
MIT OpenCourseWare 
http://ocw.mit.edu
 
 
 
18.175 Theory of Probability
Fall 2008
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  
 

http://ocw.mit.edu
http://ocw.mit.edu/terms


�

� � � � 

�

Section 24 

Empirical process and Kolmogorov’s 
chaining. 

Empirical process and the Kolmogorov-Smirnov test. In this sections we show how the Brownian bridge Bt 

arises in another central limit theorem on the space of continuous functions on [0, 1]. Let us start with a 
motivating example from statistics. Suppose that x1, . . . , xn are i.i.d. uniform random variables on [0, 1]. By 
the law of large numbers, for any t ∈ [0, 1], the empirical c.d.f. n−1 n I(xi ≤ t) converges to the true c.d.f. i=1 
P(x1 ≤ t) = t almost surely and, moreover, by the CLT, 

n � 
Xt

n = 
√

n 
� 1 � 

I(xi ≤ t) − t → N (0, t(1 − t)). 
n 

i=1 

The stochastic process Xt
n is called the empirical process. The covariance of this process, 

EXnXn = E(I(x1 ≤ t) − t)(I(x1 ≤ s) − s) = s − ts − ts + ts = s(1 − t),t s 

is the same as the covariance of the Brownian bridge and, by the multivariate CLT, finite dimensional 
distributions of the empirical process converge to f.d. distributions of the Brownian bridge, 

L (Xt
n)t∈F → L (Bt)t∈F . (24.0.1) 

However, we would like to show the convergence of Xt
n to Bt in some stronger sense that would imply weak 

convergence of continuous functions of the process on the space (C[0, 1], � · �∞). 
The Kolmogorov-Smirnov test in statistics provides one possible motivation. Suppose that i.i.d. (Xi)i≥1 

have continuous distribution with c.d.f. F (t) = P(X1 ≤ t). Let Fn(t) = n−1 n I(Xi ≤ t) be the empirical i=1 
c.d.f. It is easy to see the equality in distribution 

sup 
√

n = sup Xn 

t∈R 
|Fn(t) − F (t)| d

t∈[0,1] 
| t | 

because F (Xi) have uniform distribution on [0, 1]. In order to test whether (Xi)i≥1 come from the distribution 
with c.d.f. F, the statisticians need to know the distribution of the above supremum or, as approximation, 
the distribution of its limit. Equation (24.0.1) suggests that 

L(sup Xn ) → L(sup Bt ). (24.0.2)t 
t 
| |

t 
| |

Since Bt is sample continuous, its distribution is the law on the metric space (C[0, 1], � · �∞). Even though

Xn is not continuous, its jumps are of order n−1/2 so it has a ”close” continuous version Y n. Since � ·�∞ is a
t t 
continuous functional on C[0, 1], (24.0.2) would hold if we can prove weak convergence L(Y n)→L(Bt) on the t 
space (C[0, 1], � · �∞). Lemma 36 in Section 18 shows that we only need to prove uniform tightness of L(Y n)t 

103 



� � 

� � 

��� � ��� 
� ���

� � 

� � 

� �� �� ��� ���
��� ��� ��� ��� 
��� � ��� ��� � ��� 
��� � ��� ��� � ���

�

�� � � � � 

because, by Lemma 45, (24.0.1) already identifies the law of the Brownian motion as the unique possible 
limit. Thus, we need to address the question of uniform tightness of (L(Xn)) on the complete separable t 
space (C[0, 1], || · ||∞) or equivalently, by the result of the previous section, the equicontinuity of Xn 

t , 

lim lim sup P m(Xn, δ) > ε = 0. 
δ 0→ n→∞ 

By Chebyshev’s inequality, 
1 

m(Xn, δ) > ε Em(Xn, δ)P ≤ 
ε 

and we need to learn how to control Em(Xn, δ). The modulus of continuity of Xn can be written as 

n1 
m(Xn, δ) = sup Xn − Xn = 

√
nt s I(s < xi ≤ t) − (t − s)sup| | 

n|t−s|≤δ |t−s|≤δ i=1 � 1�� n

i=1f∈F n 

where we introduced the class of functions 

√
n sup f(xi) − Ef (24.0.3)= , 

F = f(x) = I(s < x ≤ t) : |t − s| < δ . (24.0.4) 

We will develop one approach to control the expectation of (24.0.3) for general classes of functions F and 
we will only use the specific definition (24.0.4) at the very end. This will be done in several steps. 

