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Section 25 

Markov property of Brownian motion. 
Reflection principles. 

We showed that the empirical process converges to Brownian bridge on (C([0, 1]), � · �∞). As a result, the 
distribution of a continuous function of the process will also converge, for example, 

sup Xt
n|→ sup 

0≤t≤1 
|

0≤t≤1 
|Bt| 

weakly. We will compute the distribution of this supremum in Theorem 60 below but first we will start with 
a simpler example to illustrate the so called strong Markov property of the Brownian motion. 

Given a process Wt on (C[0, ∞), d), let Ft = σ(Ws; s ≤ t). A random variable τ is called a stopping 
time if 

{τ ≤ t} ∈ Ft for all t ≥ 0. 

For example, a hitting time τc = inf{t > 0, Wt = c}, c > 0, is a stopping time because, by sample continuity, 

{τc ≤ t} = {Wr > q}
q<c r<t

where the intersection and union are over rational numbers q, r. If Wt is the Brownian motion then strong 
Markov property of Wt states, informally, that the increment process Wτ +t − Wτ after the stopping time 
is independent of the σ-algebra Fτ generated by Wt up to the stopping time τ and, moreover, Wτ +t − Wτ 

has the same distribution as Wt. This property is very similar to the property of stopping times for sums 
of i.i.d. random variables, in Section 7. However, to avoid subtle measure theoretic considerations, we will 
simply approximate arbitrary stopping times by dyadic stopping times for which Markov property can be 
used more directly, by summing over all possible values. If τ is a stopping time then 

�2nτ � + 1 
τn = 

2n 

is also a stopping time. Indeed, if 

k k + 1 k + 1 
2n 
≤ τ < 

2n 
then τn = 2n 

and, therefore, for any t ≥ 0, if l ≤ t < l+1 then2n 2n 

l 

 
{τn ≤ t} = τ < 

2n 
= {τ ≤ q} ∈ Ft. 

q<l/2n 
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By construction, τn τ and, by continuity, Wτn Wτ a.s. Let us demonstrate how to use Markov property ↓ →
for these dyadic approximations in the computation of the following probability, 

P(sup Wt ≥ c) = P(τc ≤ b) 
t≤b 

for c > 0. For dyadic approximation τn of τc, we can write 

in Fk/2n indep. of Fk/2n � �� �� � � �� � � 
P(τn ≤ b, Wb − Wτn ≥ 0) = P τn = k/2n ≤ b, Wb − Wk/2n ≥ 0 

k≥0 

1 � � k � 1 
=

2 
P τn = 2n 

≤ b =
2 

P(τn ≤ b). 
k≥0 

Letting n →∞ and applying the portmanteau theorem, 

1
P(τc ≤ b, Wb − Wτc ≥ 0) = 

2 
P(τc ≤ b), 

since both sets {τc = b} and {Wb − Wτc = 0} are the sets of continuity because 

{τc = b} ⊆ {Wb = c} and {Wb − Wτc = 0} ⊆ {Wb = c} 

and P(Wb = c) = 0. Finally, this implies that 

1 1 � � 
P(Wb ≥ c) = P(τc ≤ b, Wb − Wτc ≥ 0) = P(τc ≤ b) = P sup

2 2 t≤b 
Wt ≥ c 

and, therefore, � � � 
2∞ 1 x 
2P sup = P(τc ≤ b) = 2N (0, b)(c, ∞) = 2 dx. (25.0.1) 

t≤b 
Wt ≥ c 

c/
√

b 
√

2π
e− 

The p.d.f. of τc satisfies 
1 c2 

2bfτc (b) = √
2π

e− c · 
b3/2 

= O(b−3/2) 

as b → +∞, which means that Eτc = ∞. 

Reflection principles. If xt is the Brownian motion then yt = xt − tx1 is the Brownian bridge for t ∈ [0, 1]. 
The next lemma shows that we can think of the Brownian bridge as the Brownian motion conditioned to be 
equal to zero at time t = 1 (pinned down Brownian motion). 

