(y))dν(x, y) ≤ d(x, y)dν(x, y). (20.0.1) 

This finishes the proof and, moreover, it shows that the infimum in the definition of W is achieved on µ. 

Remark. Notice that in the proof of this theorem we never used the fact that d is a metric. Theorem holds 
for any d ∈ C(S × S) under the corresponding integrability assumptions. For example, one can consider loss 
functions of the type d(x, y)p for p > 1, which are not necessarily metrics. However, in Lemma 40, the fact 
that d is a metric was essential. 

Our next goal will be to show that W = γ on separable and not necessarily compact metric spaces. We 
start with the following. 

Lemma 41 If (S, d) is a separable metric space then W and γ are metrics on P1(S). 

Proof. Since for a bounded Lipschitz metric β we have β(P, Q) ≤ γ(P, Q), γ is also a metric because if 
γ(P, Q) = 0 then β(P, Q) = 0 and, therefore, P = Q. As in (20.0.1), it should be obvious that γ(P, Q) = 
md(P, Q) ≤ W (P, Q) and if W (P, Q) = 0 then γ(P, Q) = 0 and P = Q. Symmetry of W is obvious. It remains 
to show that W (P, Q) satisfies the triangle inequality. The idea will be rather simple, but to have well-defined 
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conditional distributions we will need to approximate distributions on S × S with given marginals by a more 
regular disributions with the same marginals. Let us first explain the main idea. Consider three laws P, Q, T 
on S and let µ ∈ M(P, Q) and ν ∈ M(Q, T) be such that 

d(x, y)dµ(x, y) ≤ W (P, Q) + ε and d(y, z)dν(y, z) ≤ W (Q, T) + ε. 

Let us generate a distribution γ on S ×S ×S with marginals P, Q and T and marginals on pairs of coordinates 
(x, y) and (y, z) given by µ and ν by ”gluing” µ and ν in the following way. Let us generate y from distribution 
Q and, given y, generate x and z according to conditional distributions µ(x|y) and ν(z|y) independently of 
each other, i.e. 

γ(x, z|y) = µ(x|y) × ν(z|y). 

Obviously, by construction, (x, y) has distribution µ and (y, z) has distribution ν. Therefore, the marginals 
of x and z are P and T which means that the pair (x, z) has distribution η ∈ M(P, T). Finally, 

W (P, T) ≤ d(x, z)dη(x, z) = d(x, z)dγ(x, y, z) ≤ d(x, y)dγ + d(y, z)dγ 

= d(x, y)dµ + d(y, z)dν ≤ W (P, Q) + W (Q, T) + 2ε. 

Letting ε 0 proves the triangle inequality for W . It remains to explain how the conditional distributions →
can be well defined. Let us modify µ by ’discretizing’ it without losing much in the transportation cost 
integral. Given ε > 0, consider a partition (Sn)n≥1 of S such that diameter(Sn) < ε for all n. This can be 
done as in the proof of Strassen’s theorem, Case C. On each box Sn × Sm let 

µ 1 (C) = 
µ((C ∩ Sn) × Sm) 

, µ 2 (C) = 
µ(Sn × (C ∩ Sm)) 

nm nmµ(Sn × Sm) µ(Sn × Sm) 

be the marginal distributions of the conditional distribution of µ on Sn × Sm. Define 

µ� = µ(Sn × Sm) µ 1 2 .nm × µnm

n,m 

In this construction, locally on each small box Sn × Sm, measure µ is replaced by the product measure with 
the same marginals. Let us compute the marginals of µ�. Given a set C ⊆ S, 

µ�(C × S) = µ(Sn × Sm) µ 1 (C) × µ 2 (S)nm nm

n,m 

= µ((C ∩ Sn) × Sm) = µ((C ∩ Sn) × S) = P(C ∩ Sn) = P(C). 
n,m n n 

Similarly, µ�(S × C) = Q(C), so µ� has the same marginals as µ, µ� ∈ M(P, Q). It should be obvious that 
transportation cost integral does not change much by replacing µ with µ�. One can visualize this by looking 
at what happens locally on each small box Sn × Sm. Let (Xn, Ym) be a random pair with distribution µ 
restricted to Sn × Sm so that 

1
Ed(Xn, Ym) = d(x, y)dµ(x, y). 

µ(Sn × Sm) Sn×Sm 

Let Ym
� be an independent copy of Ym, also independent of Xn, i.e. the joint distribution of (Xn, Y m

� ) is 
µnm 

1 × µnm 
2 and � 

Ed(Xn, Y � ) = d(x, y)d(µ 1 2 )(x, y).m nm × µnm
Sn×Sm 

Then � 
d(x, y)dµ(x, y) = µ(Sn × Sm)Ed(Xn, Ym), 

n,m 
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d(x, y)dµ�(x, y) = µ(Sn × Sm)Ed(Xn, Y m
� ). 

n,m 

Finally, d(Ym, Y � ) ≤ diam(Sm) ≤ ε and these two integrals differ by at most ε. Therefore,m

d(x, y)dµ�(x, y) ≤ W (P, Q) + 2ε. 

Similarly, we can define � 
ν� = nm × ν2ν(Sn × Sm) ν1 

nm 
n,m 

such that � 
d(x, y)dν�(x, y) ≤ W (Q, T) + 2ε. 

