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Section 21 

Prekopa-Leindler inequality, entropy 
and concentration. 

In this section we will make several connections between the Kantorovich-Rubinstein theorem and other 
classical objects. Let us start with the following classical inequality. 

Theorem 51 (Prekopa-Leindler) Consider nonnegative integrable functions w, u, v : Rn → [0, ∞) such that 
for some λ ∈ (0, 1), 

w(λx + (1 − λ)y) ≥ u(x)λ v(y)1−λ for all x, y ∈ Rn . 

Then, � �� �λ�� �1−λ 
wdx ≥ udx vdx . 

Proof. The proof will proceed by induction on n. Let us first show the induction step. Suppose the statement 
holds for n and we would like to show it for n + 1. By assumption, for any x, y ∈ Rn and a, b ∈ R 

w(λx + (1 − λ)y, λa + (1 − λ)b) ≥ u(x, a)λ v(y, b)1−λ . 

Let us fix a and b and consider functions 

w1(x) = w(x, λa + (1 − λ)b), u1(x) = u(x, a), v1(x) = v(x, b) 

on Rn that satisfy 
w1(λx + (1 − λ)y) ≥ u1(x)λ v1(y)1−λ . 

By induction assumption, � �� �λ�� �1−λ 
w1dx ≥ u1dx v1dx . 

Rn Rn Rn 

These integrals still depend on a and b and we can define 

w2(λa + (1 − λ)b) = w1dx = w(x, λa + (1 − λ)b)dx 
Rn Rn 

and, similarly, � � 
u2(a) = u1(x, a)dx, v2(b) = v1(x, b)dx 

Rn Rn 

so that 
w2(λa + (1 − λ)b) ≥ u2(a)λ v2(b)1−λ . 
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These functions are defined on R and, by induction assumption, � �� �λ�� �1−λ 
� �� �λ�� �1−λ 

w2ds ≥ u2ds v2ds = ⇒ 
Rn+1 

wdz ≥ 
Rn+1 

udz 
Rn+1 

vdz , 
R R R 

which finishes the proof of the induction step. It remains to prove the case n = 1. Let us show two different 
proofs. 

1. One approach is based on the Brunn-Minkowski inequality on the real line which says that, if γ is 
the Lebesgue measure and A, B are Borel sets on R, then 

γ(λA + (1 − λ)B) ≥ λγ(A) + (1 − λ)γ(B), 

where A+B is the set addition, i.e. A+B = {a+b : a ∈ A, b ∈ B}. We can also assume that u, v, w : R [0, 1] 
because the inequality is homogeneous to scaling. We have 

→ 

{w ≥ a} ⊇ λ{u ≥ a} + (1 − λ){v ≥ a} 

because if u(x) ≥ a and v(y) ≥ a then, by assumption, 

w(λx + (1 − λ)y) ≥ u(x)λ v(y)1−λ ≥ a λ a 1−λ = a. 

The Brunn-Minkowski inequality implies that 

γ(w ≥ a) ≥ λγ(u ≥ a) + (1 − λ)γ(v ≥ a). 

Finally, � � � 1 � 1 

w(z)dz = I(x ≤ w(z))dxdz = γ(w ≥ x)dx 
R R 0 0 � 1 � 1 

≥ λ 
0 

γ(u ≥ x)dx + (1 − λ) 
0 

γ(v ≥ x)dx � � �� �λ�� �1−λ 
= λ u(z)dz + (1 − λ) v(z)dz ≥ u(z)dz v(z)dz . 

R R R R 

2. Another approach is based on the transportation of measure. We can assume that u = v = 1 by 
rescaling 

u v w 
u � , v � , w � � .→ 

u 
→ 

v 
→ 

( u)λ( v)1−λ 

Then we need to show that w ≥ 1. Without loss of generality, let us assume that u, v ≥ 0 are smooth and 
strictly positive, since one can easily reduce to this case. Define x(t), y(t) for 0 ≤ t ≤ 1 by � x(t) � y(t) 

u(s)ds = t, v(s)ds = t. 
−∞ −∞ 

Then 
u(x(t))x�(t) = 1, u(y(t))y�(t) = 1 

and the derivatives x�(t), y�(t) > 0. Define z(t) = λx(t) + (1 − λ)y(t). Then � +∞ � 1 � 1 

w(s)ds = w(z(s))dz(s) = w(λx(s) + (1 − λ)y(s))z�(s)ds. 
−∞ 0 0 

By arithmetic-geometric mean inequality 

z�(s) = λx�(s) + (1 − λ)y�(s) ≥ (x�(s))λ(y�(s))1−λ 
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and, by assumption, 
w(λx(s) + (1 − λ)y(s)) ≥ u(x(s))λ v(y(s))1−λ . 

