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ABSTRACT

The record of global precipitationmapping using Special SensorMicrowave Imager (SSM/I)measurements

now extends over two decades. Similar measurements, albeit with different retrieval algorithms, are to be

used in the Global Precipitation Measurement (GPM) mission as part of a constellation to map global pre-

cipitation with a more frequent data refresh rate. Remotely sensed precipitation retrievals are prone to both

magnitude (precipitation intensity) and phase (position) errors. In this study, the ground-based radar pre-

cipitation product from the Next Generation Weather Radar stage-IV (NEXRAD-IV) product is used to

evaluate a newmetric of error in the long-term SSM/I-based precipitation records. The newmetric quantifies

the proximity of two multidimensional datasets. Evaluation of the metric across the years shows marked

seasonality and precipitation intensity dependence. Drifts and changes in the instrument suite are also evi-

dent. Additionally, the precipitation retrieval errors conditional on an estimate of background surface soil

moisture are estimated. The dynamic soil moisture can produce temporal variability in surface emissivity,

which is a source of error in retrievals. Proper filtering has been applied in the analysis to differentiate be-

tween the detection error and the retrieval error. The identification of the different types of errors and their

dependence on season, intensity, instrument, and surface conditions provide guidance to the development of

improved retrieval algorithms for use in GPM constellation-based precipitation data products.

1. Introduction

From the first launch of the Special SensorMicrowave

Imager (SSM/I) on board the Defense Meteorological

Satellite Program (DMSP) platforms in 1987, there has

been 25 years of continuous monitoring of the earth’s

atmosphere using this microwave instrument. This in-

cludes the launch of the new version of the instrument

Special Sensor Microwave Imager/Sounder (SSMIS)

as well. Figure 1 shows the timeline of these two in-

struments in orbit (Berg et al. 2012). This dataset pro-

vides a valuable climatological record that can be used

for different applications. However, it is necessary to

evaluate the products of these instruments at different

spatial and temporal scales to have a better and deeper

insight into the quality of the records. Furthermore, the

results of this evaluation can help guide improved re-

trieval algorithms.

There is an increasing need for real-time and near-real-

time measurements from satellites to be incorporated

into meteorological and hydrological hazards decision

support systems. A better quantification of errors in

spaceborne instrument data and associated retrievals is

important to guide where efforts need to focus in im-

proving data products’ algorithms. Currently, there are

several multiplatform satellite precipitation products

thatmerge different spaceborne estimates of precipitation

together and produce global maps of precipitation over

land and oceans (Huffman et al. 2007; Joyce et al. 2010;

Hsu and Sorooshian 2008; Xie et al. 2007; Kubota et al.

2007). All these methods use brightness temperature

measurements from infrared instruments in geostationary

orbit as theirmain input since they provide the space–time

continuity of measurements within the instrument view-

ing disc. Mostly, these approaches calibrate their algo-

rithms using the more accurate but less frequently

refreshed estimates of precipitation from passive micro-

wave (PMW) instruments such as SSM/I in low Earth

orbit as well as gauge measurements. However, there has

not been a comprehensive spatial and temporal analysis of

the quality of the PMW measurements, especially those

from SSM/I and its follow-on instruments. It is thus
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necessary and useful to quantify the uncertainty in the

PMW-based retrievals for these merged products.

There is a long history of studies to evaluate the errors

associated with PMW-based precipitation estimates.

Many of the studies are associated with field campaigns

or have limited-duration and limited-coverage domains

in their comparisons. Hence, the types of errors such as

their dependence on intensity, season, etc. cannot be

fully characterized.

During the 1990s, Ferraro and Marks (1995) used the

ground-based radar measurements of rainfall over the

United States, United Kingdom, and Japan to develop

a precipitation retrieval algorithm for SSM/I measure-

ments. They categorized the precipitation into several

magnitude bins and provided coefficients for nonlinear

fits to the instrument data. They found an error of about

10% for scattering algorithm and 20% for emission al-

gorithm. Although the algorithm has gone through re-

visions, the original version is still in practice. The SSM/I

rain-rate product that is used in the present study is based

on this algorithm. Moreover, several operational prod-

ucts that produce globalmaps of precipitation bymerging

measurements from different sensors take advantage of

the SSM/I rain rate based on the Ferraro and Marks al-

gorithm (Table 1). There have also been several studies

that use this algorithm (e.g., Turk et al. 2000;Krishnamurti

et al. 2001; Miller et al. 2001; Kidd et al. 2003).

Bell et al. (2001) investigate the monthly average

precipitation estimates based on the SSM/I sensor on

board DMSP-F10 and DMSP-F11. They apply spatial

averaging to form coarse-spatial-resolution 2.58 3 2.58
products and to evaluate the errors of these products

based on independent estimates from surface data and

from atmospheric models over the western tropical Pa-

cific (ocean only). Their major finding is that the root-

mean-square error (RMSE) inferred from the SSM/I

measurements is larger than the one based on surface

data. They also find that the Tropical Rainfall

Measuring Mission (TRMM) microwave radiometer–

based estimates perform better in the comparisons.

Other multisensor studies like Dinku and Anagnostou

(2006) remove the bias in the SSM/I-based precipitation

estimates by calibrating the SSM/I estimate using amore

accuratemeasurement, in this case TRMMprecipitation

radar (PR). They also show that the calibrated estima-

tions have considerably less error. Others like Yin et al.

(2008) include geographic location and topographic

variables (such as surface roughness, slopes facing to-

ward or away from moisture pathways, etc.) to improve

the precipitation estimates from SSM/I measurements.

