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Section 21

Prekopa-Leindler inequality, entropy
and concentration.

In this section we will make several connections between the Kantorovich-Rubinstein theorem and other
classical objects. Let us start with the following classical inequality.

Theorem 51 (Prekopa-Leindler) Consider nonnegative integrable functions w,u,v : R™ — [0, 00) such that
for some A € (0,1),
wz + (1 = Ny) > u(z) v(y)' = for all z,yeR"™

/wdx > (/udx))\(/vdx)l_k.

Proof. The proof will proceed by induction on n. Let us first show the induction step. Suppose the statement
holds for n and we would like to show it for n 4+ 1. By assumption, for any z,y € R™ and a,b € R

Then,

wz + (1= Ny, Aa + (1 — \)b) > u(x,a) v(y,b)
Let us fix a and b and consider functions
wl(I) = w(x, Aa + (1 - /\)b)v ul(‘r) = U(I7a)a ’Ul(x) = ’U(gj, b)

on R"™ that satisfy
wi( Az + (1= N)y) > up(z) o (y) =

/n widz > (/ uldx)/\(/n vld:c)l_/\.

These integrals still depend on a and b and we can define

By induction assumption,

wa(Aa+ (1 — A)b) = / widxr = / w(z, Aa + (1 — A\)b)dz

and, similarly,

uz(a):/n uy (z, a)dz, 'Ug(b):/ vy (z, b)dx

n

so that
wa(Aa + (1 — A)b) > ug(a)*ve (b)),
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These functions are defined on R and, by induction assumption,

/ngds > (/R U2d8)>\(/]R wds)l_)\ == - wdz > </Rn+1 udz)/\(/]w)rl vdz)l_/\,

which finishes the proof of the induction step. It remains to prove the case n = 1. Let us show two different
proofs.

1. One approach is based on the Brunn-Minkowski inequality on the real line which says that, if v is
the Lebesgue measure and A, B are Borel sets on R, then

YAA+ (1= X)B) =2 \y(4) + (1 = A)y(B),

where A+ B is the set addition, i.e. A+B = {a+b:a € A,b € B}. We can also assume that u,v,w : R — [0,1]
because the inequality is homogeneous to scaling. We have

{w>a} DMu>al+(1-A){v>a}
because if u(z) > a and v(y) > a then, by assumption,
wz + (1= Ny) > u(x)*v(y) ™ > a*a' > = a.
The Brunn-Minkowski inequality implies that

Y(w > a) = M(u > a) + (1 - Ao > a).

/Rw(z)dz = // (x < w(z))dzdz :Alyw>x

1
> /’y(u>xdz+ (1—=X /'yv>:17
0

- /\/ )z + ( 1—)\)/Rv(z)dz2 (/Ru(z)dz)A(/Rv(z)dz)“.

2. Another approach is based on the transportation of measure. We can assume that [u = f v =1 by
rescaling

Finally,

u v w
Ju Jv (Swr([o)r=>

Then we need to show that [w > 1. Without loss of generality, let us assume that u,v > 0 are smooth and
strictly positive, since one can easily reduce to this case. Define x(t), y(t) for 0 <¢ <1 by

(t) y(t)
/ u(s)ds =t, / v(s)ds = t.

u(x(t))a'(t) = 1, u(y(t))y'(t) =1
and the derivatives @' (t),y'(t) > 0. Define z(t) = Az(t) + (1 — A)y(t). Then

u — v — w —

Then

+o00 1 1
/ w(s)ds:/o w(z(s))dz(s)z/o wha(s) + (1 — A)y(s))='(s)ds.

—00

By arithmetic-geometric mean inequality

2(s5) = A’ (s) + (1= Ny'(s) > (2'()*(y'(s)'
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and, by assumption,

w(Aa(s) + (1= Ny(s)) = ulz(s)) o(y(s)) .

/w(s)ds > /01 (u(x(s))m’(s))/\(U(y(s))y’(s))k)\ds = /01 1ds = 1.

This finishes the proof of theorem.

Therefore,

mi
Entropy and the Kullback-Leibler divergence. Consider a probability measure P on R™ and a nonneg-
ative measurable function u : R™ — [0, 00).

Definition (Entropy) We define the entropy of u with respect to P by
Entp(u) = /ulogudP— /udP-log/udP

One can give a different representation of entropy by

Entp(u) = Sup{/uvdP : /e”dIP < 1}. (21.0.1)

Indeed, if we consider a convex set V' = {v : [e’dP < 1} then the above supremum is obviously a solution
of the following saddle point problem:

L(v,\) = /uvdIP’—)\(/e”dIF’— 1) —>sup>i\r;%.