Therefore, � � 1� �λ� �1−λ 
� 1 

w(s)ds ≥ u(x(s))x�(s) v(y(s))y�(s) ds = 1ds = 1. 
0 0 

This finishes the proof of theorem. 

Entropy and the Kullback-Leibler divergence. Consider a probability measure P on Rn and a nonneg
ative measurable function u : Rn → [0, ∞). 

Definition (Entropy)We define the entropy of u with respect to P by 

EntP(u) = u log udP − udP log udP.· 

One can give a different representation of entropy by 

EntP(u) = sup uvdP : e vdP ≤ 1 . (21.0.1) 

Indeed, if we consider a convex set V = {v : ev dP ≤ 1} then the above supremum is obviously a solution 
of the following saddle point problem: 

L(v, λ) = uvdP − λ e vdP − 1 sup inf .→ 
v λ≥0 

The functional L is linear in λ and concave in v. Therefore, by the minimax theorem, a saddle point solution 
exists and sup inf = inf sup . The integral 

uvdP − λ e v dP = (uv − λev)dP 

can be maximized pointwise by taking v such that u = λev . Then 

u 
L(v, λ) = u log dP − udP + λ 

λ 

and maximizing over λ gives λ = u and v = log(u/ u). This proves (21.0.1). Suppose now that a law Q 
is absolutely continuous with respect to P and denote its Radon-Nikodym derivative by 

u = 
dQ 

. (21.0.2)
dP 

Definition (Kullback-Leibler divergence) The quantity 

D(Q||P) := log u dQ = log 
dQ 

dQ
dP 

is called the Kullback-Leibler divergence between P and Q. 

Clearly, D(Q||P) = EntP(u), since 

EntP(u) = log 
dQ dQ 

dP − 
dQ 

dP log 
dQ 

dP = log 
dQ 

dQ. 
dP 
· 

dP dP 
· 

dP dP 

The variational characterization (21.0.1) implies that 

if e vdP ≤ 1 then vdQ = uvdP ≤ D(Q||P ). (21.0.3) 
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Transportation inequality for log-concave measures. Suppose that a probability distribution P on Rn 

has the Lebesgue density e−V (x) where V (x) is strictly convex in the following sense: 

tV (x) + (1 − t)V (y) − V (tx + (1 − t)y) ≥ Cp(1 − t + o(1 − t))|x − y|p (21.0.4) 

as t → 1 for some p ≥ 2 and Cp > 0. 

Example. One example of the distribution that satisfies (21.0.4) is the non-degenerate normal distri
bution N(0, C) that corresponds to 

1 
V (x) = (C−1 x, x) + const 

2 

for some covariance matrix C, det C = 0� . If we denote A = C−1/2 then 

t(Ax, x) + (1 − t)(Ay, y) − (A(tx + (1 − t)y), (tx + (1 − t)y)) 
1 

= t(1 − t)(A(x − y), (x − y)) ≥ 
2λmax(C) 

t(1 − t)|x − y|2 , (21.0.5) 

where λmax(C) is the largest eigenvalue of C. Thus, (21.0.4) holds with p = 2 and Cp = 1/(2λmax(C)). 

Let us prove the following useful inequality for the Wasserstein distance. 

Theorem 52 If P satisfies (21.0.4) and Q is absolutely continuous w.r.t. P then 

1 
Wp(Q, P)p ≤ 

Cp 
D(Q�P). 

Proof. Take functions f, g ∈ C(Rn) such that 

1 
f(x) + g(y) ≤ 

t(1 − t) 
Cp(1 − t + o(1 − t))|x − y|p. 

Then, by (21.0.4), 

1 � � 
f(x) + g(y) ≤ 

t(1 − t) 
tV (x) + (1 − t)V (y) − V (tx + (1 − t)y) 

and 
t(1 − t)f(x) − tV (x) + t(1 − t)g(y) − (1 − t)V (y) ≤ −V (tx + (1 − t)y). 

