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Section 22 

Stochastic Processes. Brownian 
Motion. 

We have developed a general theory of convergence of laws on (separable) metric spaces and in the following 
two sections we will look at some specific examples of convergence on the spaces of continuous functions 
(C[0, 1], � · �∞) and (C(R+), d), where d is a metric metrizing uniform convergence on compacts. These 
examples will describe a certain central limit theorem type results on these spaces and in this section we 
will define the corresponding limiting Gaussian laws, namely, the Brownian motion and Brownian bridge. 
We will start with basic definitions and basic regularity results in the presence of continuity. Given a set T 
and a probability space (Ω, F , P), a stochastic process is a function 

Xt(ω) = X(t, ω) : T × Ω → R 

such that for each t ∈ T , Xt : Ω → R is a random variable, i.e. a measurable function. In other words, a 
stochastic process is a collection of random variables Xt indexed by a set T. A stochastic process is often 
defined by specifying finite dimensional (f.d.) distributions PF = L({Xt}t∈F ) for all finite subsets F ⊆ T. 
Kolmogorov’s theorem then guarantees the existence of a probability space on which the process is defined, 
under the natural consistency condition 

F1 ⊆ F2 ⇒ PF1 = PF2 . 
RF1 

One can also think of a process as a function on Ω with values in RT = {f : T R}, because for a fixed →
ω ∈ Ω, Xt(ω) ∈ RT is a (random) function of t. In Kolmogorov’s theorem, given a family of consistent f.d. 
distributions, a process was defined on the probability space (RT , BT ), where BT is the cylindrical σ-algebra 
generated by the algebra of cylinders B×RT \F for Borel sets B in RF and all finite F. When T is uncountable, 
some very natural sets such as 
 

sup Xt > 1 = {Xt > 1}
t∈T

t∈T 

might be not measurable on BT . However, in our examples we will deal with continuous processes that 
possess additional regularity properties. 

Definition. If (T, d) is a metric space then a process Xt is called sample continuous if for all ω ∈ Ω, 
Xt(ω) ∈ C(T, d) - the space of continuous function on (T, d). The process Xt is called continuous in probability 
if Xt → Xt0 in probability whenever t → t0. 
Example. Let T = [0, 1], (Ω, P) = ([0, 1], λ) where λ is the Lebesgue measure. Let Xt(ω) = I(t = ω) and 
Xt
�(ω) = 0. F.d. distributions of these processes are the same because for any fixed t ∈ [0, 1], 

P(Xt = 0) = P(Xt
� = 0) = 1. 

However, P(Xt is continuous) = 0 but for Xt
� this probability is 1. 
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Definition. Let (T, d) be a metric space. The process Xt is measurable if 

Xt(ω) : T × Ω → R 

is jointly measurable on the product space (T, B) × (Ω, F), where B is the Borel σ-algebra on T. 

Lemma 44 If (T, d) is a separable metric space and Xt is sample continuous then Xt is measurable. 

Proof. Let (Sj )j≥1 be a measurable partition of T such that diam(Sj ) ≤ 1 . For each non-empty Sj , let us n 
take a point tj ∈ Sj and define 

Xt
n(ω) = Xtj (ω) for t ∈ Sj . 

Xn(ω) is, obviously, measurable on T × Ω because for any Borel set A on R,t 

(ω, t) : Xt
n(ω) ∈ A = ω : Xtj (ω) ∈ A × Sj . 

j≥1 

Xt(w) is sample continuous and, therefore, Xt
n(ω) Xt(ω) for all (ω, t). Hence, X is also measurable. → 

If (T, d) is a compact metric space and Xt is a sample continuous process indexed by T then we can 
think of Xt as an element of the metric space of continuous functions (C(T, d), || · ||∞), rather then simply 
an element of RT . We can define measurable events on this space in two different ways. On one hand, we 
have the natural Borel σ-algebra B on C(T ) generated by the open (or closed) balls 

Bg(ε) = {f ∈ C(T ) : ||f − g||∞ < ε}. 

On the other hand, if we think of C(T ) as a subspace of RT , we can consider a σ-algebra 

ST = B ∩ C(T ) : B ∈ BT 

which is the intersection of the cylindrical σ-algebra BT with C(T ). It turns out that these two definitions 
coincide. An important implication of this is that the law of any sample continuous process Xt on (T, d) is 
completely determined by its finite dimensional distributions. 

Lemma 45 If (T, d) is a separable metric space then B = ST . 

Proof. Let us first show that ST ⊆ B. Any element of the cylindrical algebra that generates the cylindrical 
σ-algebra BT is given by 

B × RT \F for a finite F ⊆ T and for some Borel set B ⊆ RF . 

Then � � � � � � � 
B × RT \F C(T ) = x ∈ C(T ) : (xt)t∈F ∈ B = πF (x) ∈ B 

where πF : C(T ) → RF is the finite dimensional projection such that πF (x) = (xt)t∈F . Projection πF is, 
obviously, continuous in the || · ||∞ norm and, therefore, measurable on the Borel σ-algebra B generated by 
open sets in the � · �∞ norm. This implies that πF (x) ∈ B ∈ B and, thus, ST ⊆ B. Let us now show that 
B ⊆ ST . Let T � be a countable dense subset of T . Then, by continuity, any closed ε-ball in C(T ) can be 
written as � � � � � 

f ∈ C(T ) : ||f − g||∞ ≤ ε = f ∈ C(T ) : |f(t) − g(t)| ≤ ε ∈ ST 

t∈T � 

and this finished the proof.


