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Abstract

We consider the sensor selection problem on multivariate Gaussian distributions
where only a subset of latent variables is of inferential interest. For pairs of ver-
tices connected by a unique path in the graph, we show that there exist decom-
positions of nonlocal mutual information into local information measures that can
be computed efficiently from the output of message passing algorithms. We inte-
grate these decompositions into a computationally efficient greedy selector where
the computational expense of quantification can be distributed across nodes in the
network. Experimental results demonstrate the comparative efficiency of our al-
gorithms for sensor selection in high-dimensional distributions. We additionally
derive an online-computable performance bound based on augmentations of the
relevant latent variable set that, when such a valid augmentation exists, is applica-
ble for any distribution with nuisances.

1 Introduction

This paper addresses the problem of focused active inference: selecting a subset of observable ran-
dom variables that is maximally informative with respect to a specified subset of latent random
variables. The subset selection problem is motivated by the desire to reduce the overall cost of
inference while providing greater inferential accuracy. For example, in the context of sensor net-
works, control of the data acquisition process can lead to lower energy expenses in terms of sensing,
computation, and communication [1, 2].

In many inferential problems, the objective is to reduce uncertainty in only a subset of the unknown
quantities, which are related to each other and to observations through a joint probability distribution
that includes auxiliary variables called nuisances. On their own, nuisances are not of any extrinsic
importance to the uncertainty reduction task and merely serve as intermediaries when describing
statistical relationships, as encoded with the joint distribution, between variables. The structure in
the joint can be represented parsimoniously with a probabilistic graphical model, often leading to
efficient inference algorithms [3, 4, 5]. However, marginalization of nuisance variables is potentially
expensive and can mar the very sparsity of the graphical model that permitted efficient inference.
Therefore, we seek methods for selecting informative subsets of observations in graphical models
that retain nuisance variables.

Two primary issues arise from the inclusion of nuisance variables in the problem. Observation
random variables and relevant latent variables may be nonadjacent in the graphical model due to
the interposition of nuisances between them, requiring the development of information measures
that extend beyond adjacency (alternatively, locality) in the graph. More generally, the absence of
certain conditional independencies, particularly between observations conditioned on the relevant
latent variable set, means that one cannot directly apply the performance bounds associated with
submodularity [6, 7, 8].
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In an effort to pave the way for analyzing focused active inference on the class of general distribu-
tions, this paper specifically examines multivariate Gaussian distributions – which exhibit a number
of properties amenable to analysis – and later specializes to Gaussian trees. This paper presents
a decomposition of pairwise nonlocal mutual information (MI) measures on Gaussian graphs that
permits efficient information valuation, e.g., to be used in a greedy selection. Both the valuation
and subsequent selection may be distributed over nodes in the network, which can be of benefit for
high-dimensional distributions and/or large-scale distributed sensor networks. It is also shown how
an augmentation to the relevant set can lead to an online-computable performance bound for general
distributions with nuisances.

The nonlocal MI decomposition extensively exploits properties of Gaussian distributions, Markov
random fields, and Gaussian belief propagation (GaBP), which are reviewed in Section 2. The formal
problem statement of focused active inference is stated in Section 3, along with an example that
contrasts focused and unfocused selection. Section 4 presents pairwise nonlocal MI decompositions
for scalar and vectoral Gaussian Markov random fields. Section 5 shows how to integrate pairwise
nonlocal MI into a distributed greedy selection algorithm for the focused active inference problem;
this algorithm is benchmarked in Section 6. A performance bound applicable to any focused selector
is presented in Section 7.

2 Preliminaries

2.1 Markov Random Fields (MRFs)

Let G = (V, E) be a Markov random field (MRF) with vertex set V and edge set E . Let u and
v be vertices of the graph G. A u-v path is a finite sequence of adjacent vertices, starting with
vertex u and terminating at vertex v, that does not repeat any vertex. Let PG(u, v) denote the set
of all paths between distinct u and v in G. If |PG(u, v)| > 0, then u and v are graph connected. If
|PG(u, v)| = 1, then there is a unique path between u and v, and denote the sole element of PG(u, v)
by P̄u:v .

If |PG(u, v)| = 1 for all u, v ∈ V , then G is a tree. If |PG(u, v)| ≤ 1 for all u, v ∈ V , then G is a
forest, i.e., a disjoint union of trees. A chain is a simple tree with diameter equal to the number of
nodes. A chain is said to be embedded in graph G if the nodes in the chain comprise a unique path
in G.