Symmetrization. At the first step, we will replace the empirical process (24.0.3) by a symmetrized 
version, called Rademacher process, that will be easier to control. Let x�1, . . . , x

�
n be independent copies of 

x1, . . . , xn and let ε1, . . . , εn be i.i.d. Rademacher random variables, such that P(εi = 1) = P(εi = −1) = 1/2. 
Let us define 

n n

n n 
i=1 i=1 

Notice that EP�nf = Ef. Consider the random variables 

n

1 1 
f(xi) and Pn

� f = f(x�i).Pnf = 

1
and R = εif(xi)Pnf − EfZ = sup sup . 

nf ∈F f ∈F i=1 

Then, using Jensen’s inequality and then triangle inequality, we can write 

f − EP�nEZ = E sup Pnf − Ef 

n

= E sup Pn f 
f∈F f∈F 

n

i=1 

1 1
(f(xi) − f(x�))i εi(f(xi) − f(x�))iE sup = E sup≤ 

n nf∈F f ∈Fi=1 
n n

f∈F n f∈F n 
i=1 i=1 

1 1 
εif(xi) εif(x�i) = 2ER. E sup + E sup≤ 

Equality in the second line holds because switching xi ↔ x� arbitrarily does not change the expectation, so i 
the equality holds for any fixed (εi) and, therefore, for any random (εi). 

n 
i=1 εif(xi)Hoeffding’s inequality. The first step to control the supremum in R is to control the sum 

for a fixed function f. Consider an arbitrary sequence a1, . . . , an ∈ R. Then the following holds. 

Theorem 57 (Hoeffding) For t ≥ 0, 

t2
n

P εiai ≥ t ≤ exp − n 2 .
2 i=1 aii=1 
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Proof. Given λ > 0, by Chebyshev’s inequality, 

n n n�� � � � � � � � 
P εiai ≥ t ≤ e−λtE exp λ εiai = e−λt E exp λεiai . 

i=1 i=1 i=1 

xUsing the inequality (ex + e−x)/2 ≤ e
2/2, we get 

� � eλai + e−λai � λ2a2 � 
E exp λεiai =

2 
≤ exp 

2 
i . 

Hence, 
n n�� � � λ2 � � 

P εiai ≥ t ≤ exp −λt +
2 

ai 
2 

i=1 i=1 

and minimizing over λ > 0 gives the result. 

Covering numbers, Kolmogorov’s chaining and Dudley’s entropy integral. To control ER for 
general classes of functions F , we will need to use some measures of complexity of F . First, we will show 
how to control the Rademacher process R conditionally on x1, . . . , xn. 

Definition. Suppose that (F, d) is a totally bounded metric space. For any u > 0, a u-packing number 
of F with respect to d is defined by 

D(F, u, d) = max card Fu ⊆ F : d(f, g) > u for all f, g ∈ Fu 

and a u-covering number is defined by 

N(D,u, d) = min card Fu ⊆ F : ∀f ∈ F ∃ g ∈ Fu such that d(f, g) ≤ u . 

Both packing and covering numbers measure how many points are needed to approximate any element in 
the set F within distance u. It is a simple exercise to show that 

N(F, u, d) ≤ D(F, u, d) ≤ N(F, u/2, d) 

and, in this sense, packing and covering numbers are closely related. Let F be a subset of the cube [−1, 1]n 

equipped with a scaled Euclidean metric 

n� 1 � �1/2 
d(f, g) = (fi − gi)2 . 

n 
i=1 

Consider the following Rademacher process on F , 

n1 � 
R(f) = √

n
εifi. 

i=1 

Then we have the following version of the classical Kolmogorov’s chaining lemma. 

Theorem 58 (Kolmogorov’s chaining) For any u > 0, 

P 
� 
∀f ∈ F, R(f) ≤ 29/2 

� d(0,f ) 

log1/2 D(F, ε, d)dε + 27/2d(0, f)
√

u 
� 
≥ 1 − e−u . 