The functional L is linear in A and concave in v. Therefore, by the minimax theorem, a saddle point solution
exists and sup inf = inf sup . The integral

/uudIP - )\/e”dIE” = /(uv — Ae?)dP

can be maximized pointwise by taking v such that u = Ae¥. Then
L(v,\) = /ulog%dﬁ”— /udIF’—i—)\

and maximizing over A gives A = [« and v = log(u/ [w). This proves (21.0.1). Suppose now that a law Q
is absolutely continuous with respect to P and denote its Radon-Nikodym derivative by

_dQ
u=—. (21.0.2)

Definition (Kullback-Leibler divergence) The quantity

D P):= [1 1
@) = [togud = [10gF a
is called the Kullback-Leibler divergence between P and Q.

Clearly, D(Q||P) = Entp(u), since

Entp(u):/lo % %dﬁ” /@dﬁD lo /@d}}‘) / g%d@.

The variational characterization (21.0.1) implies that

if /e”dIP’ <1 then /de: /uvdIP’ < D(Q||P). (21.0.3)
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Transportation inequality for log-concave measures. Suppose that a probability distribution P on R™
has the Lebesgue density e~V (®) where V(z) is strictly convex in the following sense:

tV@)+(1-t)V(y) = Vitz+ (1 -t)y) > Cp(l —t+o(l—1))|x—yl? (21.0.4)

as t — 1 for some p > 2 and C}, > 0.

Example. One example of the distribution that satisfies (21.0.4) is the non-degenerate normal distri-
bution N(0,C) that corresponds to

V(z) = %(Cilmwfr) + const
for some covariance matrix C, det C' # 0. If we denote A = C~1/2 then
H(Az,x) + (1 = t)(Ay,y) — (Altz + (1 = t)y), (tr + (1 - 1)y))
— 11— )(Ax — y), (& - 9)) mt“ —t)z -yl (21.0.5)
where Apmax(C) is the largest eigenvalue of C. Thus, (21.0.4) holds with p = 2 and C), = 1/(2Amax(C)).

Let us prove the following useful inequality for the Wasserstein distance.

Theorem 52 If P satisfies (21.0.4) and Q is absolutely continuous w.r.t. P then
1
W,(Q.B) < 2-D(Q[P).
P
Proof. Take functions f, g € C(R™) such that

fx) +g(y) < Cp(1—t+o(l —1t)|z -y’

1
t(1—1t)
Then, by (21.0.4),

f(@) + g(y) < (V@) + (1= V() - Vit + (1= t)y))

t(1—1t)

and
t(L =) f(z) —tV(z) +t(1 = t)g(y) — 1 =)V (y) < —V(tz + (1 - t)y).

This implies that
w(te + (1 —t)y) > u(z)v(y)' ™

for
u(x) = e @=VE@) () = W=V and w(z) =e V.

By the Prekopa-Leindler inequality,

(/ e(lfof(x)fvu)dx)t(/ etg(z%vmdx)l’t < /efvmdx

and since e~V is the density of P we get

(/ e(l_t)fd}P’)t</ etngP’>17t <1 and (/ e(l_t)fcl]P’>ﬁ (/ etngP’)% <1

It is a simple calculus exercise to show that

(| o+ae)
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and, therefore, letting ¢ — 1 proves that
it f(z)+g(y) < Cplzr—ylP then /egd]P’ el TP <,
If we denote v = g + [ fdP then the last inequality is [ e"dP < 1 and (21.0.3) implies that
[vie= [ 12+ [ ga0 < DR,

Finally, using the Kantorovich-Rubinstein theorem, (20.0.2), we get

Q= 9~

W,(Q By wt { [ Cyle ~ yPdnto) s € Q)

1
sup { [ e+ [ g 5+ gto) < Gyl - y|P} < =D
p
and this finishes the proof.
mi
Concentration of Gaussian measure. Applying this result to the example before Theorem 52 gives that
for the non-degenerate Gaussian distribution P = N(0,C),

W (P, Q) < v/2Amax(C)D(Q[P). (21.0.6)
Given a measurable set A C R™ with P(A) > 0, define the conditional distribution P4 by
£y = HCA.
Then, obviously, the Radon-Nikodym derivative
dPy 1
dP  P(A)

and the Kullback-Leibler divergence

1
D(P4||P) = / log ——dP4 = log
A

1
P(4) P(4)’

Since W5 is a metric, for any two Borel sets A and B

WalFa Fo) < Mol )+ W2, B) < 2Amw(C)(\/log at \/ 8 gy

Suppose that the sets A and B are apart from each other by a distance t, i.e. d(A, B) >t > 0. Then any
two points in the support of measures P4 and Py are at a distance at least ¢ from each other and the
transportation distance Wo(P4,Pg) > t. Therefore,

t < Wa(P4,Pp) < QAmaX(C)(\/log IP’(lA) + \/log IP’(IB)) < \/4)\rnax(c) log m

Therefore,

1 t2
P(B) < P(A) exp(—m)

In particular, if B = {z : d(x, A) >t} then
2

1
]P’(d(x,A) > t) < Mexp(—m).
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If the set A is not too small, e.g. P(A) > 1/2, this implies that
t2
Bde, A) 2 ) < 20— )
( (1: ) - ) = 2O 4)\max(C)

This shows that the Gaussian measure is exponentially concentrated near any ”large enough” set. The
constant 1/4 in the exponent is not optimal and can be replaced by 1/2; this is just an example of application
of the above ideas. The optimal result is the famous Gaussian isoperimetry,

if P(A) = P(B) for some half-space B then P(A?) > P(BY).

