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Outline


• Brief review of protein structure 
• Chou-Fasman predictions 
• Garnier, Osguthorpe and Robson 
• Helical wheels and hydrophobic moments


• Neural networks 
• Nearest neighbor methods 
• Consensus prediction approaches 



Hierarchy of protein structure 



implies planarity 
Reasonance of peptide bond 



Dihedral angles define
secondary structure

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



Structure of α-helices

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



α-helix dipole moment

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



Anti-parallel β-sheets

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



The “pleat”- a function of the 
tetrahedral Cα carbon

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



The parallel β-sheet

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



All α-helical 

All β-sheet 

Protein Classes – defined by secondary structural elements 



α/β-protein 



Chou-Fasman

Biochemistry, 13: 222-245, 1974


•Statistical Method

• Based on 15 proteins of known conformation, 
2473 total amino acids 

• Determined “protein conformational parameters” 
Pα, Pβ, based on fi

s /(Σfj
s/20) → 0.5-1.5 



Helical residues Pα


Glu
Ala
Leu
His
Met
Gln

Val
Phe 

Trp

1.53 
Strong1.45 Ηα 

1.34 helix former 

1.24 
1.20 
1.17 hα Helix former1.14 
1.14 
1.12 

Lys 
Ile 
Asp 
Thr 
Ser 
Arg 
Cys 
Asn 
Tyr 
Pro 
Gly 

1.07

1.00

0.98

0.82

0.79

0.79

0.77

0.73

0.61

0.59

0.53


Iα Weak helix former 

iα Helix indifferent 

bα Helix breaker 

StrongBα helix breaker 



β-Sheet residues 

Met 
Val 
Ile 
Cys 
Tyr 
Phe 
Gln 
Leu 
Thr 
Trp 

Pβ


1.67

1.65

1.60


Ala 
Arg 0.90 
Gly 0.81 
Asp 0.80 
Lys 0.74 
Ser 0.73 
His 0.71 
Asn 0.65 
Pro 0.62 
Glu 0.26 

0.97


StrongΗβ 
sheet former 

1.30 
1.29 
1.28 

Sheet formerhβ1.23 
1.22 
1.20 
1.19 

Weak sheet formerIβ 

iα Sheet indifferent 

bβ Sheet breaker 

Strong
Bβ sheet breaker 



α-helical β-sheet


Glu Met 
Ala Val 
Leu Ile 
His Cys 
Met Tyr 
Gln Phe 
Trp Gln 
Val Leu 
Phe Thr 
Lys Trp 
Ile Ala 
Asp Arg 
Thr Gly 
Ser Asp 
Arg Lys 
Cys Ser 
Asn His 
Tyr Asn 
Pro Pro 
Gly Glu 



Chou-Fasman

Empirical rule set for secondary structure 


nucleation using <Pα>, <Pβ>

•	 Search for helical nuclei: locate clusters of 4 (Hα or hα) 

out of 6 residues. Unfavorable if > 1/3 (bα or Bα). 
•	 Extend helical segments in both directions until 

tetrminated by tetrapeptides with <Pα><1.0. Helix 
breakers include b4, b3i, etc. Some of the tetrapeptide 
residues can be in the helical ends (except Pro). 

•	 Refine boundaries: Pro, Asp, Glu prefer N-terminal end, 
His Lys, Arg prefer C-terminal end. 

•	 Rule #1 – Any segment > 6 residues with <Pα>>1.03 
and <Pα>><Pβ>, satisfying above conditions is 
predicted as helical. 



Chou-Fasman

Empirical rule set for secondary structure 


nucleation using <Pα>, <Pβ>

•	 Search for β-sheet nuclei: locate clusters of 3 β residues 

(Hβ or hβ) out of 5 residues. Unfavorable if > 1/3 β 
breakers (bβ or Bβ). 

•	 Extend β-sheet segments in both directions until
tetrminated by tetrapeptides with <Pβ><1.0. β-sheet 
breakers include b4, b3i, etc. 