This implies that 
w(tx + (1 − t)y) ≥ u(x)t v(y)1−t 

for 
u(x) = e(1−t)f(x)−V (x), v(y) = etg(y)−V (y) and w(z) = e−V (z). 

By the Prekopa-Leindler inequality, �� �t�� �1−t 
� 

e(1−t)f(x)−V (x)dx etg(x)−V (x)dx e−V (x)dx≤ 

and since e−V is the density of P we get 

1 

e(1−t)f dP 
�t

etg dP 
�1−t 

≤ 1 and e(1−t)f dP 
� 

1−t 
etgdP 

� 1 
t ≤ 1. 

It is a simple calculus exercise to show that �� � 1 R 
s

lim e sf dP = e fdP , 
s 0→
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and, therefore, letting t 1 proves that → 

R 

if f(x) + g(y) ≤ Cp|x − y|p then egdP · e fdP ≤ 1. 

If we denote v = g + fdP then the last inequality is evdP ≤ 1 and (21.0.3) implies that 

vdQ = fdP + gdQ ≤ D(Q||P). 

Finally, using the Kantorovich-Rubinstein theorem, (20.0.2), we get 

1 
Wp(Q, P)p = 

Cp 
inf Cp|x − y|pdµ(x, y) : µ ∈ M(P, Q) 

1 1 
= 

Cp 
sup fdP + gdQ : f(x) + g(y) ≤ Cp|x − y|p ≤ 

Cp 
D(Q||P) 

and this finishes the proof. 

Concentration of Gaussian measure. Applying this result to the example before Theorem 52 gives that 
for the non-degenerate Gaussian distribution P = N(0, C), 

W2(P, Q) ≤ 2λmax(C)D(Q||P). (21.0.6) 

Given a measurable set A ⊆ Rn with P(A) > 0, define the conditional distribution PA by 

P(CA)
PA(C) = .

P(A) 

Then, obviously, the Radon-Nikodym derivative 

dPA 1 
= IA

dP P(A) 

and the Kullback-Leibler divergence 

1 1 
D(PA||P) = log 

P(A) 
dPA = log 

P(A) 
. 

A 

Since W2 is a metric, for any two Borel sets A and B 

� � 1 1 � 
W2(PA, PB ) ≤ W2(PA, P) + W2(PB , P) ≤ 2λmax(C) log 

P(A) 
+ log 

P(B) 
. 

Suppose that the sets A and B are apart from each other by a distance t, i.e. d(A, B) ≥ t > 0. Then any 
two points in the support of measures PA and PB are at a distance at least t from each other and the 
transportation distance W2(PA, PB ) ≥ t. Therefore, 

� � 1 1 � 1 
t ≤ W2(PA, PB ) ≤ 2λmax(C) log 

P(A) 
+ log 

P(B) 
≤ 4λmax(C) log 

P(A)P(B) 
. 

Therefore, 
1 � t2 � 

exp .P(B) ≤ 
P(A) 

− 
4λmax(C) 

In particular, if B = {x : d(x, A) ≥ t} then 

� � 1 � t2 � 
P d(x, A) ≥ t ≤ 

P(A) 
exp − 

4λmax(C) 
. 
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If the set A is not too small, e.g. P(A) ≥ 1/2, this implies that 

� � � t2 � 
P d(x, A) ≥ t ≤ 2 exp − 

4λmax(C) 
. 

This shows that the Gaussian measure is exponentially concentrated near any ”large enough” set. The 
constant 1/4 in the exponent is not optimal and can be replaced by 1/2; this is just an example of application 
of the above ideas. The optimal result is the famous Gaussian isoperimetry, 

if P(A) = P(B) for some half-space B then P(At) ≥ P(Bt). 

Gaussian concentration via the Prekopa-Leindler inequality. If we denote c = 1/λmax(C) then 
setting t = 1/2 in (21.0.5), � � 

V (x) + V (y) − 2V
x +

2 
y ≥ 

4 
c |x − y|2 . 