In the remainder of the section we will define two specific sample continuous stochastic processes.
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Brownian motion. Brownian motion is a sample continuous process Xt on T = R+ such that (a) the 
distribution of Xt is centered Gaussian for each t ≥ 0; (b) X0 = 0 and EX2 = 1; (c) if t < s then Xt and1 
Xs − Xt are independent and L(Xs − Xt) = L(Xs−t). If we denote σ2(t) = Var(Xt) then these properties 
imply � t � 1 

σ2(nt) = nσ2(t), σ2 = σ2(t) and σ2(qt) = qσ2(t) 
m m 

for all rational q. Since σ2(1) = 1, σ2(q) = q for all rational q and, by sample continuity, σ2(t) = t for all 
t ≥ 0. Therefore, for s < t, 

EXsXt = EXs(Xs + (Xt − Xs)) = s = min(t, s). 

As a result, we can give an equivalent definition. 
Definition. Brownian motion is a sample continuous centered Gaussian process Xt for t ∈ [0, ∞) with 

the covariance Cov(Xt, Xs) = min(t, s). 
Without the requirement of sample continuity, the existence of such process follows from Kolmogorov’s 

theorem since all finite dimensional distributions are consistent by construction. However, we still need to 
prove that there exists a sample continuous version of the process. We start with a simple estimate. 

Lemma 46 If f(c) = N (0, 1)(c, ∞) is the tail probability of the standard normal distribution then 

2 

2f(c) ≤ e− c 
for all c > 0. 

Proof. We have � � 
2 2 21 ∞ 

x 1 ∞ x 1 1 c 
2 2 2f(c) = √

2π
e− dx ≤ √

2π c
e− x 

dx = √
2π c

e− . 
c c 

If c > 1/
√

2π then f(c) ≤ exp(−c2/2). If c ≤ 1/
√

2π then a simpler estimate gives the result 

1 � 1 � 1 �2� 2 

2f(c) ≤ f(0) = 
2 
≤ exp − 

2 
√

2π 
≤ e− c 

. 

Theorem 54 There exists a continuous version of the Brownian motion. 

Proof. It is obviously enough to define Xt on the interval [0, 1]. Given a process Xt that has f.d. distributions 
of the Brownian process but is not necessarily continuous, let us define for n ≥ 1, 

Vk = X k+1 − X k for k = 0, . . . , 2n − 1. 
2n 2n 

The variance Var(Vk) = 1/2n and, by the above lemma, � 1 � � 1 � � 2n−1 � 
P max Vk ≤ 2nP ≤ 2n+1 exp . 

k 
| | ≥ 

n2 
|V1| ≥ 

n2 
− 

n4 

The right hand side is summable over n ≥ 1 and, by the Borel-Cantelli lemma, �� 1 � � 
P max Vk i.o. = 0. (22.0.1) 

k 
| | ≥ 

n2 

Given t ∈ [0, 1] and its dyadic decomposition t = ∞ tj for tj ∈ {0, 1}, let us define t(n) = n tj soj=1 2j j=1 2j 

that 
Xt(n) − Xt(n−1) ∈ {0} ∪ {Vk : k = 0, . . . , 2n − 1}. 

Then, the sequence � 
Xt(n) = 0 + (Xt(j) − Xt(j−1)) 

1≤j≤n 
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converges almost surely to some limit Zt because by (22.0.1) with probability one 

|Xt(n) − Xt(n−1)| ≤ n−2 

for large enough (random) n ≥ n0(ω). By construction, Zt = Xt on the dense subset of all dyadic t ∈ [0, 1]. 
If we can prove that Zt is sample continuous then all f.d. distributions of Zt and Xt will coincide, which 
means that Zt is a continuous version of the Brownian motion. Take any t, s ∈ [0, 1] such that t − s ≤ 2−n . 

k m 
| |

If t(n) = 2n and s(n) = 2n , then |k − m| ∈ {0, 1}. As a result, |Xt(n) − Xs(n)| is either equal to 0 or one of 
the increments |Vk| and, by (22.0.1), |Xt(n) − Xs(n)| ≤ n−2 for large enough n. Finally, 

|Zt − Zs| ≤ |Zt − Xt(n)| + |Xt(n) − Xs(n)| + |Xs(n) − Zs|� 1 1 � 1 c ≤ 
l2 

+ 
n2 

+ 
l2 
≤ 

n 
l≥n l≥n 

which proves the continuity of Zt. On the event in (22.0.1) of probability zero we set Zt = 0. 

Definition. A sample continuous centered Gaussian process Bt for t ∈ [0, 1] is called a Brownian bridge if 

EBtBs = s(1 − t) for s < t. 

Such process exists because if Xt is a Brownian motion then Bt = Xt − tX1 is a Brownian bridge, since for 
s < t, 

EBsBt = E(Xt − tX1)(Xs − sX1) = s − st − ts + st = s(1 − t). 

Notice that B0 = B1 = 0. 
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