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Section 20

Kantorovich-Rubinstein Theorem.

Let (S, d) be a separable metric space. Denote by P;(S) the set of all laws on S such that for some z € S
(equivalently, for all z € S),

/5 d(z, 2)P(z) < oo.

Let us denote by
M(P,Q) = {u : pis alaw on S x S with marginals P and Q}.

Definition. For P,Q € P;(S), the quantity

W(2,Q) = int{ [ die.g)dute.s) : € MP.Q)}
is called the Wasserstein distance between P and Q.

A measure p € M(P,Q) represents a transportation between measures P and Q. We can think of the
conditional distribution p(y|z) as a way to redistribute the mass in the neighborhood of a point x so that
the distribution P will be redistributed to the distribution Q. If the distance d(x,y) represents the cost of
moving x to y then the Wasserstein distance gives the optimal total cost of transporting P to Q.

Given any two laws P and Q on S, let us define

1(8.Q) = sup{| [ rap~ [ raq 11511 < 1}

and

ma(®.Q) =sup{ [ fab+ [ 9aQ s f.g € C(S), 10+ 9l0) < dlaw)}

Lemma 40 We have v(P,Q) = mq(P, Q).

Proof. Given a function f such that ||f||L < 1 let us take a small € > 0 and g(y) = —f(y) — . Then

J@) +g(y) = f(z) = fly) —e < d(z,y) — e < d(z,y)

/fdP+/ng=/fdP—/fdQ—s.

Combining with the choice of — f(x) and g(y) = f(y) — € we get

and

[ sae— [ saq] < sup{ [ sap+ [ga0: 1)+ gto) < o)} + 2
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which, of course, proves that

1(2.Q) < sup{ [ 1aP+ [ 9dQ: f(@) + 9(0) < (o)},
Let us now consider functions f, g such that f(z) + g(y) < d(z,y). Define

e(z) = igf(d(:m y) —9(y) = — Sl;p(g(y) —d(z,y))

Clearly,
f(z) <e(x) <d(z,z) — g(z) = —g(z)

/dePUr/ngg/ed]P’f/edQ.

e(x) —e(a) = St;p(g(y) —d(2',y)) - St;p(g(y) —d(z,y))
< Sl;p(d($7 y) - d(xlv y)) < d(.’L‘, ‘r/)

and, therefore,

Function e satisfies

which means that ||e||, = 1. This finishes the proof.

We will need the following version of the Hahn-Banach theorem.

Theorem 48 (Hahn-Banach) Let V' be a normed vector space, E - a linear subspace of V and U - an open
convex set in'V such that UNE # 0. If r : E — R is a linear non-zero functional on E then there exists a
linear functional p: V — R such that p|g = r and supy p(x) = supyng 7(2).

Proof. Let t = sup{r(z) : 2 € UNE} and let B = {z € E : r(z) > t¢}. Since B is convex and U N B = 0,
the Hahn-Banach separation theorem implies that there exists a linear functional ¢ : V' — R such that
supy q(z) < infpq(x). For any zp € UNE let F = {x € E : q(x) = q(xo)}. Since g(zo) < infgg(z),
F N B = (. This means that the hyperplanes {z € E : ¢(z) = q(x¢)} and {z € E : r(z) = t} in the subspace
E are parallel and this implies that ¢(x) = ar(x) on E for some o # 0. Let p = g/a. Then r = p|g and

1 1
supp(z) = —supgq(z) < —infg(z) =infr(x) =t = sup r(z).
uppla) = supa(e) < 2 infale) = infr(z) = ¢ = sup r(z)

Since r = p|g, this finishes the proof.

Theorem 49 If S is a compact metric space then W (P, Q) = mq(P,Q) for P,Q € P1(S).
Proof. Consider a vector space V = C(S x S) equipped with || - ||oc norm and let

U={feV:flx,y) <dzy)}

Obviously, U is convex and open because S x S is compact and any continuous function on a compact
achieves its maximum. Consider a linear subspace E of V defined by

E={¢cV :¢(z,y) = f(x)+9(y)}

so that
UNE = {f(z)+g(y) <d(z,y)}.
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Define a linear functional 7 on E by

o) = [ fap s [gaQ it 6= o)+ glo)
By the above Hahn-Banach theorem, r can be extended to p: V' — R such that p|p = r and

sup p(¢) = sup r(¢) = mq(P, Q).
U UNE

Let us look at the properties of this functional. First of all, if a(x, y) > 0 then p(a) > 0. Indeed, for any ¢ > 0
Usd(z,y) —c-alz,y) —e <d(z,y)
and, therefore, for all ¢ > 0

p(d —ca—¢) = p(d) — cp(a) — p(e) < SUp p < 00.