•	 Refine boundaries: Glu occurs rarely in β-region and Pro
equally uncommon within inner β-sheets. Charged
residues rare at either end. Trp most frequently at N-
terminal end 

•	 Rule #2 – Any segment > 5 residues with <Pβ>>1.05 
and <Pβ>><Pα>, satisfying above conditions is
predicted as β-sheet. 



Chou-Fasman

Results


•	 ~50-60% accurate in reality, though paper 
claimed much higher results (limited data set) 

•	 Seemed to be particularly less accurate for β-
sheets. 



Chou-Fasman

β-Turn potentails 

• Typical β-turn is 4 amino acids 

fi fi+1 fi+2 fi+3 

Arg 0.051 0.127 0.025 0.101 
Asn 0.101 0.086 0.216 0.065 
Asp 0.137 0.088 0.069 0.059 
Pro 0.074 0.272 0.012 0.062 
Trp 0.045 0.000 0.045 0.205 

<fj> = Σj/N = 65/2343= 0.07 



Chou-Fasman

β-Turn potentails 

• Typical β-turn is 4 amino acids 

fi fi+1 fi+2 fi+3 

Arg 0.051 0.127 0.025 0.101


Asn 0.101 0.086 0.216 0.065


Asp 0.137 0.088 0.069 0.059


Pro 0.074 0.272 0.012 0.062


Trp 0.045 0.000 0.045 0.205


<fj> = Σj/N = 165/2343= 0.07 

P(t)=fifi+1fi+2fi+3 P(t)>7.5x10-5 →turn 



Garnier, Osguthorpe, Robson


•	 Alternative approach to Chou-Fasman.  
•	 Original version called “GOR”.  Now up to GOR­


3. Uses a scanning window of 17 amino acids
centered on residue being examined. 

•	 Based on assumption that each amino acid 
individually influences the propensity of the
central residue to adopt a particular secondary 
structure. 

•	 Each flanking position evaluated independently 
…like a PSSM! 



GOR Scoring Tables (original)

3 states – α-helix, β-sheet, turn


-8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 

W R  Q I  C T V N A F L C E H S Y K  

α-helix β-sheet turn 
AAPos AAPos AAPos 

Note – each table is INDEPENDENT of the central amino acid!




GOR Scoring Tables


• Add the scores – assign secondary 

structure based on highest score.


•	 Problems:  Limited data set for scoring
table. 17 amino acids – 2017 possibilities =
1.3 x 1022 possible sequences, yet based
on only 200-300 proteins! 

•	 What do the scoring numbers mean?  We 
are treating them as log-odds ratios,
representing units of structural information. 



GOR Scoring Tables


•	 Based on information theory approach of Robson and 
Pain. 

•	 Step 1- Consider the joint probability of amino acid R 
being in conformation S. The information function is 
I(S,R)=Log(P(S,R)/P(R)P(S)) - this is Chou-Fasman 

•	 Step 2 – For Garnier, in each conformation, calculate the 
difference of information functions,
I(∆S,R)=Log(P(S,R)/P(S’,R))+Log(P(S’)/P(S)) where S’=
all other conformations except S.  These terms are the 
values in the lookup tables. 

•	 Probablility terms calculated based on observed 
frequencies in the database of known structures as on
1978. Can actually use the net probability sum to
calculate absolute probability ratios – so can estimate 
likelihoods. 



GOR Results


•	 ~ 65% accurate.

• Can use information from experiments (circular 


dichroism) to improve accuracy of predictions.

•	 Later versions allowed pairwise combinations of 

amino acids in flanking regions + central amino 
acid (GOR-2), or combinations of two amino 
acids in the flanking region (GOR-3) influence 
the final conformation of the central amino acid. 



Fred Cohen’s Approach-1989


•	 Both Garnier and Chou-Fasman work well for 
globular proteins 

•	 Cohen: Turns demarcate elements of secondary 
structure 

•	 Therefore, start by predicting turns first.

•	 Fill in helices, strands after that. 
•	 Use pattern recognition algorithms (forerunner of 

neural networks). 
• In  α/β proteins - ~ 85% accurate.  But how do 

you know you have an α/β protein to begin with? 