Lemma 48 Conditional distribution of xt given |x1| < ε converges to the law of yt, 

L xt 
� |x1| < ε → L(yt) 

as ε 0.↓ 

Proof. Notice that yt = xt − tx1 is independent of x1 because their covariance 

Eytx1 = Extx1 − tEx 2 = t − t = 0.1 

Therefore, the Brownian motion can be written as a sum xt = yt + tx1 of the Brownian bridge and inde­
pendent process tx1. Therefore, if we define a random variable ηε with distribution L(ηε) = L x1

�|x1| < ε 
independent of yt then � � � 

L xt 
� |x1| < ε = L(yt + tηε) → L(yt). 

as ε 0.↓ 
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Figure 25.1: Reflecting the Brownian motion. 

Theorem 59 If yt is the Brownian bridge then for all b > 0, 

P sup yt ≥ b = e−2b2 

. 
t∈[0,1] 

Proof. Since yt = xt − tx1 and x1 are independent, we can write 

P(∃t : yt = b) = 
P(∃t : xt − tx1 = b, |x1| < ε)

= 
P(∃t : xt = b + tx1, |x1| < ε) 

.
P(|x1| < ε) P(|x1| < ε) 

We can estimate the numerator from below and above by 

P ∃t : xt > b + ε, |x1| < ε ≤ P ∃t : xt = b + tx1, |x1| < ε ≤ P ∃t : xt ≥ b − ε, |x1| < ε . 

Let us first analyze the upper bound. If we define a hitting time τ = inf{t : xt = b − ε} then xτ = b − ε and 

P ∃t : xt ≥ b − ε, |x1| < ε = P τ ≤ 1, |x1| < ε = P τ ≤ 1, x1 − xτ ∈ (−b, −b + 2ε) . 

For dyadic approximation as above � � k � 
P(τn ≤ 1, x1 − xτn ∈ (−b, −b + 2ε)) = P τn = 2n 

≤ 1, x1 − xk/2n ∈ (−b, −b + 2ε) 
k≥0 � � k � � � 

= P τn = 2n 
≤ 1 P x1 − xk/2n ∈ (−b, −b + 2ε) 

k≥0 � � k � � � 
= P τn = 2n 

≤ 1 P x1 − xk/2n ∈ (b − 2ε, b) 
k≥0 

= P(τn ≤ 1, x1 − xτn ∈ (b − 2ε, b)) 

where in the third line we used the fact that the distribution of x1 − xk/2n is symmetric around zero and, 
thus, we ”reflected” the Brownian motion after stopping time τ as in figure 25.1. Therefore, in the limit 
n →∞ we get 

P ∃t : xt ≥ b − ε, |x1| < ε = P τ ≤ 1, x1 − xτ ∈ (b − 2ε, b) = P x1 ∈ (2b − 3ε, 2b − ε) 

because the fact that x1 ∈ (2b − 3ε, 2b − ε) automatically implies that τ ≤ 1 for b > 0 and ε small enough. 
Finally, this proves that 

P(∃t : xt = b) ≤ 
P(x1 ∈ (2b − 3ε, 2b − ε)) 

e−2b2 

P(x1 ∈ (−ε, ε)) 
→ 

as ε 0. The lower bound can be analyzed similarly. → 
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Theorem 60 (Kolmogorov-Smirnov) If yt is the Brownian bridge then for all b > 0, 

P sup yt = 2 (−1)n−1 e−2n 2b2 

. 
0≤t≤1 

| | ≥ b 
n≥1 

Proof. For n ≥ 1, consider an event 

An = ∃t1 < < tn ≤ 1 : ytj = (−1)j−1b· · · 

and let τb and τ−b be the hitting times of b and −b. By symmetry of the distribution of the process yt, 

P sup yt = P τb or τ = 2P(A1, τb < τ−b). 
0≤t≤1 

| | ≥ b −b ≤ 1 

Again, by symmetry, 

P(An, τb < τ−b) = P(An) − P(An, τ−b < τb) = P(An) − P(An+1, τb < τ−b). 