0 

Proof. Without loss of generality, assume that 0 ∈ F . Define a sequence of subsets 

{0} = F0 ⊆ F1 . . . ⊆ Fj ⊆ . . . ⊆ F 

such that Fj satisfies 
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1. ∀f, g ∈ Fj , d(f, g) > 2−j , 

2. ∀f ∈ F we can find g ∈ Fj such that d(f, g) ≤ 2−j . 

F0 obviously satisfies these properties for j = 0. To construct Fj+1 given Fj : 

• Start with Fj+1 := Fj . 

• If possible, find f ∈ F such that d(f, g) > 2−(j+1) for all g ∈ Fj+1. 

• Let Fj+1 := Fj+1 ∪ {f} and repeat until you cannot find such f . 

Define projection πj : F Fj as follows: → 

for f ∈ F find g ∈ Fj with d(f, g) ≤ 2−j and set πj (f) = g. 

Any f ∈ F can be decomposed into the telescopic series 

f = π0(f) + (π1(f) − π0(f)) + (π2(f) − π1(f)) + . . . 
∞

= (πj (f) − πj−1(f)). 
j=1 

Moreover, 

d(πj−1(f), πj (f))	 ≤ d(πj−1(f), f) + d(f, πj (f)) 

≤ 2−(j−1) + 2−j = 3 · 2−j ≤ 2−j+2 . 

As a result, the jth term in the telescopic series for any f ∈ F belongs to a finite set of possible links 

Lj−1,j = f − g : f ∈ Fj , g ∈ Fj−1, d(f, g) ≤ 2−j+2 . 

Since R(f) is linear, 
∞

R(f) = R(πj (f) − πj−1(f)). 
j=1 

We first show how to control R on the set of all links. Assume that � ∈ Lj−1,j . By Hoeffding’s inequality, 

� n � � � � �1 �	 t2 t2 

P R(�) = √
n

εi�i ≥ t ≤ exp − 
2n−1 

�n
i=1 �

2 
i 
≤ exp − 

2 2−2j+4 
. 

i=1 
· 

If |F | denotes the cardinality of the set F then 

|Lj−1,j | ≤ |Fj−1| · |Fj | ≤ |Fj |2 

and, therefore, � � � t2 � 1
P ∀� ∈ Lj−1,j , R(�) ≤ t ≥ 1 − |Fj |2 exp − 

2−2j+5 
= 1 −

|Fj |2 
e−u 

after making a change of variables � �1/2 
t = 2−2j+5(4 log |Fj | + u) ≤ 27/22−j log1/2 |Fj | + 25/22−j √u. 

Hence, 

P 
� 
∀� ∈ Lj−1,j , R(�) ≤ 27/22−j log1/2 |Fj | + 25/22−j √u 

� 
≥ 1 −

|F
1 

j |2 
e−u . 
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If Fj−1 = Fj then we can define πj−1(f) = πj (f) and, since in this case Lj−1,j = {0}, there is no need to 
control these links. Therefore, we can assume that |Fj−1| < |Fj | and taking a union bound for all steps, 

P ∀j ≥ 1 ∀� ∈ Lj−1,j , R(�) ≤ 27/22−j log1/2 |Fj | + 25/22−j √u �∞ 1 
∞ 1 ≥ 1 − 

j=1 
|Fj |2 

e−u ≥ 1 − 
j=1 

(j + 1)2 
e−u = 1 − (π2/6 − 1)e−u ≥ 1 − e−u . 

Given f ∈ F, let integer k be such that 2−(k+1) < d(0, f) ≤ 2−k. Then in the above construction we can 
assume that π0(f) = . . . = πk(f) = 0, i.e. we will project f on 0 if possible. Then with probability at least 
1 − e−u , 

∞

R(f) = R(πj (f) − πj−1(f)) 
j=k+1 

∞

27/22−j log1/2 Fj + 25/22−j √u≤	 | |
j=k+1 

27/2 
∞

2−j log1/2 D(F, 2−j , d) + 25/22−k
√

u. ≤ 
j=k+1 

Note that 2−k < 2d(f, 0) and 25/22−k < 27/2d(f, 0). Finally, since packing numbers D(F, ε, d) are decreasing 
in ε, we can write (see figure 24) 