Helical wheels and hydrophobic 

moments


hydrophobic 



Amphipathic helices




Alternating hydrophobic and 
hydrophilic positions in β-sheets

Please refer to Branden, Carl, and John Tooze. Introduction to Protein Structure. 
2nd ed. Garland Publishing, Inc., 1999. ISBN: 0815323042.



Eisenberg-Hydrophobic moments


•	 Standard approach – Kyte and Doolittle – 
calculate hydrophobicity using a running window 
and typical scale of hydrophobicity based on oil-
water partition coefficients of free amino acid
side chains. 

•	 Eisenberg’s idea – Plot hydrophobicity as 
function of sequence # - look for periodic
repeats by fourier transform: 

Period = 2 amino acids – β sheet 
Period = 3-4 amino acids – α helix 



Neural network approach


•	 Look for amino acid patterns that patterns in a
protein sequence that coincide with known
secondary structures. 

•	 Use machine learning approaches and a test set 
of proteins to decipher the best pattern
recognition algorithm. 

•	 Simulate the operation of the brain, where 
complex synaptic connections underlie function.
Some neurons collect data, some process data,
some deliver output. 



Neural network approach


•	 Use sliding window of 13-17 amino acids.  

•	 3 processing layers in feed-forward multilayer network: 

input layer →hidden layer →output layer 
•	 Each input modified by a weighting factor and many 

inputs are fed into the hidden layer. The hidden layer
integrates the inputs and outputs a number close to 0 or
1 by feeding inputs into a sigmoid trigger function that 
mimics neuronal firing. 

•	 Signals from hidden units sent to the each of three 
output units (one for helix, sheet or other), weighed
again, and all the inputs integrated again. Final output
from each output unit is a 1 (predicts that particular
secondary structure) or a 0 (not predicted). 



Neural network approach

Input layer Hidden layer Output layer 

Input seq. 

L

S

F

G

Y

C

V 
K 
D

R

P

S

F


0 

0 

0 
0 

0 

0 
1 
0 

0 
0 

0 

0 

0 

0 

0 

Hj 

Oj 

α 

β 

coil 

Sj 1 

0 

0 

Hj 

Sj Sj x Wij 
Oj 

Predicted structure 
Sout=1/(1+e-kSin) 



Neural network approach


•	 Train network on training set to optimize the wrighting
factors Wij using feedback. 

• Usually done by Jack-knife testing.

• Can use multiple different network architectures and 


select final secondary structure by jury decision.

•	 Increases predictive accuracy to ~ 70-72%. 
•	 Best example: PHD (Profile network from HeiDelberg).   

•	 Gives reliability indices for each predicted portion of the 

protein based on differences between output signals
from the network. 



Nearest-neighbors Methods


•	 Also machine learning-based

•	 Identify sequences similar to the query in known 

structures. The known structures in the training set are
divided into ~16 amino acid sequence fragments and
secondary structure of central amino acid is recorded. 

•	 Take similar window in the query sequence, match to 
best ~50 sequences in the training set. Use frequency of
secondary structure of central amino acid in training data
to infer structure in the query. 

•	 Feed these structural predictions as input into a neural 
network to obtain the final prediction. 

•	 Very accurate algorithms >72% correct prediction  




Nearest-neighbors Methods


•	 PREDATOR – another NN method that also 
considers amino acid patterns that can form H-
bonds between adjacent β-strands and between 
n and n+4 in α-helices. 

•	 Also considers substitutions found in sequence 
alignments, and gaps as likely to be “coils” 

•	 Accuracy is ~75% - most accurate prediction 
algorithm to date. 



Best overall strategy


•	 JPRED http://jura.ebi.ac.uk:8888/

•	 Developed by Geoffrey Barton 
•	 A consensus approach to predicting secondary 

structure. Utilizes 6 different methods for 
prediction – PHD, linear discrimination (DSC), 
NNSSP, PREDATOR, ZPRED (conservative
number weighted prediction), MULPRED
(consensus single sequence method
combination). 

•	 ****Looks in pdb for homologues***

•	 Available over the web, Q3=72.9%


http://jura.ebi.ac.uk:8888/