We will now show that this special simple form of the distributions µ�(x, y), ν�(y, z) ensures that the condi
tional distributions of x and z given y are well defined. Let Qm be the restriction of Q to Sm, 

Qm(C) = Q(C ∩ Sm) = µ(Sn × Sm) µnm
2 (C). 

n 

Obviously, if Qm(C) = 0 then µ2 (C) = 0 for all n, which means that µ2 are absolutely continuous with nm nm 
respect to Qm and the Radon-Nikodym derivatives 

fnm(y) = 
dµnm 

2 

(y) exist and 
� 

µ(Sn × Sm)fnm(y) = 1 a.s. for y ∈ Sm. 
dQm n 

Let us define a conditional distribution of x given y by 

µ�(A|y) = µ(Sn × Sm)fnm(y)µ 1 (A).nm

n,m 

Notice that for any A ∈ B, µ�(A|y) is measurable in y and µ�(A|y) is a probability distribution on B, Q-a.s. 
over y because � 

µ�(S|y) = µ(Sn × Sm)fnm(y) = 1 a.s. 
n,m 

Let us check that for Borel sets A, B ∈ B, 

µ�(A × B) = µ�(A|y)dQ(y). 
B 

Indeed, since fnm(y) = 0 for y �∈ Sm, � � � 

B 
µ�(A|y)dQ(y) = 

n,m 

µ(Sn × Sm)µ 1 
nm(A) 

B 
fnm(y)dQ(y) 

� � 
= 

n,m 

µ(Sn × Sm)µ 1 
nm(A) 

� 
B 

fnm(y)dQm(y) 

= µ(Sn × Sm)µ 1 
nm(A)µ 2 

nm(B) = µ�(A × B). 
n,m 

Conditional distribution ν�(·|y) can be defined similarly. 

Next lemma shows that on a separable metric space any law with the ”first moment”, i.e. P ∈ P1(S), can 
be approximated in metrics W and γ by laws concentrated on finite sets. 
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Lemma 42 If (S, d) is separable and P ∈ P1(S) then there exists a sequence of laws Pn such that Pn(Fn) = 1 
for some finite sets Fn and W (Pn, P), γ(Pn, P) 0.→ 

Proof. For each n ≥ 1, let (Snj )j≥1 be a partition of S such that diam(Snj ) ≤ 1/n. Take a point xnj ∈ Snj 

in each set Snj and for k ≥ 1 define a function 

fnk(x) =	
xnj , if x ∈ Snj for j ≤ k, 
xn1, if x ∈ Snj for j > k. 

We have, � 1 � 2 
d(x, fnk(x))dP(x) = d(x, fnk(x))dP(x) ≤ P(Snj ) + d(x, xn1)dP(x) ≤ 

j≥1 Snj 
n 

j≤k S\(Sn1∪···∪Snk ) n 

for k large enough because P ∈ P1(S), i.e. d(x, xn1)dP(x) < ∞, and the set S \ (Sn1 ∪ · · · ∪ Snk) ↓ ∅. 
Let µn be the image on S × S of the measure P under the map x (fnk(x), x) so that µn ∈ M(Pn, P) 

for some Pn concentrated on the set of points {xn1, . . . , xnk}. Finally, 
→ 

2 
W (Pn, P) ≤ d(x, y)dµn(x, y) = d(fnk(x), x)dP(x) ≤ . 

n 

Since γ(Pn, P) ≤ W (Pn, P), this finishes the proof. 

We are finally ready to extend Theorem 49 to separable metric spaces. 

Theorem 50 (Kantorovich-Rubinstein) If (S, d) is a separable metric space then for any two distributions 
P, Q ∈ P1(S) we have W (P, Q) = γ(P, Q). 

Proof. By previous lemma, we can approximate P and Q by Pn and Qn concentrated on finite (hence, 
compact) sets. By Theorem 49, W (Pn, Qn) = γ(Pn, Qn). Finally, since both W, γ are metrics, 

W (P, Q) ≤ W (P, Pn) + W (Pn, Qn) + W (Qn, Q) 
= W (P, Pn) + γ(Pn, Qn) + W (Qn, Q) 
≤ W (P, Pn) + W (Qn, Q) + γ(Pn, P) + γ(Qn, Q) + γ(P, Q). 

Letting n →∞ proves that W (P, Q) ≤ γ(P, Q). 

Wasserstein’s distance Wp(P, Q). Given p ≥ 1, let us define the Wasserstein distance Wp(P, Q) on 
Pp(Rn) = {P : |x|pdP(x) < ∞} corresponding to the cost function d(x, y) = |x − y|p by 

Wp(P, Q)p	 := inf |x − y|pdµ(x, y) : µ ∈ M(P, Q) 

= sup	 fdP + gdQ : f(x) + g(y) < |x − y|p . (20.0.2) 

Even though for p > 1 the function d(x, y) is not a metric, equality in (20.0.2) for compactly supported 
measures P and Q follows from the proof of Theorem 49, which does not require that d is a metric. Then 
one can easily extend (20.0.2) to the entire space Rn . Moreover, Wp is a metric on Pp(Rn) which can be 
shown the same way as in Lemma 41. Namely, given nearly optimal µ ∈ M(P, Q) and ν ∈ M(Q, T) we can 
construct (X, Y, Z) ∼ M(P, Q, T) such that (X, Y ) ∼ µ and (Y, Z) ∼ ν and, therefore, 

1 1 1	 1 1 

Wp(P, T) ≤ (E|X − Z|p) p ≤ (E|X − Y |p) p + (E|Y − Z|p) p ≤ (Wp
p(P, Q) + ε) p + (Wp

p(Q, T) + ε) p . 

Let ε 0.↓ 
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