Ferraro and Li (2002) use gauge measurements from the

Oklahoma Mesonet network to estimate the errors in

instantaneous SSM/I precipitation estimates over land.

By incorporating an error model for Mesonet (as the

truth measurement in their study), they estimate that

the SSM/I-based precipitation rate over 0.58, 1.08, and
2.58 boxes has an error of 150%, 100%, and 70% re-

spectively. This shows the high correlation between the

resolution of data and the associated errors in the esti-

mates. Similar results are also evident in the earlier

study by Li et al. (1998).

Of the previous studies on PMW-based precipitation

retrieval errors, perhaps the most relevant are those by

McCollum et al. (2002) and Wolff and Fisher (2009).

McCollum et al. (2002) make an evaluation of the bias in

SSM/I-based precipitation retrievals over the contigu-

ous United States (CONUS) by creating a bias-adjusted,

ground-based radar estimate as the truth. They consider

3 years of data from SSM/I on board the DMSP-F13,

DMSP-F14, and DMSP-F15 satellites. The results show

a dependency of the satellite-based data product errors on

geographic location and climate. They find that retrievals

based on SSM/I on board F14 and F15 overestimate

precipitation over the central part of the United States by

about 45%. However, they have used the Next Genera-

tionWeatherRadar (NEXRAD) stage-III product,which

is not a gauge-corrected product, and as a result, they had

to implement a bias adjustment.

Wolff and Fisher (2009) used 4 years of data from

SSM/I on board DMSP-F13, DMSP-F14, and DMSP-

F15, as well as Advanced Microwave Sounding unit B

(AMSU-B; on board N15, N16, and N17), Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E on board the Aqua satellite), and

TRMM Microwave Imager (TMI) and evaluated them

with ground-based measurements from TRMM ground

validation sites. Statistics such as probability density

function (PDF), correlation coefficient, and perfor-

mance skill score are reported. In general, they conclude

that the PMW-based precipitation estimates tend to

overestimate precipitation over land and ocean, and

FIG. 1. Timeline of SSM/I and SSMIS instruments in orbit (Berg

et al. 2012).
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SSM/I and AMSU-B had lower performance skills

compared to AMSR-E and TMI.

In a recent study, Vila et al. (2013) applied a new

quality-control (QC) scheme to the antenna tempera-

tures of SSM/I and SSMIS and evaluated monthly hy-

drological products such as rain rate, liquid water path,

and total precipitable water. They used the Ferraro and

Marks (1995) algorithm for rain-rate retrieval and con-

cluded that the QC antenna temperatures produce

a more accurate product on the monthly scale compared

to the non-QC version. They also used a histogram

matching technique to modify SSMIS temperatures and

match them with the SSM/I reference across all seven

channels. The results showed good agreement between

the two sensors’ products for all the analyzed variables.

In this study, we will use longer years of data products

based on SSM/I instrument measurements to assess the

errors in estimation of precipitation intensity over land.

We also explore a larger spatial domain and introduce

a new multiscale metric for evaluating rainfall products.

In contrast to McCollum et al. (2002), we will use the

NEXRAD stage-IV (NEXRAD-IV) radar product,

which is a gauge-corrected rain-rate product, and we

also use up to 6 years of data for our analysis. The sta-

tistics that are presented show the seasonality and in-

tensity dependence of the errors in more detail.

Moreover, we take advantage of their results showing

the poor quality of radar products over mountainous

regions and exclude those areas from our analysis.

This study specifically aims to quantify the retrieval

errors in the precipitation product based on the suite of

SSM/I instruments using the Ferraro and Marks (1995)

algorithm. For ground validation, we use ground-based

radar precipitation estimates. Specifically, we use the

NEXRAD-IV product that is a merged reanalysis with

gauge precipitation station observations. The NEXRAD-

IV product provides realistic precipitation estimates that

are less prone to error than radar-only estimates (Lin and

Mitchell 2005). To have a more comprehensive evalua-

tion, the error statistics of the SSM/I-based precipitation

products using instruments on boardDMSP-F13,DMSP-

F14, and DMSP-F15 (hereafter referred to as SSM/I-13,

SSM/I-14, and SSM/I-15, respectively) are presented. To

distinguish between detection error and retrieval error,

we have incorporated snow and freeze/thaw (FT) state

measurements into our comparisons. The samples have

been monitored for snow and FT status, and those with

high snow percentage on the ground and/or frozen con-

ditions have been removed from the analysis. The details

of this monitoring are provided in section 2c.

Results show the significant and similar seasonal

patterns in errors. The SSM/I-15 statistics reveal the

effect of the interference from the radar calibration suite

(RADCAL) that was activated on DMSP-F15 on 14

August 2006. Our study area is over part of the CONUS

where stage-IV data are available, and hence the focus is

on land. Since many of the meteorological and hydro-

logical hazard applications of Global Precipitation

Measurement (GPM) data products with frequent

refresh rates are over land, understanding the error

structure andwhere the algorithms need improvement is

important.

Section 2 of this paper presents the datasets used and

the study region, along with themonitoring approach for

removing detection errors. Section 3 includes the sta-

tistical measures and the results, while section 4 presents

a discussion and conclusions.

2. Datasets and monitoring

a. Study area

The study region is a large portion of the CONUS

contained within the region bounded by 3183703000 and
4783703000N latitudes and 10483703000 and 8083703000W
longitudes. We have selected the region based on the

results from McCollum et al. (2002) to exclude moun-

tainous regions in which radar measurements are prone

to errors. The spatial scale of comparisons is 0.258 (i.e.,
081500000) for both NEXRAD- and SSM/I-based pre-

cipitation products. The NEXRAD data are coarse

TABLE 1. Merged satellite estimations of rainfall that use the SSM/I precipitation product based on the Ferraro and Marks (1995)

algorithm.