For MRFs, the global Markov property relates connectivity in the graph to implied conditional
independencies. If D ⊆ V , then GD = (D, ED) is the subgraph induced by D, with ED = E ∩
(D ×D). For disjoint subsets A,B,C ⊂ V , let G\B be the subgraph induced by V \B. The global
Markov property holds that xA ⊥⊥ xC | xB iff |PG\B (i, j)| = 0 for all i ∈ A and j ∈ C.

2.2 Gaussian Distributions in Information Form

Consider a random vector x distributed according to a multivariate Gaussian distribution N (µ,Λ)
with mean µ and (symmetric, positive definite) covariance Λ > 0. One could equivalently consider
the information form x ∼ N−1(h,J) with precision matrix J = Λ−1 > 0 and potential vector
h = Jµ, for which px(x) ∝ exp{− 1

2x
TJx + hTx}.

One can marginalize out or condition on a subset of random variables by considering a partition of
x into two subvectors, x1 and x2, such that

x =

(
x1

x2

)
∼ N−1

((
h1

h2

)
,

[
J11 J12

JT12 J22

])
.

In the information form, the marginal distribution over x1 is px1(·) = N−1(·;h′1,J′1), where
h′1 = h1 − J12J

−1
22 h2 and J′1 = J11 − J12J

−1
22 J

T
12, the latter being the Schur complement of

J22. Conditioning on a particular realization x2 of the random subvector x2 induces the conditional
distribution px1|x2(x1|x2) = N−1(x1;h′1|2,J11), where h′1|2 = h1 − J12x2, and J11 is exactly the
upper-left block submatrix of J. (Note that the conditional precision matrix is independent of the
value of the realized x2.)
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If x ∼ N−1(h,J), where h ∈ Rn and J ∈ Rn×n, then the (differential) entropy of x is [9]

H(x) = −1

2
log ((2πe)n · det(J)) . (1)

Likewise, for nonempty A ⊆ {1, . . . , n}, and (possibly empty) B ⊆ {1, . . . , n} \A, let J′A|B be the
precision matrix parameterizing pxA|xB . The conditional entropy of xA ∈ Rd given xB is

H(xA|xB) = −1

2
log((2πe)d · det(J′A|B)). (2)

The mutual information between xA and xB is

I(xA; xB) = H(xA) +H(xB)−H(xA, xB) =
1

2
log

(
det(J′{A,B})

det(J′A) det(J′B)

)
, (3)

which generally requires O(n3) operations to compute via Schur complement.

2.3 Gaussian MRFs (GMRFs)

If x ∼ N−1(h,J), the conditional independence structure of px(·) can be represented with a Gaus-
sian MRF (GMRF) G = (V, E), where E is determined by the sparsity pattern of J and the pairwise
Markov property: {i, j} ∈ E iff Jij 6= 0.

In a scalar GMRF, V indexes scalar components of x. In a vectoral GMRF, V indexes disjoint
subvectors of x, each of potentially different dimension. The block submatrix Jii can be thought of
as specifying the sparsity pattern of the scalar micro-network within the vectoral macro-node i ∈ V .

2.4 Gaussian Belief Propagation (GaBP)

If x can be partitioned into n subvectors of dimension at most d, and the resulting graph is tree-
shaped, then all marginal precision matrices J′i, i ∈ V can be computed by Gaussian belief propa-
gation (GaBP) [10] in O(n · d3). For such trees, one can also compute all edge marginal precision
matrices J′{i,j}, {i, j} ∈ E , with the same asymptotic complexity of O(n · d3).

In light of (3), pairwise MI quantities between adjacent nodes i and j may be expressed as

I(xi; xj) = H(xi) +H(xj)−H(xi, xj),

= −1

2
ln det(J′i)−

1

2
ln det(J′j) +

1

2
ln det(J′{i,j}), {i, j} ∈ E , (4)

i.e., purely in terms of node and edge marginal precision matrices. Thus, GaBP provides a way of
computing all local pairwise MI quantities in O(n · d3).