By induction, 
P(A1, τb < τ−b) = P(A1) − P(A2) + . . . + (−1)n−1P(An, τb < τ−b). 

As in Theorem 59, reflecting the Brownian motion each time we hit b or −b, one can show that 

P(An) = lim 
P x1 ∈�(2nb − ε, 2nb � 

+ ε)
= e− 2 (2nb)2 

= e−2n 21 b2 

ε 0 P x1 ∈ (−ε, ε)→

and this finishes the proof. 

Given a, b > 0, let us compute the probability that a Brownian bridge crosses one of the levels −a or b. 

Theorem 61 (Two-sided boundary) If a, b > 0 then 

P(∃t : yt = −a or b) = 
�� 

e−2(na+(n+1)b)2 

+ e−2((n+1)a+nb)2 
� 
− 

� 
2e−2n 2(a+b)2 

. (25.0.2) 
n≥0 n≥1 

Proof. We have 

P(∃t : yt = −a or b) = P(∃t : yt = −a, τ−a < τb) + P(∃t : yt = b, τb < τ−a). 

If we introduce the events � � 
Bn = ∃t1 < . . . < tn : yt1 = b, yt2 = −a, . . . 

and � � 
An = ∃t1 < . . . < tn : yt1 = −a, yt2 = b, . . . 

then, as in the previous theorem, 

P(Bn, τb < τ−a) = P(Bn) − P(Bn, τ−a < τb) = P(Bn) − P(An+1, τ−a < τb) 

and, similarly, 
P(An, τ−a < τb) = P(An) − P(Bn+1, τb < τ−a). 

By induction, 
∞

P(∃t : yt = −a or b) = (−1)n−1(P(An) + P(Bn)). 
n=1 

Probabilities of the events An and Bn can be computed using the reflection principle as above, 

P(A2n) = P(B2n) = e−2n 2(a+b)2 

, P(B2n+1) = e−2(na+(n+1)b)2 

, P(A2n+1) = e−2((n+1)a+nb)2 

and this finishes the proof. 

If X = − inf yt and Y = sup yt then the spread of the process yt is ξ = X + Y. 
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Theorem 62 (Distribution of the spread) For any t > 0, � � � 2 2 

P ξ ≤ t = 1 − (8n 2t2 − 2)e−2n t . 
n≥1 

Proof. First of all, (25.0.2) gives the joint c.d.f. of (X, Y ) because 

F (a, b) = P(X < a, Y < b) = P(−a < inf yt, sup yt < b) = 1 − P(∃t : yt = −a or b). 

If f(a, b) = ∂2F/∂a∂b is the joint p.d.f. of (X, Y ) then the c.d.f of the spread X + Y is 

� � � t� t−a 

P Y + X ≤ t = f(a, b) db da. 
0 0 

The inner integral is � t−a ∂F ∂F 
f(a, b)db = (a, t − a) − (a, 0). 

∂a ∂a 0 

Since 

∂F 
(a, b) = 

� 
4n 

� 
na + (n + 1)b 

� 
e−2(na+(n+1)b)2 

∂a 
n≥0 

+	 4(n + 1) (n + 1)a + nb e−2((n+1)a+nb)2 

n≥0 � 2(a+b)2 

− 8n 2(a + b) e−2n , 
n≥1 

plugging in the values b = t − a and b = 0 gives 

t−a �	 2 � 2 � 2 2 

f(a, b)db = 4n((n + 1)t − a)e−2((n+1)t−a) + 4(n + 1)(nt + a)e−2(nt+a) − 8n 2te−2n t . 
0 n≥0	 n≥0 n≥1 

Integrating over a ∈ [0, t], 

P 
� 
Y + X ≤ t 

� 
=	

� 
(2n + 1) 

� 
e−2n 2t2 

− e−2(n+1)2t2 
� 
− 

� 
8n 2t2 e−2n 2 t2 

n≥0 n≥1 � 2 2 � 2 2 

= 1 + 2 e−2n t − 8n 2t2 e−2n t , 
n≥1 n≥1 

and this finishes the proof. 
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