Product name Sources Dates Temporal resolution Pixel size

Climate Prediction Center (CPC) morphing technique

(CMORPH; Joyce et al. 2004, 2010)

PMW and IR 2002–present 0.5 h 0.258

Precipitation Estimation from Remotely Sensed Imagery

Using Artificial Neural Networks (PERSIANN;

Hong et al. 2004; Hsu and Sorooshian 2008)

PMW and IR 2000–present 3 h 0.258

CPC Merged Analysis of Precipitation

(CMAP; Xie and Arkin 1997)

PMW and IR 1979–present Monthly 2.58

Global Precipitation Climatology Project (GPCP;

Adler et al. 2003)

PMW and IR 1979–present Monthly 2.58
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grained to this resolution since their true resolution is

considerably higher. The SSM/I-based products are

posted at 0.258 even though the instrument measure-

ment inputs are at similar or coarser resolutions. The

match between the two products is not complete because

of the swath limitations of the satellite instrument mea-

surements. Missing pixel information also contributes to

the mismatch. We therefore divide the region into six

subregions, each of which covers 88 3 88. Figure 2 shows
the study area and the six subregions. We also exclude

the pixels that fall over part of the Great Lakes in the

northeastern part of the region and over the ocean in the

southeastern part of the region because the Ferraro and

Marks (1995) algorithm is only for precipitation re-

trieval over land. Some pixels close to these regions are

also removed to mitigate water body contamination.

b. Data

The precipitation estimates based on SSM/I mea-

surements are available through the Microwave Surface

and Precipitation Products System (MSPPS) Orbital

Data from the National Oceanic and Atmospheric As-

sociation (NOAA). These data products are available

on orbital grids, and we map them into a 0.258 3 0.258
grid using a nearest neighbor sampling that does not

affect themarginal distribution of precipitation intensities.

Nearest neighbor sampling is a method that assigns the

value of the nearest SSM/I orbital pixel to the center of

each grid box. The time domain for each of the satellites

is different, as listed in Table 2. The retrieval algorithm

of the MSPSS product is based on Ferraro (1997). This

algorithm uses a scattering approach for rain-rate re-

trieval over land. The scattering index (SI) is defined

based on the earlier works by Grody (1991). The SI over

land is defined as

SIL 5 (451:92 0:44TB19V 2 1:775TB22V

1 0:005 75TB2
22V)2TB85V , (1)

in which SIL is the scattering index over land, TB is the

brightness temperature (K), and the subscripts denote

the frequency of the vertical polarization channel used.

This algorithm has been calibrated with ground-based

radar measurements of rainfall, and the following equa-

tion is used to retrieve rain rate:

RR5 0:005 13SI1:9468L , (2)

where RR is the rain rate (mmh21). A minimum

threshold of 10K is set for SI based on earlier studies in

TABLE 2. Time domain and number of samples for each of the

satellite platforms.

Sensor Start date End date No. of samples

SSM/I-13 Jul 2003 Nov 2009 1525

SSM/I-14 Jul 2003 Aug 2008 1358

SSM/I-15 Jul 2003 Dec 2010 2696

FIG. 2. The study area shown by the bold rectangular over the CONUS. The dashed lines show

the six subregions defined for sampling.
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the literature that results in a 0.45mmh21 minimum for

rain-rate retrieval. Moreover, as the RR increases ex-

ponentially with SI based on Eq. (2), a maximum rain

rate of 35mmh21 is also set for this algorithm, and

values higher than that are set to 35mmh21. This algo-

rithm is also known as the NOAA/National Environ-

mental Satellite, Data, and Information Service

(NESDIS) algorithm for SSM/I.

The ground validation measurements are from the

NEXRAD dataset obtained from the National Weather

Service’s ground-based Weather Surveillance Radar-

1988 Doppler (WSR-88D) network (Fulton et al. 1998).

The merged radar and gauge estimates produced by the

12 River Forecast Centers (RFCs) in CONUS is mo-

saicked on a 4-km grid at the National Centers for En-

vironmental Prediction (NCEP). The result is a national

product (NEXRAD-IV) that is available through the

National Center for Atmospheric Research (NCAR)

Earth Observing Laboratory (EOL; Lin and Mitchell

2005). We coarse grained these measurements spa-

tially to a 0.258 3 0.258 grid to be consistent with the

SSM/I-based products. The temporal resolution of the

data is hourly. The NEXRAD-IV data are available

from January 2002 to present and cover the study period

for each of the satellites considered here.

For generating samples, we match coincident mea-

surements of NEXRAD-IV with each of the satellite

products separately over the six subregions defined ear-

lier. This means a sample is generated if the satellite

overpass completely covers one of the subregions without

any missing pixels. This condition is necessary for the

application of the metrics defined in section 3. The result

is a different number of samples for each satellite product

in Table 2. In section 3d, the comparisons are made over

the whole study region using climatological indices, but in

the rest of the paper the pairs of samples that are gen-

erated for the subregions are compared.

The FTmeasurements are obtained from theNational

Snow and Ice Data Center (NSIDC) as part of the

Making Earth System Data Records for Use in Re-

search Environments (MEaSUREs) Global Record of

Daily Landscape Freeze/Thaw Status, version 2 (Kim

et al. 2011, 2012). This product is a global daily record of

FT status derived using microwave observations from

SSM/I and Scanning Multichannel Microwave Radi-

ometer (SMMR). The data are provided on a Climate

Modeling Grid (CMG) at 25-km grids. We inferred the

morning and afternoon FT status separately using this

dataset and excluded any pixel that had a frozen status at

the time of measurement.