This can hold only if p(a) > 0. This implies that if ¢; < ¢g then p(p1) < p(¢2). For any function ¢, both
—¢,d < ||¢]|oo - 1 and, by monotonicity of p,

()] < [18llocp(1) = [|8]]oo-

Since S x S is compact and p is a continuous functional on (C(S x S),| - |l ), by the Reisz representation
theorem there exists a unique measure p on the Borel o-algebra on S x S such that

o(f) = / £ (@ v)du(z. ).

Since p|lg =,
p [ @+ swydnte.) = [ 122+ [ g0

which implies that p € M(P,Q). We have

malP,Q) = sup p(6) = sup { [ eidnten): 1) < d(:c,m} = [ dw.y)aute) > wE.Q).

The opposite inequality is easy because for any f, g such that f(x) 4+ ¢g(y) < d(z,y) and any v € M (P, Q),

/ faP + / 9dQ = / (@) + g))dv(z, y) < / d(z, y)dv(z, y). (20.0.1)

This finishes the proof and, moreover, it shows that the infimum in the definition of W is achieved on u.
mi

Remark. Notice that in the proof of this theorem we never used the fact that d is a metric. Theorem holds
for any d € C'(S x S) under the corresponding integrability assumptions. For example, one can consider loss
functions of the type d(z,y)P for p > 1, which are not necessarily metrics. However, in Lemma 40, the fact
that d is a metric was essential.

Our next goal will be to show that W = « on separable and not necessarily compact metric spaces. We
start with the following.

Lemma 41 If (S,d) is a separable metric space then W and v are metrics on P1(.5).
Proof. Since for a bounded Lipschitz metric 5 we have S(P,Q) < v(P,Q), v is also a metric because if
~(P,Q) = 0 then 5(P,Q) = 0 and, therefore, P = Q. As in (20.0.1), it should be obvious that v(P,Q) =

mq(P,Q) < W(P,Q) and if W(P,Q) = 0 then v(P,Q) = 0 and P = Q. Symmetry of W is obvious. It remains
to show that W (P, Q) satisfies the triangle inequality. The idea will be rather simple, but to have well-defined
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conditional distributions we will need to approximate distributions on S x S with given marginals by a more
regular disributions with the same marginals. Let us first explain the main idea. Consider three laws P, Q, T
on S and let p € M(P,Q) and v € M(Q, T) be such that

/d(:c, y)du(z,y) < W(P,Q) +¢ and /d(y, 2)dv(y,z) < W(Q,T) +e.

Let us generate a distribution -« on S x .S x S with marginals P, Q and T and marginals on pairs of coordinates
(z,y) and (y, z) given by p and v by ”gluing” p and v in the following way. Let us generate y from distribution
Q and, given y, generate = and z according to conditional distributions u(z|y) and v(z|y) independently of
each other, i.e.

V(@, 2ly) = plzly) x v(zly).

Obviously, by construction, (x,y) has distribution p and (y, z) has distribution v. Therefore, the marginals
of z and z are P and T which means that the pair (z, z) has distribution n € M (P, T). Finally,

WE,T) < / d(z, 2)dn(z, 2) = / d(z, 2)dy (2, 2) < / Az, y)dy + / d(y, )y
— [+ [ dyzar < WEQ+W@T) + 2

Letting e — 0 proves the triangle inequality for W. It remains to explain how the conditional distributions
can be well defined. Let us modify p by ’discretizing’ it without losing much in the transportation cost
integral. Given ¢ > 0, consider a partition (S,),>1 of S such that diameter(S,) < € for all n. This can be
done as in the proof of Strassen’s theorem, Case C. On each box S,, x S, let

nm w(Sy x Sp) 7 (S X Sp)

be the marginal distributions of the conditional distribution of p on S, x S,,. Define

p = ZM(Sn X Sm) /’("}Lm x :uim'
n,m

In this construction, locally on each small box S,, x S;,, measure p is replaced by the product measure with
the same marginals. Let us compute the marginals of y/. Given a set C' C S,

P(CxS) = > p(Sn X Sm) thm(C) X 17, (S)

= D n(CN8) x Sm) =Y u(CNS,) x 8) =) P(CNS,) =P(C).

n,m n

Similarly, p/(S x C) = Q(C), so ' has the same marginals as u, ¢/ € M(P,Q). It should be obvious that
transportation cost integral does not change much by replacing p with p/. One can visualize this by looking
at what happens locally on each small box S,, x S,,. Let (X,,,Y,,) be a random pair with distribution
restricted to .S,, x S,, so that

1
( ) 1(Sn X Sm) J g, xSm o dntey)

Let Y, be an independent copy of Y,,, also independent of X,,, i.e. the joint distribution of (X,,Y,,) is

Ed(X,,Y.,) = / Az, y)d(h, X p2) (2 1)-
Sn XSm

Then
[ et ) = 37 (S, S, Ed(X Vo),

n,m
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/dxydu z,Y) Z/LS X Sm)Ed(X,,Y,).

n,m

Finally, d(Y;,,Y,,) < diam(Sy,) < € and these two integrals differ by at most e. Therefore,

/ d(z,y)di (z,y) < W(P,Q) + 2.