Note that Gaussian trees comprise an important class of distributions that subsumes Gaussian hidden
Markov models (HMMs), and GaBP on trees is a generalization of the Kalman filtering/smoothing
algorithms that operate on HMMs. Moreover, the graphical inference community appears to best un-
derstand the convergence of message passing algorithms for continuous distributions on subclasses
of multivariate Gaussians (e.g., tree-shaped [10], walk-summable [11], and feedback-separable [12]
models, among others).

3 Problem Statement

Let px(·) = N−1(·;h,J) be represented by GMRF G = (V, E), and consider a partition of V into
the subsets of latent nodes U and observable nodes S, with R ⊆ U denoting the subset of relevant
latent variables (i.e., those to be inferred). Given a cost function c : 2S → R≥0 over subsets of
observations, and a budget β ∈ R≥0, the focused active inference problem is

maximizeA⊆S I(xR; xA)
s.t. c(A) ≤ β. (5)
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The focused active inference problem in (5) is distinguished from the unfocused active inference
problem

maximizeA⊆S I(xU ; xA)
s.t. c(A) ≤ β, (6)

which considers the entirety of the latent state U ⊇ R to be of interest. Both problems are known to
be NP-hard [13, 14].

By the chain rule and nonnegativity of MI, I(xU ; xA) = I(xR; xA) + I(xU\R; xA | xR) ≥
I(xR; xA), for any A ⊆ S. Therefore, maximizing unfocused MI does not imply maximizing
focused MI. Focused active inference must be posed as a separate problem to avoid the situa-
tion where the observation selector becomes fixated on inferring nuisance variables as a result of
I(xU\R; xA | xR) being included implicitly in the valuation. In fact, an unfocused selector can
perform arbitrarily poorly with respect to a focused metric, as the following example illustrates.

Example 1. Consider a scalar GMRF over a four-node chain (Figure 1a), whereby J13 = J14 =
J24 = 0 by the pairwise Markov property, withR = {2}, S = {1, 4}, c(A) = |A| (i.e., unit-cost ob-
servations), and β = 1. The optimal unfocused decision rule A∗(UF ) = argmaxa∈{1,4} I(x2, x3; xa)

can be shown, by conditional independence and positive definiteness of J, to reduce to

|J34|
A∗(UF )={4}

R
A∗

(UF )
={1}

|J12|,

independent of J23, which parameterizes the edge potential between nodes 2 and 3. Conversely, the
optimal focused decision rule A∗(F ) = argmaxa∈{1,4} I(x2; xa) can be shown to be

|J23| · 1{J2
34−J2

12J
2
34−J2

12≥0}

A∗(F )={4}

R
A∗

(F )
={1}

√
(1− J2

34)J2
12

J2
34

,

where 1{·} is the indicator function, which evaluates to 1 when its argument is true and 0 otherwise.
The loss associated with optimizing the “wrong” information measure is demonstrated in Figure 1b.
The reason for this loss is that as |J23| → 0+, the information that node 3 can convey about node 2
also approaches zero, although the unfocused decision rule is oblivious to this fact.

x1

x2

x3

x4

(a) Graphical model.
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Figure 1: (a) Graphical model for the four-node chain example. (b) Unfocused vs. focused policy
comparison. There exists a range of values for |J23| such that the unfocused and focused policies
coincide; however, as |J23| → 0+, the unfocused policy approaches complete performance loss with
respect to the focused measure.
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G̃1

G̃2 G̃k
(a) Unique path with sidegraphs. (b) Vectoral graph with thin edges.

Figure 2: (a) Example of a nontree graph G with a unique path P̄1:k between nodes 1 and k. The
“sidegraph” attached to each node i ∈ P̄1:k is labeled as G̃i. (b) Example of a vectoral graph with
thin edges, with internal (scalar) structure depicted.

4 Nonlocal MI Decomposition

For GMRFs with n nodes indexing d-dimensional random subvectors, I(xR; xA) can be computed
exactly in O((nd)3) via Schur complements/inversions on the precision matrix J. However, cer-
tain graph structures permit the computation via belief propagation of all local pairwise MI terms
I(xi; xj), for adjacent nodes i, j ∈ V in O(n · d3) – a substantial savings for large networks. This
section describes a transformation of nonlocal MI between uniquely path-connected nodes that per-
mits a decomposition into the sum of transformed local MI quantities, i.e., those relating adjacent
nodes in the graph. Furthermore, the local MI terms can be transformed in constant time, yielding
an O(n · d3) for computing any pairwise nonlocal MI quantity coinciding with a unique path.