Snow data are from theModerate Resolution Imaging

Spectroradiometer (MODIS) instrument on board the

Terra satellite. This dataset contains daily snow cover

data in a 0.058 CMG (Hall et al. 2006). We coarse

grained these data to a 0.258 3 0.258 spatial grid tomatch

other measurements in our study. These measurements

are used as a monitoring tool to exclude pixels that have

a high percentage of snow cover from our analysis.

c. Monitoring algorithm

To filter out the detection errors from the analysis, we

used FT and snow measurements. The logic behind this

monitoring is that frozen or snow-covered ground has

a high brightness temperature, and thus the instrument

might detect these pixels as rainy (Ferraro et al. 1998).

Therefore, we filtered out all the pixels that have a frozen

condition at the time of measurement. As mentioned in

the previous section, the FT data provide the morning

and afternoon status separately. We used the morning

status for any measurement taken before noon and the

afternoon status for measurements taken after noon.

The snow cover data have been used in the sampling

procedure that was described in section 2a. If more than

80% of the pixels in a sample are covered by snow (either

partially or fully), the sample is rejected. On the other

hand, the samples that are collected have a snow tag for

each of their pixels. This tag is used during our analysis,

and any pixel that is partially or fully covered by snow is

not included in the calculations ofmetrics. For example, if

we are calculating the probability of detection (POD), we

assume that the pixel covered by snow does not exist.

In section 3b, we present a comparison between two

groups of samples: the first one only includes the samples

with no snow cover and in thaw condition, and the second

one contains only the samples with snow cover or frozen

condition. This comparison shows that there is a consid-

erable difference between the two groups, and it is nec-

essary to remove the samples that have detection errors

to have a better understanding of the retrieval errors.

3. Statistical comparisons

In this section, we consider several statistics to

compare the SSM/I-based retrievals of precipitation

with those based on NEXRAD-IV. These include the

Jaccard distance at different rainfall thresholds, the

POD, the false alarm ratio (FAR), and the PDF, aswell as

climatological indices of precipitation rate. Moreover, in

section 3e we investigate the correspondence between

precipitation-rate retrieval error and surface soil moisture.

These are selected strategically in order to differentiate

different types of errors.

a. Probability density function

Marginal PDFs give basic insight into systematic er-

rors in the magnitude. Figure 3 shows the PDFs of
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precipitation estimates from different datasets (SSM/I-

13, SSM/I-14, SSM/I-15, and NEXRAD-IV) for both win-

ter (October–March) and summer (April–September)

months. The first result from these two comparisons is

that the PDF of precipitation estimates from SSM/I-15

from all the years of data is very different than the other

data products. However, if we remove the data after July

2006, the newPDF ismore similar to the other two SSM/I-

based PDFs, as well as the one from NEXRAD-IV. The

reason for selecting this cutoff date is the activation of

the radar calibration suite on board DMSP-F15 during

August 2006 that has degraded the quality of measure-

ments because of interference. This issue is investigated

in more detail in the next section.

In general, the three SSM/I-based PDFs have the same

shape and magnitude, but compared to the NEXRAD-

IV PDF, they have a peak at a slightly higher pre-

cipitation rate, and the probabilities are in general lower.

The reason is that the probability of no precipitation is

higher for the SSM/I-based precipitation products

FIG. 3. PDF of rain rate from different data products. The numbers in brackets show the

probability of no precipitation.
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(bracketed numbers in Fig. 3). This can be partially due

to the resolution differences in the coarse-resolution

satellite data products and the high-resolution, ground-

based radar product. Smaller precipitation events may

be below the detection threshold of instruments with

coarse resolution. Such resolution differences compli-

cate merging PMWmeasurements into either gap-filling

or calibrating other sensor measurements. Moreover,

there is a slight difference between the peak of the PDF

for SSM/I-13 and SSM/I-14 and the peak for SSM/I-15.

Further analysis showed that sampling SSM/I-13 and

SSM/I-14 for the same time period as SSM/I-15 does not

change the qualitative differences between the PDFs.

The different probability of no rain (shown in brackets

in Fig. 3) might be a contributing factor that itself might

be caused by the difference in the time of measurement

between SSM/I-13 and SSM/I-14 compared to SSM/I-15

(see Fig. 7, described in greater detail below).

There is not a major difference between the PDFs

from summer and winter months other than the prob-

ability of no precipitation. The slightly larger differ-

ences during the summer season are consistent with the

resolution difference interpretation described in the

previous paragraph. However, this does not necessarily

confirm a causation. Note that the NEXRAD-IV

measurements used to derive the PDF in Fig. 3 are

concurrent with SSM/I-14 measurements. Results not

shown here indicate that there are no noticeable dif-

ferences between the PDF of precipitation from

NEXRAD-IV if it is matched with data based on SSM/

I-13 or SSM/I-15.

The PDF-based comparisons provide insights into the

general distribution of magnitude errors. Because they

are marginal distributions, they cannot characterize

phase (location) errors, nor can the metric provide

concise insights into the dependence on intensity. Other

evaluation metrics that are capable of characterizing the

latter attributes are POD and FAR. These two metrics

are traditionally used and each is sensitive to a different

type of error (but not the other). In the next section, we

introduce a new metric that is related to both POD and

FAR. This compact metric allows parsimonious evalu-

ation of the data products.

b. Jaccard distance

The metric used in this section to quantify proximity

between two datasets is called the Jaccard distance. The

Jaccard distance is used to evaluate dissimilarity of bi-

nary data (Tan et al. 2005). Let x and y be two objects

that consists of n binary attributes. By comparing these

two objects, four quantities can be defined:

f00 5 number of attributes that x is 0 and y is 0;

f10 5 number of attributes that x is 1 and y is 0;

f01 5 number of attributes that x is 0 and y is 1; and

f11 5 number of attributes that x is 1 and y is 1.