Given a function f on Rn let us define its infimum-convolution by 

g(y) = inf f(x) + 
c

x − y 2 . 
x 4 

| |

Then, for all x and y, � � 
g(y) − f(x) ≤ 

4 
c |x − y|2 ≤ V (x) + V (y) − 2V

x +
2 

y
. (21.0.7) 

If we define 
u(x) = e−f(x)−V (x), v(y) = eg(y)−V (y), w(z) = e−V (z) 

then (21.0.7) implies that � � 
w

x + y ≥ u(x)1/2 v(y)1/2 .
2 

The Prekopa-Leindler inequality with λ = 1/2 implies that 

egdP e−f dP ≤ 1. (21.0.8) 

Given a measurable set A, let f be equal to 0 on A and +∞ on the complement of A. Then 

g(y) = 
c
d(x, A)2 

4 

and (21.0.8) implies � � c � 1

exp 

4 
d(x, A)2 dP(x) ≤ 

P(A) 
.


By Chebyshev’s inequality, 

� � 1 � ct2 � 1 � t2 � 
P d(x, A) ≥ t ≤ 

P(A) 
exp − 

4
= 

P(A) 
exp − 

4λmax(C) 
. 

Trivial metric and total variation. 
Definition A total variation distance between probability measure P and Q on a measurable space (S, B) is 
defined by 

TV(P, Q) = sup |P(A) − Q(A)|. 
A∈B 

Using the Hahn-Jordan decomposition, we can represent a signed measure µ = P − Q as µ = µ+ − µ− such 
that for some set D ∈ B and for any set E ∈ B, 

µ+(E) = µ(ED) ≥ 0 and µ−(E) = −µ(EDc) ≥ 0. 
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Therefore, for any A ∈ B, 

P(A) − Q(A) = µ +(A) − µ−(A) = µ +(AD) − µ−(ADc) 

which makes it obvious that 
sup |P(A) − Q(A)| = µ +(D). 
A∈B 

Let us describe some connections of the total variation distance to the Kullback-Leibler divergence and the 
Kantorovich-Rubinstein theorem. Let us start with the following simple observation. 

Lemma 43 If f is a measurable function on S such that |f | ≤ 1 and fdP = 0 then for any λ ∈ R, 

λf dP ≤ e λ
2/2 e . 

Proof. Since (1 + f)/2, (1 − f)/2 ∈ [0, 1] and 

1 + f 
λf = λ +

2
1 −

2 
f 

(−λ), 

xby convexity of e we get 

e λf ≤ 
1 + 

2 
f

e λ +
1 −

2 
f

e−λ = ch(λ) + fsh(λ). 

Therefore, � 
e λf dP ≤ ch(λ) ≤ e λ

2 /2 , 

where the last inequality is easy to see by Taylor’s expansion. 

Let us now consider a trivial metric on S given by 

d(x, y) = I(x =� y). (21.0.9) 

Then a 1-Lipschitz function f w.r.t. d, �f�L ≤ 1, is defined by the condition that for all x, y ∈ S, 

|f(x) − f(y)| ≤ 1. (21.0.10) 

Formally, the Kantorovich-Rubinstein theorem in this case would state that 

W (P, Q) := inf I(x =� y)dµ(x, y) : µ ∈ M(P, Q) ��� � � � 
= sup �� fdQ − fdP�� : �f�L ≤ 1 =: γ(P, Q). 

However, since any uncountable set S is not separable w.r.t. a trivial metric d, we can not apply the 
Kantorovich-Rubinstein theorem directly. In this case one can use the Hahn-Jordan decomposition to show 
that γ coincides with the total variation distance, 

γ(P, Q) = TV(P, Q) 

and it is easy to construct a measure µ ∈ M(P, Q) explicitly that witnesses the above equality. We leave this 
as an exercise. Thus, for the trivial metric d, 

W (P, Q) = γ(P, Q) = TV(P, Q). 

We have the following analogue of the KL divergence bound. 

Theorem 53 If Q is absolutely continuous w.r.t. P then 

TV(P, Q) ≤ 2D(Q||P). 
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Proof. Take f such that (21.0.10) holds. If we define g(x) = f(x)− fdP then, clearly, g ≤ 1 and gdP = 0. 
The above lemma implies that for any λ ∈ R, 

| | 

e λf −λ 
R 

fdP−λ2/2dP ≤ 1. 

The variational characterization of entropy (21.0.3) implies that 

λ fdQ − λ fdP − λ2/2 ≤ D(Q||P) 

and for λ > 0 we get � � 
λ 1 

fdQ − fdP ≤ 
2

+ 
λ

D(Q||P). 

Minimizing the right hand side over λ > 0, we get 

fdQ − fdP ≤ 2D(Q||P). 

Applying this to f and −f yields the result. 
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