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� � � 

Section 5 

Bernstein Polynomials. Hausdorff and 
de Finetti theorems. 

Let us look at some applications related to the law of large numbers. Consider an i.i.d. sequence of real 
valued r.v. (Xi) with distribution Pθ from a family of distributions parametrized by θ ∈ Θ ⊆ R such that 

EθXi = θ, σ2(θ) := Varθ(Xi) ≤ K < +∞. 

1Let X̄ 
n = n 

� 
i≤n Xi. The following holds.


Theorem 6 If u : R R is uniformly continuous and bounded then Eθu(X̄ 
n) u(θ) uniformly over Θ.
→ → 

Proof. For any ε > 0, 

|Eθu(X̄ 
n) − u(θ)| ≤ Eθ|u(X̄ 

n) − u(θ)|� � 
= Eθ|u(X̄ 

n) − u(θ)| I(|X̄ 
n − θ| ≤ ε) + I(|X̄ 

n − θ| > ε) 

max + 2 max u(x) ¯ > ε)≤ 
|x−θ|≤ε 

|u(x) − u(θ)| 
x 
| |Pθ(|Xn − θ| 

δ(ε) + 2�u�∞ 
1 

Eθ(X̄ 
n − θ)2 ≤ δ(ε) + 

2�u�∞K
,≤ 

ε2 nε2 

where δ(ε) is the modulus of continuity of u. Letting ε = εn → 0 so that nε2 →∞ finishes the proof. n 

Example. Let (Xi) be i.i.d. with Bernoulli distribution B(θ) with probability of success θ ∈ [0, 1], i.e. 

Pθ(Xi = 1) = θ, Pθ(Xi = 0) = 1 − θ, 

and let u : [0, 1] R be continuous. Then, by the above Theorem, the following Bernstein polynomials → �n � k � �� � n � k �� 
n 
�n � 

Bn(θ) := Eθu(X̄ 
n) = u Pθ Xi = k = u θk(1 − θ)n−k u(θ) 

n n k 
→ 

k=0 i=1 k=0 

uniformly on [0, 1]. 
Example. Let (Xi) have Poisson distribution Π(θ) with intensity parameter θ > 0 defined by 

θk 

Pθ(Xi = k) = 
k! 

e−θ for integer k ≥ 0. 

Then it is well known (and easy to check) that EθXi = θ, σ2(θ) = θ and the sum X1 + . . . + Xn has Poisson 
distribution Π(nθ). If u is bounded and continuous on [0, +∞) then 

Eθu(X̄ 
n) = 

∞

u 
� k � 

Pθ 

� n

Xi = k 
� 

= 
∞

u 
� k � (nθ)k 

e−nθ u(θ) 
n n k! 

→ 
k=0 i=1 k=0 
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uniformly on compact sets. 

Moment problem. Consider a random variable X ∈ [0, 1] and let µk = EXk be its moments. Given 
a sequence (c0, c1, c2, . . .) let us define a sequence of increments by Δck = ck+1 − ck. Then 

−Δµk = µk − µk+1 = E(Xk − Xk+1) = EXk(1 − X), 

(−Δ)(−Δµk) = (−1)2Δ2 µk = EXk(1 − X) − EXk+1(1 − X) = EXk(1 − X)2 

and by induction 
(−1)rΔr µk = EXk(1 − X)r . 

Clearly, (−1)rΔrµk ≥ 0 since X ∈ [0, 1]. If u is a continuous function on [0, 1] and Bn is its corresponding 
Bernstein polynomial then 

n �� � n �� �� � k n � � k n
EBn(X) = u EXk(1 − X)n−k = u (−1)n−kΔn−k µk. 

n k n k 
k=0 k=0 

Since Bn(X) converges uniformly to u(X), EBn(X) converges to Eu(X). Let us define � � n

p
(n) = 

n 
(−1)n−kΔn−k µk ≥ 0, p

(n) = 1 (take u = 1).k kk 
k=0 

We can think of pk 
(n) as the distribution of a r.v. X(n) such that 

P X(n) = 
k 

= p(
k
n) 

. (5.0.1) 
n 

We showed that � � 
EBn(X) = Eu X(n) Eu(X)→ 

for any continuous function u. We will later see that by definition this means that X(n) converges to X in 
distribution. Given the moments of a r.v. X, this construction allows us to approximate the distribution of 
X and expectation of u(X). 

Next, given a sequence (µk), when is it the sequence of moments of some [0, 1] valued r.v. X? By the 
above, it is necessary that 

µk ≥ 0, µ0 = 1 and (−1)rΔr µk ≥ 0 for all k, r. (5.0.2) 

It turns out that this is also sufficient. 

Theorem 7 (Hausdorff) There exists a r.v. X ∈ [0, 1] such that µk = EXk iff (5.0.2) holds. 

Proof. The idea of the proof is as follows. If µk are the moments of the distribution of some r.v. X, then 
the discrete distributions defined in (5.0.1) should approximate it. Therefore, our goal will be to show that 
condition (5.0.2) ensures that (pk 

(n)) is indeed a distribution and then show that the moments of (5.0.1) 
converge to µk. As a result, any limit of these distributions will be a candidate for the distribution of X. 