Based on the definitions of a 2 3 2 contingency table,

f11 is the number of true positives (hits), f10 and f01 are

the number of misses and false alarms, and f00 is the

number of true negatives. Since Jaccard is a symmetric

distance, there is no difference between f10 and f01, and

they can be used interchangeably. The Jaccard distance

is defined as

J5 12
f11

f01 1 f10 1 f11
. (3)

The Jaccard distance will have a value between zero and

one; a smaller value of Jaccard distance shows that the

two images are more similar.

The appendix relates the Jaccard distance to FAR and

POD. Both the FAR and POD also depend on various

combinations of f01 and f10 errors. But whereas neither

POD nor FAR contain both f01 and f10 errors, neither is

a complete measure of all error types in itself. The

Jaccard distance conveniently combines the two error

types and the information captured by POD and FAR

FIG. 4. Mean Jaccard distance between pairs of NEXRAD-IV

and SSM/I-15 precipitation data products in each month at

3mmh21 threshold (white shows months with no data).

TABLE 3. Results of comparing Jaccard distance between non-

snow-covered and thaw samples (group 1) with snow-covered and

frozen samples (group 2).

Sensor

No. of samples Mean and std dev of Jaccard

Group 1 Group 2 Group 1 Group 2

SSM/I-13 277 19 0.8217 6 0.1713 0.9536 6 0.0733

SSM/I-14 255 16 0.8414 6 0.1555 0.9539 6 0.0781

SSM/I-15 163 16 0.8441 6 0.1639 0.9524 6 0.0851
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into a single and parsimonious metric. The appendix

contains the relationship between the metrics, and Fig.

A1 in the appendix shows that the Jaccard distance is an

equitable combination of both FAR and POD. The

appendix also includes simple case examples where an

error type is missed by either FAR or POD but has

impacts on the magnitude of the Jaccard distance.

First, we provide the result of a comparison between

two groups of samples, as mentioned in section 2c. These

samples are only taken from region 1 in Fig. 2 and are

only from the months of October and November. Group

1 has only samples that are free of snow and have a thaw

condition at all times; group 2 has only samples that have

snow cover on the ground or a frozen condition at the

time of measurement. Table 3 presents the results for

each of the three platforms along with the number of

samples. This shows that there is a considerable differ-

ence between the means of the two groups, and group 2

has a higher mean. This proves the necessity for filtering

out the snow-covered and frozen samples to provide

a better analysis of the retrieval errors.

We apply themetric to compare coincident SSM/I and

NEXRAD-IV precipitation intensity data products. To

gainmore concise insight, we have evaluated the Jaccard

distance at different thresholds of precipitation intensity

(0, 0.5, 1.0, 1.5, 3.0, 5.0, 7.0, and 10.0mmh21) in different

seasons. Figure 4 shows the mean of the Jaccard distance

in eachmonth for a threshold of 3mmh21 from SSM/I-15

measurements. The general pattern in this figure is also

present for other thresholds, albeit at differentmagnitudes

(see analysis and figures discussed below). Figure 4

shows that there is greater dissimilarity (larger Jaccard

distance and closer to unity) for the period between

August 2006 and December 2007. This is more distin-

guished at lower-magnitude thresholds. This shows the

effect ofRADCALsuite that was activated onDMSP-F15

during August 2006 that produced interference with the

85-GHz channel on the unit. This issue is described in

the technical report by the Remote Sensing Systems

(RSS) group (Hilburn 2009). This pattern disappears

after 2007, and the only reason that we can find for that is

the drift in the orbit of the DMSP-F15 in early 2008. It

has been reported that the effect of the interference

from the RADCAL suite is dependent on the thermal

environment that changes with the drift of the satellite

(Hilburn and Wentz 2008). However, based on the ob-

servations of Hilburn and Wentz (2008), the inter-

ferences exist with an intermittent pattern after 2007.

Therefore, in the remainder of this paper, all the statistics

that are presented for the SSM/I-15 dataset will exclude

the measurements after August 2006 unless otherwise

indicated. Comparing the results of Jaccard distance for

the pairs of NEXRAD-IV and SSM/I-13 and SSM/I-14,

no systematic anomalous patterns can be detected.

More detailed examination of the Jaccard distance

between the NEXRAD-IV and SSM/I estimates reveals

that in low thresholds during the summer, the SSM/I-

based precipitation estimates have better performance

(low Jaccard values). During winter, the SSM/I land

precipitation retrieval algorithm appears to have larger

errors. This pattern is reversed at higher thresholds.

Figure 5 shows the monthly mean of Jaccard distance at

two different thresholds for all the three instruments.

There are clearly large differences between Figs. 5a and

5b. The seasonality error magnitudes are convex up and

down, depending on the precipitation-rate threshold.

Figure 6 also illustrates the mean and one standard

deviation of Jaccard distance over all the samples at

different thresholds. There is a decreasing trend of the

Jaccard distance with respect to the threshold. The re-

trieval algorithms have greater challenges with low

precipitation rates than higher precipitation rates. As

was mentioned in section 2b, the Ferraro and Marks

(1995) algorithm has a 0.45mmh21 minimum limit that

FIG. 5.Mean and one std dev of Jaccard distance betweenNEXRAD-IVand different satellite platform precipitation

data products in each month.
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is also contributing to this problem. Depending on the

application, this difference in errors may be compen-

sated by the application itself (e.g., flood forecasts).