Definition 1 (Warped MI). For disjoint subsets A,B,C ⊆ V , the warped mutual infor-
mation measure W : 2V × 2V × 2V → (−∞, 0] is defined such that W (A;B|C) ,
1
2 log (1− exp {−2I(xA; xB |xC)}).

For convenience, let W (i; j|C) ,W ({i}; {j}|C) for i, j ∈ V .
Remark 2. For i, j ∈ V indexing scalar nodes, the warped MI of Definition 1 reduces to W (i; j) =
log |ρij |, where ρij ∈ [−1, 1] is the correlation coefficient between scalar r.v.s xi and xj . The
measure log |ρij | has long been known to the graphical model learning community as an “additive
tree distance” [15, 16], and our decomposition for vectoral graphs is a novel application for sensor
selection problems. To the best of the authors’ knowledge, the only other distribution class with
established additive distances are tree-shaped symmetric discrete distributions [16], which require a
very limiting parameterization of the potentials functions defined over edges in the factorization of
the joint distribution.

Proposition 3 (Scalar Nonlocal MI Decomposition). For any GMRF G = (V, E) where V indexes
scalar random variables, if |PG(u, v)| = 1 for distinct vertices u, v ∈ V , then for any C ⊆ V \
{u, v}, I(xu; xv|xC) can be decomposed as

W (u; v|C) =
∑

{i,j}∈Ēu:v

W (i; j|C), (7)

where Ēu:v is the set of edges joining consecutive nodes of P̄u:v , the unique path between u and v
and sole element of PG(u, v).

(Proofs of this and subsequent propositions can be found in the supplementary material.)
Remark 4. Proposition 3 requires only that the path between vertices u and v be unique. If G is
a tree, this is obviously satisfied. However, the result holds on any graph for which: the subgraph
induced by P̄u:v is a chain; and every i ∈ P̄u:v separates N(i) \ P̄u:v from P̄u:v \ {i}, where
N(i) , {j : {i, j} ∈ E} is the neighbor set of i. See Figure 2a for an example of a nontree graph
with a unique path.

Definition 5 (Thin Edges). An edge {i, j} ∈ E of GMRF G = (V, E ;J) is thin if the corresponding
submatrix Jij has exactly one nonzero scalar component. (See Figure 2b.)

For vectoral problems, each node may contain a subnetwork of arbitrarily connected scalar random
variables (see Figure 2b). Under the assumption of thin edges (Definition 5), a unique path between
nodes u and v must enter interstitial nodes through one scalar r.v. and leave through one scalar
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r.v. Therefore, let ζi(u, v|C) ∈ (−∞, 0] denote the warped MI between the enter and exit r.v.s of
interstitial vectoral node i on P̄u:v , with conditioning set C ⊆ V \ {u, v}.1 Note that ζi(u, v|C) can
be computed online in O(d3) via local marginalization given J′i|C , which is an output of GaBP.

Proposition 6 (Vectoral Nonlocal MI Decomposition). For any GMRF G = (V, E) where V indexes
random vectors of dimension at most d and the edges in E are thin, if |PG(u, v)| = 1 for distinct
vertices u, v ∈ V , then for any C ⊆ V \ {u, v}, I(xu; xv|xC) can be decomposed as

W (u; v|C) =
∑

{i,j}∈Ēu:v

W (i; j|C) +
∑

i∈P̄u:v\{u,v}

ζi(u, v|C). (8)

5 (Distributed) Focused Greedy Selection

The nonlocal MI decompositions of Section 4 can be used to efficiently solve the focused greedy
selection problem, which at each iteration, given the subsetA ⊂ S of previously selected observable
random variables, is

argmax
{y∈S\A : c(y)≤β−c(A)}

I(xR; xy | xA).