Gaussian concentration via the Prekopa-Leindler inequality. If we denote ¢ = 1/\ax(C) then
setting t = 1/2 in (21.0.5),

Vi) + V) -2V (oY) > e -yl

2 —4
Given a function f on R”™ let us define its infimum-convolution by

9(y) = inf(f(2) + Tlo = yP*)-

Then, for all x and y,

:”J’y). (21.0.7)

9) = F(@) < o -y < V() + Vi) —2v (Y

If we define
u(z) = e T@=VE@ ) = eIWVW) | y(z) = e VE

then (21.0.7) implies that

w(x ;— Z/) > u(x)l/Qv(y)l/Q.

The Prekopa-Leindler inequality with A = 1/2 implies that

/engP’/e_deP’ <1 (21.0.8)

Given a measurable set A, let f be equal to 0 on A and +o0o on the complement of A. Then

and (21.0.8) implies

By Chebyshev’s inequality,

P(d(z, 4) 2 ) < ﬁe’(p(_%) = ]P’(IA) exp(_umix(c*))'

O
Trivial metric and total variation.

Definition A total variation distance between probability measure P and Q on a measurable space (S, B) is
defined by

TV(P,Q) = sup IP(A) — Q(A)].

Using the Hahn-Jordan decomposition, we can represent a signed measure p =P — Q as p = u™ — u~ such
that for some set D € B and for any set E € B,

pt(E) = p(ED) > 0 and p~ (E) = —u(ED) > 0.
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Therefore, for any A € B,
P(4) — Q(A) = i (A) — 5~ (A) = u* (AD) — u~ (AD?)
which makes it obvious that

sup [P(A) — Q(A)| = u* (D).
AeB

Let us describe some connections of the total variation distance to the Kullback-Leibler divergence and the
Kantorovich-Rubinstein theorem. Let us start with the following simple observation.

Lemma 43 If f is a measurable function on S such that |f| <1 and [ fdP =0 then for any X € R,
/e)‘fd]P’ < X2,

Proof. Since (1+ f)/2,(1 - f)/2 € ]0,1] and

1+ 1-—
)\f = Tf)\—’_ Tf(_)\)’
by convexity of e* we get
1 1-—
eM < ;f(a)‘ + 5 fe_>‘ = ch(A) + fsh(X).

Therefore,
/e’\deP’ < ch(\) < ¥/,

where the last inequality is easy to see by Taylor’s expansion.

Let us now consider a trivial metric on S given by §
d(z,y) = I(z # y). (21.0.9)
Then a 1-Lipschitz function f w.r.t. d, || f||r <1, is defined by the condition that for all z,y € S,
|f(z) = fy)l < 1. (21.0.10)

Formally, the Kantorovich-Rubinstein theorem in this case would state that
W) = inf{ [ I £ (o) ne ME.Q)
— swp{|[ a0~ [ rap|: sl <1} =220,

However, since any uncountable set S is not separable w.r.t. a trivial metric d, we can not apply the
Kantorovich-Rubinstein theorem directly. In this case one can use the Hahn-Jordan decomposition to show
that + coincides with the total variation distance,

7(P,Q) = TV(P,Q)

and it is easy to construct a measure u € M (P, Q) explicitly that witnesses the above equality. We leave this
as an exercise. Thus, for the trivial metric d,

W(P,Q) =~(P,Q) = TV(P,Q).

We have the following analogue of the KL divergence bound.

Theorem 53 If Q is absolutely continuous w.r.t. P then

TV(P,Q) < v2D(Q||P).
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Proof. Take f such that (21.0.10) holds. If we define g(z) = f(z)— [ fdP then, clearly, |g| < 1 and [ gdP = 0.
The above lemma implies that for any A € R,

/e,\f—/\ffdlp—,@/zdp <1
The variational characterization of entropy (21.0.3) implies that
A/fd@ — )\/deE” —\?/2 < D(Q||P)

and for A > 0 we get
A1
[ taa- [ av <3+ Sp@iP)

Minimizing the right hand side over A > 0, we get

[ raa- [ sar < oD@

Applying this to f and —f yields the result.
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