The last evaluation using Jaccard distance is presented

to show the effect of diurnal cycle on the quality of

measurements. Figure 7 shows the box plot of Jaccard

distance at threshold 0mmh21 for each of the sensors as

a function of time of the day (local time). These plots are

derived using samples that are only from regions 2 and 5

in Fig. 2, as they have amore similar longitude compared

to the whole study region. This figure shows that there is

not a general pattern for quality of the measurements

with respect to the time of the measurement. It should

be noted that the reason for the box plot of SSM/I-14 to

be spread over several hours compared to SSM/I-13 is

the drift of the satellite during the years 2003–08. This is

evident to some extent in the SSM/I-15 plot as well.

Evaluation of the Jaccard distance at higher thresholds

revealed similar trends for all the platforms.

c. POD and FAR

The Jaccard distance is a metric of proximity in two

binary fields. It is related to both POD and FAR, which

each capture a separate and distinct type of error. Some

applications may be sensitive to one but not the other.

For the sake of completeness, we also report on the

dependencies of errors captured by POD and FAR as

a function of season.

The POD metric shows the quality of capturing pre-

cipitation in the estimates. The FAR captures possible

overestimation of precipitating areas. Ebert (2007) pro-

vides a comprehensive review of the statistics. Here, we

use POD and FAR to evaluate the SSM/I precipitation

product with respect to NEXRAD-IV product.

Figure 8 shows the mean and one standard deviation

of POD and FAR for all the three platforms across

FIG. 6. Mean and one std dev of Jaccard distance between

NEXRAD-IV and different satellite platform precipitation data

products at different thresholds.

FIG. 7. Box plot of Jaccard distance as a function of the time of

day (local time) for (a) SSM/I-13, (b) SSM/I-14, and (c) SSM/I-15.

The central red line indicates the median, the edges of the box are

25th and 75th percentiles, the whiskers show the most extreme

values, and outliers are plotted as red crosses. The mean is also

plotted as a green asterisk.
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different months. For SSM/I-15, we have only included

data from July 2003 until July 2006. The general trend

for all the platforms is that during summer months

POD increases and FAR decreases, that is, better es-

timates are obtained during summertime. This pattern

is consistent with the Jaccard distance at lower

thresholds; however, at higher thresholds the Jaccard

distance had a different pattern that provided another

perspective. The pattern revealed by Jaccard distance

at different thresholds (Fig. 5) indicates that moderate

to high precipitation rates are estimated more accu-

rately in this algorithm. The fact that this algorithm

does not have a classification scheme to distinguish

between different precipitation regimes (e.g., strati-

form versus convective) can be a contributing factor

to the different performance patterns at different

thresholds.

d. Geographical distribution of errors

Whereas PDF, Jaccard distance, POD, and FAR

metrics allow stratification of errors by season, intensity

magnitude, and instrument, they do not allow in-

vestigation of possible systematic geographical errors

that may be associated with topography, climate regime,

and other site-specific contributions to errors in re-

trieval. In this section, the results of climatological

comparison of SSM/I andNEXRAD-IV are presented by

mapping mean values. For this comparison, concurrent

precipitation estimates based on SSM/I and NEXRAD-

IV measurements over the study region are averaged,

and the mean of the precipitation rates are presented in

Fig. 9. We have only selected the concurrent measure-

ments for each platform; therefore, the two climato-

logical averages are statistically comparable.

FIG. 8. Mean and one std dev of POD and FAR for SSM/I precipitation data products over different months.
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Rows in Fig. 9 from top to bottom correspond to

summer differences, winter differences, and whole-year

differences in the SSM/I instrument-based precipitation

products andNEXRAD-IV. Summer is defined asApril–

September (inclusive) and winter is defined as October–

March (inclusive). For SSM/I-15, only the period not af-

fected byRADCAL is used (from July 2003 to July 2006).

A useful backdrop for interpreting the difference

maps is the precipitation climatology itself, which is

sampled according to the availability of satellite-based

estimates. Figure 10 shows the precipitation climatology

evident in the NEXRAD-IV data product. In deriving

this climatology, we have sampled NEXRAD-IV at the

times when SSM/I-14 swath and overpass coverage is

available. This conditional sampling has small and al-

most imperceptible effects on the true climatology when

all NEXRAD-IV data are used (not shown). Further-

more, the choice of instrument other than SSM/I-14

does not change the conclusions. The issues are more

closely tied with the algorithms themselves.

Figure 10 shows a strong a gradient of mean pre-

cipitation over the region from northwest to southeast.

Superimposed on the difference maps in Fig. 9, a sys-

tematic error with geographical structure becomes evi-

dent. There are three major differences between the

NEXRAD-IV estimates and the SSM/I precipitation

data products:

d SSM/I-based precipitation products mostly overesti-

mate the precipitation rate; therefore, the difference

in their mean statistic is mostly positive. There are

regions where SSM/I underestimates the precipitation

FIG. 9. Difference in mean of SSM/I and NEXRAD-IV precipitation data products for (left) SSM/I-13, (middle) SSM/I-14, and (right)

SSM/I-15 over (top) summer months (April–September, inclusive), (middle) winter months (October–March, inclusive), and (bottom)

the whole year.
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rate climatologically, but their area is limited in extent

when compared to those that are overestimated.
d All three platforms and their instrument and data

products have similar spatial patterns for summer,

winter, and the whole year. For example, during

summer SSM/I-13, SSM/I-14 and SSM/I-15 show

similar differences in mean precipitation over the

study region. During winter, all three SSM/I products

overestimate over the western and northwestern parts

of the study region. This is a dominant feature in all

three, and it affects the whole-year difference plots.