To proceed, first consider the singleton case R = {r} for r ∈ U . Running GaBP on the graph
G conditioned on A and subsequently computing all terms W (i; j|A),∀{i, j} ∈ E incurs a com-
putational cost of O(n · d3). Once GaBP has converged, node r authors an “r-message” with the
value 0. Each neighbor i ∈ N(r) receives that message with value modified by W (r; i|A); there
is no ζ term because there are no interstitial nodes between r and its neighbors. Subsequently,
each i ∈ N(r) messages its neighbors j ∈ N(i) \ {r}, modifying the value of its r-message by
W (i; j|A) + ζi(r, j|A), the latter term being computed online in O(d3) from J′i|A, itself an output
of GaBP.2 Then j messages N(j) \ {i}, and so on down to the leaves of the tree. Since there are at
most n−1 edges in a forest, the total cost of dissemination is stillO(n·d3), after which all nodes y in
the same component as r will have received an r-message whose value on arrival isW (r; y|A), from
which I(xr; xy|A) can be computed in constant time. Thus, for |R| = 1, all scores I(xR; xy|xA)
for y ∈ S \ A can collectively be computed at each iteration of the greedy algorithm in O(n · d3).

Now consider |R| > 1. Let R = (r1, . . . , r|R|) be an ordering of the elements of R, and let Rk
be the first k elements of R. Then, by the chain rule of mutual information, I(xR; xy | xA) =∑|R|
k=1 I(xrk ; xy | xA∪Rk−1

), y ∈ S \ A, where each term in the sum is a pairwise (potentially
nonlocal) MI evaluation. The implication is that one can run |R| separate instances of GaBP, each
using a different conditioning set A∪Rk−1, to compute “node and edge weights” (W and ζ terms)
for the r-message passing scheme outlined above. The chain rule suggests one should then sum the
unwarped r-scores of these |R| instances to yield the scores I(xR; xy|xA) for y ∈ S \ A. The total
cost of a greedy update is then O

(
|R| · nd3

)
.

One of the benefits of the focused greedy selection algorithm is its amenability to parallelization.
All quantities needed to form the W and ζ terms are derived from GaBP, which is parallelizable and
guaranteed to converge on trees in at most diam(G) iterations [10]. Parallelization reallocates the
expense of quantification across networked computational resources, often leading to faster solution
times and enabling larger problem instantiations than are otherwise permissible. However, full paral-
lelization, wherein each node i ∈ V is viewed as separate computing resource, incurs a multiplicative
overhead of O(diam(G)) due to each i having to send |N(i)| messages diam(G) times, yielding lo-
cal communication costs ofO(diam(G)|N(i)|·d3) and overall complexity ofO(diam(G)·|R|·nd3).
This overhead can be alleviated by instead assigning to every computational resource a connected
subgraph of G.

1As node i may have additional neighbors that are not on the u-v path, using the notation ζi(u, v|C) is
a convenient way to implicitly specify the enter/exit scalar r.v.s associated with the path. Any unique path
subsuming u-v, or any unique path subsumed in u-v for which i is interstitial, will have equivalent ζi terms.

2If i is in the conditioning set, its outgoing message can be set to be −∞, so that the nodes it blocks
from reaching r see an apparent information score of 0. Alternatively, i could simply choose not to transmit
r-messages to its neighbors.
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It should also be noted that if the quantification is instead performed using serial BP – which can be
conceptualized as choosing an arbitrary root, collecting messages from the leaves up to the root, and
disseminating messages back down again – a factor of 2 savings can be achieved for R2, . . . , R|R|
by noting that in moving between instances k and k + 1, only rk is added to the conditioning set.
Therefore, by reassigning rk as the root for the BP instance associated with rk+1 (i.e., A ∪ Rk as
the conditioning set), only the second half of the message passing schedule (disseminating messages
from the root to the leaves) is necessary. We subsequently refer to this trick as “caching.”

6 Experiments

To benchmark the runtime performance of the algorithm in Section 5, we implemented its serial
GaBP variant in Java, with and without the caching trick described above.

We compare our algorithm with greedy selectors that use matrix inversion (with cubic complexity)
to compute nonlocal mutual information measures. Let Sfeas := {y ∈ S \ A : c(y) ≤ β −
c(A)}. At each iteration of the greedy selector, the blocked inversion-based quantifier computes first
J′R∪Sfeas|A (entailing a block marginalization of nuisances), from which J′R|A and J′R|A∪y,∀y ∈
Sfeas, are computed. Then I(xR; xy | xA),∀y ∈ Sfeas, are computed via a variant of (3). The naı̈ve
inversion-based quantifier computes I(xR; xy | xA),∀y ∈ Sfeas, “from scratch” by using separate
Schur complements of J submatrices and not storing intermediate results. The inversion-based
quantifiers were implemented in Java using the Colt sparse matrix libraries [17].
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Figure 3: Performance of GaBP-based and inversion-based quantifiers used in greedy selectors.
For each n, the mean of the runtimes over 20 random scalar problem instances is displayed. Our
BP-Quant algorithm of Section 5 empirically has approximately linear complexity; caching re-
duces the mean runtime by a factor of approximately 2.