�	 � 2−(k+1)∞

29/2 2−(j+1) log1/2 D(F, 2−j , d) ≤ 29/2 log1/2 D(F, ε, d)dε 
j=k+1	 0 � d(0,f ) 

≤	 29/2 log1/2 D(F, ε, d)dε (24.0.5) 
0 

since 2−(k+1) < d(0, f). This finishes the proof. 

log D
1/2

!("+2)

22
!("+1)

The integral in (24.0.5) is called Dudley’s entropy integral. We would like to apply the bound of the above 
theorem to � n �√

nR = sup�� √1 
n 

� 
εif(xi)�� 

i=1f∈F 

for a class of functions F in (24.0.4). Suppose that x1, . . . , xn ∈ [0, 1] are fixed and let �� � � � ��	 � 
F = fi 1≤i≤n 

= I s < xi ≤ t 
1≤i≤n 

: |t − s| ≤ δ and t, s ∈ [0, 1] ⊆ {0, 1}n . 

Then the following holds. 
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Lemma 47 N(F, u, d) ≤ Ku−4 for some absolute K > 0 independent of the points x1, . . . , xn. 

Proof. We can assume that x1 ≤ . . . ≤ xn. Then the class F consists of all vectors of the type 

(0 . . . 1 . . . 1 . . . 0), 

i.e. the coordinates equal to 1 come in blocks. Given u, let Fu be a subset of such vectors with blocks of 1’s 
starting and ending at the coordinates k�nu�. Given any vector f ∈ F, let us approximate it by a vector in 
f � ∈ Fu by choosing the closest starting and ending coordinates for the blocks of 1’s. The number of different 
coordinates will be bounded by 2�nu� and, therefore, the distance between f and f � will be bounded by 

√
2u. d(f, f �) ≤ 2n−1�nu� ≤ 

The cardinality of Fu is, obviously, of order u−2 . This proves that N(F, 
√

2u, d) ≤ Ku−2 . Making the change 
of variables 

√
2u → u proves the result. 

To apply the Kolmogorov chaining bound to this class F let us make a simple observation that if a random 
2

variable X ≥ 0 satisfies P(X ≥ a + bt) ≤ Ke−t for all t ≥ 0 then 
∞ ∞ 2∞ 

t

e− 
b2 dt ≤ a + Kb ≤ K(a + b).P(X ≥ t)dt ≤ a + P(X ≥ a + t)dt ≤ a + KEX = 

0 0 0 

Theorem 58 then implies that �� Dn�n

i=1 

εifi ≤ K 
1 √
n 

K
log (24.0.6)Eε sup du + Dn 

uF 0 

where Eε is the expectation with respect to (εi) only and 
n

F n n 
i=1 

n

n

i=1 

n

1 1 
D2 = sup d(0, f)2 

n f(xi)2 I(s < xi ≤ t)= sup = sup 
|t−s|≤δF 

. 
1 1

I(xi ≤ t) − I(xi ≤ s)= sup 
n n|t−s|≤δ i=1 i=1 

Since the integral on the right hand side of (24.0.6) is concave in Dn, by Jensen’s inequality, 
n �� EDn1 K 

εif(xi) logE sup du + EDn≤ K√
n 

. 
0 uF i=1 

By the symmetrization inequality, this finally proves that �� EDn K
Em(Xn, δ) ≤ K log du + EDn . 

0 u 

The strong law of large numbers easily implies that 
n1 

I(xi ≤ t) − t 0 a.s.sup 
t∈[0,1] 

→
n 

i=1 

and, therefore, Dn 
2 δ a.s. and EDn 

√
δ. This implies that → → �� √δ K 

du + 
√

δlim sup Em(Xn, δ) ≤ K logt . 
un→∞ 0 

The right-hand side goes to zero as δ 0 and this finishes the proof of equicontinuity of Xn . As a result, →
for any continuous function Φ on (C[0, 1], � · �∞) the distibution of Φ(Xn) converges to the distribution of t 
Φ(Bt). For example, 

1√
n I(xi ≤ t) − t Bt|sup sup |→

0≤t≤1 n 0≤t≤1 

in distribution. We will find the distribution of the right hand side in the next section. 
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