The dominant differences are localized in the western

and northwestern part of the region.
d In the southeastern part of the region, all the three

platforms have small negative difference values. This

region has the highest precipitation rates climatol-

ogically. The SSM/I-based precipitation estimates

have better quality over the southeastern part of the

study region that generally has higher precipitation-

rate magnitudes. This is consistent with the findings

from Jaccard distance at different thresholds (Fig. 5)

that this algorithm has better performance on moder-

ate to high precipitation rates.

These conclusions are consistent with those evident in

the PDFs (Fig. 3).

e. Error dependence on surface soil moisture

One of the factors affecting the quality of precipitation

retrieval from microwave measurements is variable land

surface emissivity that is partially due to dynamic surface

soil moisture (Ferraro et al. 2013). In situ or satellite

estimates of surface soil moisture are limited by their

spatial and/or temporal coverage. Therefore, we used

theAntecedent Precipitation Index (API) as an index of

soil moisture content to investigate correspondence

between the precipitation estimation error and esti-

mated soil moisture. API is defined as

APIt 5K(APIt21)1Pt , (4)

where APIt is the API on day t, APIt21 is the API on the

preceding day t 2 1, Pt is the precipitation on day t, and

K is a constant decay factor. The variable K is dimen-

sionless, and the other three parameters in this equation

have units of length (in this case, millimeters). The value

of K controls the decay or loss rate of surface soil

moisture. Based on literature values of the application

of this filter to precipitation in order to produce esti-

mates of surface soil moisture, we use a typical value of

0.93 for K. Daily APIs are estimated using the 24-h ac-

cumulations of NEXRAD measurements.
For each measurement pixel, we calculate the error

of the SSM/I estimation with respect to NEXRAD.

We segment the errors conditional on values of API

over that pixel from the day before. The API of the

day of observation is affected by the current storm;

however, the API from the day before only indicates

the soil moisture content as a result of preceding

storms and at the time of measurement. Use of same-

day API did not appreciably change the conclusions.

To enhance the sample size, we have combined the

measurement errors from SSM/I-13, SSM/I-14, and

SSM/I-15.

Figure 11 shows box plots of errors in SSM/I pre-

cipitation estimation versus API values. This figure in-

cludes six plots, one for each of the subregions. In each

subregion, the number of data for each box are equal,

and the number of data for each subregion are as fol-

lows: subregion 1, 23 635; subregion 2, 27 355; subregion

3, 16 653; subregion 4, 12 856; subregion 5, 23 632; and

subregion 6, 30 457. Similar to the other box plot in

Fig. 7, the edges of the boxes are the 25th and 75th

percentiles, and the central red line indicates the me-

dian. The mean is also plotted as a green asterisk. No

consistent trend is detected in subregions 1–4; however,

in subregions 5 and 6, the mean and median of the error

decrease with increases in API. The results of a statisti-

cal hypothesis test (t test) show that in 86% of the cases

the mean of each of the error box plots is different than

the others in the same subregion at the 5% significance

level.

This analysis shows that the errors in SSM/I pre-

cipitation estimations are dependent on dynamical

changes of the surface conditions. Land surface emis-

sivity changes that are partially driven by dynamics of

surface soil moisture can affect the precipitation-rate

retrieval performances. A possible future path is to use

surface soil moisture retrievals from the Soil Moisture

Active Passive (SMAP) mission to estimate the soil

moisture contribution to changing surface emissivity

(Ferraro et al. 2013).

FIG. 10. Mean precipitation rate based on NEXRAD-IV sampled

concurrent to SSM/I measurements over the region.
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4. Summary

In this study, we investigate and diagnose the errors

in the precipitation products based on the Special

Sensor Microwave Imager (SSM/I) instrument on

board the DMSP-F13, DMSP-F14, and DMSP-F15

platforms. We use the gauge-corrected, ground-based

radar product NEXRAD-IV to diagnose the depen-

dencies of the errors on precipitation intensity, sea-

son, platform, and other factors. The stratification of

the errors according to these attributes is made pos-

sible by using extended duration and large domain

comparison datasets. Data products from three DMSP

platforms and the extensive NEXRAD record are

used. The stratification identifies priorities for ways of

improving the passive-microwave-based precipitation

retrieval algorithms over land. These algorithms are

currently used to calibrate global precipitation prod-

ucts that use infrared brightness temperatures from

instruments on geostationary platforms as their major

inputs.

We show that current SSM/I-based precipitation

products are positively biased in magnitude. The bias is

less at higher intensities and in geographic locations

where precipitation rates are generally higher. Several

marginal distribution and magnitude and phase error sta-

tistics are also used in this study to evaluate SSM/I-based

precipitation products. The Jaccard distance is introduced

as a compact and concise metric to evaluate precipitation

products. It is shown that the metric captures errors that

have distinct seasonal and magnitude-dependent charac-

teristics. Together with its constituent POD and FAR

metrics, we show that the SSM/I-based precipitation

products generally overestimate precipitating areas dur-

ing the winter months by estimating low-magnitude pre-

cipitation rates outside of the precipitation clusters. This

contributes to the noticeable dependence of the Jaccard

distance metric on intensity magnitude. The SSM/I-based

FIG. 11. Box plot of SSM/I-based precipitation-rate error as a function of API in each subregion. The central red line indicates themedian,

the edges of the box are 25th and 75th percentiles, and the mean is plotted as a green asterisk.
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products provide better estimates during summertime

when compared to the winter season.