First of all, let us express µk in terms of (pk 
(n)). Since Δµk = µk+1 − µk we have the following inversion 

formula: 

µk = µk+1 − Δµk = (µk+2 − Δµk+1) + (−Δµk+1 + Δ2 µk) 
r � � 

= µk+2 − 2Δµk+1 + Δ2 µk = 
r 

(−1)r−j Δr−j µk+j ,
j

j=0 
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by induction. Take r = n − k. Then 

n−k
� 
n−k

�� � n−k
� 
n−k

� 
j n j (n)

µk = � � 
k + j 

(−1)n−(k+j)Δn−(k+j)µk+j = � � pk+j . n n 
j=0 k+j j=0 k+j 

We have � � � �n−k k+j 
j (n − k)! (k + j)!(n − k − j)! k 
n nj!(n − k − j)! n!

k+j k 

so that � � � � n−k k+j n m 

µk = � 
n
k� p

(
k
n
+
) 
j = � 

n
k� p(

m
n). 

j=0 k m=k k 

By (5.0.2), pm 
(n) ≥ 0 and m≤n pm 

(n) = µ0 = 1 so we can consider a r.v. X(n) such that 

P X(n) = 
m 

= p(n) for 0 ≤ m ≤ n.m n 

We have 

n n n� m � m(m − 1) (m − k + 1) � m ( m 1 ) ( m k+1 )k (n) (n) n n n n n (n)µk = � 
n � pm = 

n(n − 1) 
· · · 

(n − k + 1) 
pm = 

1(1 −
− 

1 ) 
· · · 

(1 −
− 
k+1 ) 

pm 
m=k k m=k m=k n n

· · · · · · 
n


≈ 
n 

(k) X(n) −→ µk.

n→∞ �� m �k 

pm = E 
� �k n→∞

m=0 

Any continuous function u can be approximated by (for example, Bernstein) polynomials so the limit 
limn→∞ Eu X(n) exists. By selection theorem that we will prove later in the course, one can choose a 
subsequence X(ni) that converges to some r.v. X in distribution and, as a result, � �k 

E X(ni) EXk = µk,→ 

which means that µk are the moments of X. 

de Finetti’s theorem. Consider an exchangeable sequence X1, X2, . . . , Xn, . . . of Bernoulli random 
variables which means that for any n ≥ 1 the probability 

P(X1 = x1, ...,Xn = xn) 

depends only on x1 + . . . + xn, i.e. it does not depend on the order of 1’s or 0’s. Another way to say this is 
that for any n ≥ 1 and any permutation π of 1, . . . , n the distribution of (Xπ(1), . . . , Xπ(n)) does not depend 
on π. Then the following holds. 

Theorem 8 (de Finetti) There exists a distribution F on [0, 1] such that � 1 � � 

pk := P(X1 + . . . + Xn = k) = 
n

x k(1 − x)n−kdF (x). 
k0 

This means that to generate such exchangeable sequence we can first pick x ∈ [0, 1] from distribution F and 
then generate a sequence of i.i.d Bernoulli random variables with probability of success x. 
Proof. Let µ0 = 1 and for k ≥ 1 define 

µk = P(X1 = 1, ...,Xk = 1). (5.0.3) 
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We have 

P(X1 = 1, ...,Xk = 1, Xk+1 = 0) = P(X1 = 1, ...,Xk = 1) 
− P(X1 = 1, ...,Xk = 1, Xk+1 = 1) 
= µk − µk+1 = −Δµk. 

Next, using exchangeability 

P(X1 = 1, ...,Xk = 1, Xk+1 = 0, Xk+2 = 0) = P(X1 = 1, ...,Xk = 1, Xk+1 = 0) 
− P(X1 = 1, ...,Xk = 1, Xk+1 = 0, Xk+2 = 1) 
= −Δµk − (−Δµk+1) = Δ2 µk. 

Similarly, by induction, 

P(X1 = 1, ...,Xk = 1, Xk+1 = 0, ...,Xn = 0) = (−1)n−kΔn−k µk ≥ 0. 

By the Hausdorff theorem, µk = EXk for some r.v. X ∈ [0, 1] and, therefore, 

P(X1 = 1, ...,Xk = 1, Xk+1 = 0, ...,Xn = 0) = (−1)n−kΔn−k µk � 1 

= EXk(1 − X)n−k = x k(1 − x)n−kdF (x). 
0 

Since, by exchangeability, changing the order of 1’s and 0’s does not affect the probability, we get � 1 � � 

P(X1 + . . . + Xn = k) = 
n

x k(1 − x)n−kdF (x). 
k0 

Example. (Polya urn model). Suppose we have b blue and r red balls in the urn. We pick a ball 

+ c of the same color

b r

Pick

Figure 5.1: Polya urn model. 

randomly and return it with c balls of the same color. Consider r.v.s 

1 if the ith ball picked is blue 
Xi = 0 otherwise. 

Xi’s are not independent but exchangeable. For example, 

b b + c r b r b + r
P(bbr) = , P(brb) = 

b + r 
× 

b + r + c 
× 

b + r + 2c b + r 
× 

b + r + c 
× 

b + r + 2c 

are equal. To identify the distribution F in de Finetti’s theorem, let us look at its moments µk in (5.0.3), 

µk = P 
� 

b . . . b
� 

= 
b b + c b + (k − 1)c

.� �� � b + r 
× 

b + r + c 
× · · · × 

b + r + (k − 1)c 
k times 

One can recognize or easily check that µk are the moments of Beta(α, β) distribution with the density 

Γ(α + β)

Γ(α)Γ(β) 

x α−1(1 − x)β−1
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� � on [0, 1] with parameters α = b/c, β = r/c. By de Finetti’s theorem, we can generate Xi’s by first picking 
x from distribution Beta b/c, r/c and then generating i.i.d. Bernoulli (Xi)’s with probability of success x. 
By strong law of large numbers, the proportion of blue balls in the first n repetitions will converge to this 
probability of success x, i.e. in the limit it will be random with Beta distribution. This example will come 
up once more when we talk about convergence of martingales. 
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