Similarly, we can define

V= ZI/(Sn X Spn) Vp X V20

such that
/d(m,y)du'(@y) <W(Q,T) + 2e.

We will now show that this special simple form of the distributions u/(z,y),v’(y, z) ensures that the condi-
tional distributions of x and z given y are well defined. Let Q,, be the restriction of Q to S,,,

Qn(C) = Q(C' N Sy, ZquS ) 17 (C).

Obviously, if Q,,(C) = 0 then p2, (C) = 0 for all n, which means that p2,  are absolutely continuous with
respect to Q,, and the Radon-Nikodym derivatives

_dup, . _
frm(y) = 10, (y) exist and zn:u(Sn X Sp) fom(y) =1 as. for y € Sy,.

Let us define a conditional distribution of x given y by

W (Aly) = ZMS X S ) From (U)o (A).-

Notice that for any A € B, p/(A]y) is measurable in y and p/(A|y) is a probability distribution on B, Q-a.s.
over y because

1 (Sly) = ZMS X Sm) fram(y) =1 a.s.

Let us check that for Borel sets A, B € B,
wAxB) = [ famaaw.

Indeed, since frm(y) =0 for y &€ Sy,

/B 1 (Aly)dQ(y) §u<snxsm>unm<A> /B Fam (1)dQ()

= 3 (S S ihin(A) /B Fum (4)AQun ()

= > (S X Sm) b (A)pid,, (B) = /(A x B).

n,m

Conditional distribution v/(-|y) can be defined similarly.

mi
Next lemma shows that on a separable metric space any law with the ”first moment”, i.e. P € P;1(S5), can
be approximated in metrics W and - by laws concentrated on finite sets.
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Lemma 42 If (S,d) is separable and P € P1(S) then there exists a sequence of laws P, such that P, (F,) =1
for some finite sets F,, and W (P,,P),v(P,,P) — 0.

Proof. For cach n > 1, let (S,;);>1 be a partition of S such that diam(S,;) < 1/n. Take a point x,; € S,;
in each set S,; and for k£ > 1 define a function

| zp,, ifxeS,;for j <K,
Frk (@) = { Tn1, ifx e Sy forj > k.

We have,

/dx Fao(@))dP(z Z/ d(, for(2))dP(z ZP ) /S d(z, 201 )dP(z) g%

Jj>1 j<k‘ \(Sn1U--USnk)

for k large enough because P € P1(S), i.e. [d(x,z,1)dP(x) < oo, and the set S\ (Sp1 U---USp) | 0.

Let p, be the image on S x S of the measure P under the map x — (fnx(z), ) so that u, € M(P,,P)
for some P, concentrated on the set of points {x,1,...,Zn . Finally,

W (B, P) < / d(e, y)dpn (2, y) = / Ao (), 2)dP(z) < 2.

n

Since v(P,,P) < W(P,,P), this finishes the proof.
We are finally ready to extend Theorem 49 to separable metric spaces.

Theorem 50 (Kantorovich-Rubinstein) If (S, d) is a separable metric space then for any two distributions

P,Q € P1(S) we have W(P,Q) = v(P,Q).

Proof. By previous lemma, we can approximate P and Q by P, and Q,, concentrated on finite (hence,
compact) sets. By Theorem 49, W (P,,,Q,,) = 7(Py,, Q. ). Finally, since both W, are metrics,
W(P,Q) < W(P

< W(EP,P,) +W(Py,, Q) + W(Q,, Q)
= W(Pa ]P)n) + 7(11])7“ Qn) + W(Qm Q)
< W(P,Pp) + W(Qn Q) +v(Pr, P) +7(Qn, Q) +v(P, Q).

Letting n — oo proves that W (P, Q) < (P, Q).

Wasserstein’s distance W,(P,Q). Given p > 1, let us define the Wasserstein distance W,(P,Q) on
Pp(R™) = {P: [ |z|PdP(z) < oo} corresponding to the cost function d(z,y) = |z — y|? by

W,(P,Q)P = inf{/ |z — ylPdp(z,y) : p € M(P, @)}
— sup{ [ sap+ [ 9aQ: (@) + 900 < fo - P}, (20.0.2)

Even though for p > 1 the function d(z,y) is not a metric, equality in (20.0.2) for compactly supported
measures P and Q follows from the proof of Theorem 49, which does not require that d is a metric. Then
one can easily extend (20.0.2) to the entire space R"™. Moreover, W, is a metric on P,(R™) which can be
shown the same way as in Lemma 41. Namely, given nearly optimal p € M(P,Q) and v € M(Q,T) we can
construct (X,Y, Z) ~ M(P,Q,T) such that (X,Y) ~ p and (Y, Z) ~ v and, therefore,

W,(P,T) < (E|X — Z|")» < (E|X — Y[?)7 + (E[Y — Z]")7 < (WP(P,Q) +¢)7 + (W2(Q,T) +¢)7.

Let € | 0.
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