Month by month comparisons of the metric across

platforms and instruments reveal a major anomaly

starting in August 2006 and ending in December 2007.

During this period, the products based on SSM/I-15 are

worse compared to the rest of the study period. This is

consistent with the timing of the activation of the radar

calibration (RADCAL) suite on board F15 that in-

terferes with the 85-GHz channel.

The effects of dynamic surface soil moisture on the

quality of precipitation retrieval shows a strong con-

nection between the estimation error and changing soil

moisture. More accurate land surface emissivity esti-

mates can possibly improve precipitation-rate retrievals

over land. The future SMAP mission provides accurate

fine-spatial-scalemeasurements of soil moisture that can

be combined with precipitation retrieval algorithms to

improve the accuracy of precipitation estimations.

There are inherent challenges associated with re-

trieval of precipitation over land based on the mea-

surements in the set of channels afforded by SSM/I and

its heritage instruments. The sources of emissions and

scattering cannot all be characterized by the finite

measurements. Simple distributional corrections such as

probability matching work well on the training datasets,

but they may not generally extend to times and regions

where both ground validation and retrievals are not used

in the matching. We suggest that the paradigm for gen-

erating and using data products needs to be revisited in

the case of such a challenging and important retrieval

problem. The error patterns in SSM/I-based pre-

cipitation products are not structured in simple ways,

and they cannot be easily modeled and removed. Per-

haps we should go beyond deterministic product gen-

eration and incorporate uncertainty in the description of

the products. There is an emerging trend toward sto-

chastic and ensemble-based approaches to merging and

interpreting data products. If we generate a population

of equally probable prior replicates based on the SSM/I

measurements and update the prior probabilities using

the historical error likelihood, then it is possible to gen-

erate a posterior population of precipitation replicates

that are ranked based on the probability of being a char-

acterization of the true situation. Each of these replicates

will be consistent with the original measurement while

having some added noise. This study aimed at charac-

terizing the types and dependency attributes of retrieval

errors that is a necessary first step toward this goal.
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APPENDIX

Comparing Jaccard Distance with POD and FAR

a. Definitions

Assume two measurements—one is the true mea-

surement (called T hereafter) and the other is a second

measurement to be validated versus the true one

(called V hereafter). Based on the definitions provided

in section 3, the Jaccard distance, POD and FAR are

J5 12
f11

f101 f011 f11
5

f10 1 f01
f101 f011 f11

, (A1)

POD5
f11

f11 1 f10
, and (A2)

FAR5
f01

f11 1 f01
. (A3)

The main difference between J and POD is that J

considers both the hits and misses in the measure-

ments while POD only captures hits. On the other

hand, FAR only deals with misses. Therefore, the

combined outcome of the POD and FAR can be in-

ferred from J itself. However, depending on applica-

tion, it might be advantageous to distinguish between

POD and FAR.

It is possible to relate the Jaccard distance uniquely to

POD and FAR. Based on Eq. (A2),

FIG. A1. Jaccard distance for different combinations of POD

and FAR.
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f105
(12POD)f11

POD
. (A4)

Using Eq. (A3),

f01 5
(FAR)f11
12FAR

. (A5)

Substituting Eqs. (A4) and (A5) into Eq. (A1) results in

J5

(12POD)f11
POD

1
(FAR)f11
12FAR

(12POD)f11
POD

1
(FAR)f11
12FAR

1 f11

. (A6)

The f11 terms can be eliminated to write J only in terms

of POD and FAR:

J5
(FAR)(POD)1 (12POD)(12FAR)

(FAR)(POD)1 (12POD)(12FAR)1 (POD)(12FAR)
. (A7)

Figure A1 shows the Jaccard distance as a function of

POD and FAR. The Jaccard distance changes with dif-

ferent combinations of POD and FAR. The Jaccard

distance captures both types of errors measured by POD

and FAR.

b. Examples

In this section, we provide a series of synthetic ex-

amples to compare J, POD, and FAR. In all cases, the

true measurement is the same. Figure A2 shows three

examples: the first column shows the true measurement

FIG. A2. Example 1 comparing J, POD, and FAR (black represents a feature in T orV and an overlapping feature

in the overlappedmeasurement, white represents a nonoverlapping feature in the overlappedmeasurement, and gray

represents no feature).
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(i.e., T ), the second column shows the second mea-

surement (i.e., V ) to be compared, and the last column

shows the overlapped measurements. In the first row,

T and V are the same, so J 5 FAR 5 0 and POD 5 1.

For the second row, V is shifted so as not to overlap

with T. This is the case with the most difference be-

tween T and V, so J 5 FAR 5 1 and POD 5 0. The

third row shows a situation in between: both T and V

are overlapping in some pixels, but not all of them. As

a result, POD, FAR, and J are all intermediate be-

tween 0 and 1.

Figure A3 shows another set of examples with the

sameT. Here, the first row has aV that has a smaller true

area with respect to T, so there is no false detection, that

is, FAR5 0. However, POD and J are not equal to 1, as

the two images are different. If we add some false area to

V (as in the second row), the PODdoes not change, but J

and FAR change. This shows that POD is not sensitive

to false detected areas. So, if there is a V that is just

overestimating the true area, it will have a POD 5 1,

although the V and T will not be the same. At the same

time, J changes between rows 1 and 2. Thus, J is sen-

sitive to both hits and false detections. Row 3 shows

how POD, FAR, and J change when there is spatial

overestimation.

In some special cases FARwill have the exact value as

J. For example, if f10 5 0, then J 5 FAR. This happens

when there are no misses in the detection.
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