Figure 3 shows the comparative mean runtime performance of each of the quantifiers for scalar
networks of size n, where the mean is taken over the 20 problem instances proposed for each value
of n. Each problem instance consists of a randomly generated, symmetric, positive-definite, tree-
shaped precision matrix J, along with a randomly labeled S (such that, arbitrarily, |S| = 0.3|V|)
and R (such that |R| = 5), as well as randomly selected budget and heterogeneous costs defined
over S. Note that all selectors return the same greedy selection; we are concerned with how the
decompositions proposed in this paper aid in the computational performance. In the figure, it is
clear that the GaBP-based quantification algorithms of Section 5 vastly outperform both inversion-
based methods; for relatively small n, the solution times for the inversion-based methods became
prohibitively long. Conversely, the behavior of the BP-based quantifiers empirically confirms the
asymptotic O(n) complexity of our method for scalar networks.
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7 Performance Bounds

Due to the presence of nuisances in the model, even if the subgraph induced by S is completely
disconnected, it is not always the case that the nodes in S are conditionally independent when
conditioned on only the relevant latent set R. Lack of conditional independence means one cannot
guarantee submodularity of the information measure, as per [6]. Our approach will be to augment
R such that submodularity is guaranteed and relate the performance bound to this augmented set.

Let R̂ be any subset such that R ⊂ R̂ ⊆ U and such that nodes in S are conditionally independent
conditioned on R̂. Then, by Corollary 4 of [6], I(xR̂; xA) is submodular and nondecreasing on S.
Additionally, for the case of unit-cost observations (i.e., c(A) = |A| for all A ⊆ S), a greedily
selected subset Ag

β(R̂) of cardinality β satisfies the performance bound

I(R̂;Ag
β(R̂)) ≥

(
1− 1

e

)
max

{A⊆S:|A|≤β}
I(R̂;A) (9)

=

(
1− 1

e

)
max

{A⊆S:|A|≤β}
[I(R;A) + I(R̂ \ R;A|R)] (10)

≥
(

1− 1

e

)
max

{A⊆S:|A|≤β}
I(R;A), (11)

where (9) is due to [6], (10) to the chain rule of MI, and (11) to the nonnegativity of MI. The
following proposition follows immediately from (11).

Proposition 7. For any set R̂ such thatR ⊂ R̂ ⊆ U and nodes in S are conditionally independent
conditioned on R̂, provided I(R̂;Ag

β(R̂)) > 0, an online-computable performance bound for any
Ā ⊆ S in the original focused problem with relevant setR and unit-cost observations is

I(R; Ā) ≥

[
I(R; Ā)

I(R̂;Ag
β(R̂))

](
1− 1

e

)
︸ ︷︷ ︸

, δR(Ā,R̂)

max
{A⊆S:|A|≤β}

I(R;A). (12)

Proposition 7 can be used at runtime to determine what percentage δR(Ā, R̂) of the optimal ob-
jective is guaranteed, for any focused selector, despite the lack of conditional independence of S
conditioned on R. In order to compute the bound, a greedy heuristic running on a separate, surro-
gate problem with R̂ as the relevant set is required. Finding an R̂ ⊃ R providing the tightest bound
is an area of future research.

8 Conclusion

In this paper, we have considered the sensor selection problem on multivariate Gaussian distributions
that, in order to preserve a parsimonious representation, contain nuisances. For pairs of nodes con-
nected in the graph by a unique path, there exist decompositions of nonlocal mutual information into
local MI measures that can be computed efficiently from the output of message passing algorithms.
For tree-shaped models, we have presented a greedy selector where the computational expense of
quantification can be distributed across nodes in the network. Despite deficiency in conditional in-
dependence of observations, we have derived an online-computable performance bound based on
an augmentation of the relevant set. Future work will consider extensions of the MI decomposition
to graphs with nonunique paths and/or non-Gaussian distributions, as well as extend the analysis of
augmented relevant sets to derive tighter performance bounds.
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