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High-speed multiple-mode mass-sensing resolves
dynamic nanoscale mass distributions
Selim Olcum1,*, Nathan Cermak2,*, Steven C. Wasserman3 & Scott R. Manalis1,2,3,4

Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators

can determine the position and mass of surface-adsorbed proteins, and could ultimately

reveal the mass tomography of nanoscale analytes. However, existing measurement techni-

ques are slow (o1 Hz bandwidth), limiting throughput and preventing use with resonators

generating fast transient signals. Here we develop a general platform for independently and

simultaneously oscillating multiple modes of mechanical resonators, enabling frequency

measurements that can precisely track fast transient signals within a user-defined bandwidth

that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple

nanoparticles flowing simultaneously through a suspended nanochannel resonator and show

that four resonant modes are sufficient for determining their individual position and

mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit.

We envision that our method can be readily extended to other systems to increase

bandwidth, number of modes, or number of resonators.
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H
igh-quality factors1, miniature sizes and small force
constants of micro- and nanomechanical resonators
have enabled extremely sensitive detection of weak

forces2, single-molecule interactions3,4, single-electron spin5,6,
temperature 7 or mass perturbations8,9. Most mass sensors detect
changes in resonant frequency, a method that has facilitated
many exquisite measurements including the weight of single
molecules9, proteins10, exosomes11, nanoparticles11,12, cells13–16

and various accreted chemical analytes17. Although these
measurements typically exploit perturbations in the
fundamental mode frequency, the combined information from
multiple modes can yield improved stability18 or additional
characteristics of analytes. For example, Dohn et al.19 used
multimode measurements to determine the mass and position of
attached beads on a microcantilever. Similarly, Hanay et al.10

measured the mass and position of individual proteins adsorbed
on a nanomechanical resonator by measuring the frequency of its
first two modes. Beyond mass and position of point masses,
multimode measurements have recently been proposed for
characterizing continuous mass distributions with atomic-scale
resolution20, which would be a powerful approach for
characterizing biological and synthetic micro- and nano-
structures.

However, current systems for multimode frequency measure-
ment are slow, with measurement bandwidths below 1 Hz.
Although the speed of open-loop frequency measurements (either
thermally or externally driven) are limited by the resonator
amplitude timescale21, most multimode measurements to date
have been performed this way19,20,22–26. Existing closed-loop
systems also have limited bandwidths (below 1 Hz)10. Narrow
measurement bandwidths limit throughput—for example,
nanomechanical mass spectrometers must measure faster than
the time interval between arrivals of individual particles. In
addition, wide bandwidths are necessary for resonator sensors
that generate fast frequency modulated signals.

Here we introduce a method for wide-bandwidth multimode
frequency measurements while oscillating each resonance mode
in closed-loop and apply it to measure rapidly changing
nanoscale mass distributions. In contrast to previous research
exploiting static particles adhered to the surface of a resonator in
vacuum10,19,22, we focus on multimode measurements of analytes
in motion, while they flow through a suspended nanochannel
resonator (SNR)—a vacuum-packaged microcantilever with
an embedded fluidic channel12 that can measure the masses
of nanoparticles11. Here, we utilize a scalable system to
simultaneously oscillate and track multiple modes of a 200-mm-
long SNR in a wide bandwidth. As a demonstration, we track the
first four modes to resolve the position and mass of nanoparticle
pairs in close proximity as they quickly flow through the
resonator. Resolving such closely spaced moving point masses is
an important milestone for measuring mass distributions of
analytes in solution with high throughput and high resolution.

Results
Oscillation scheme. In comparison with open-loop techniques,
closed-loop approaches in which the resonator is placed in a
feedback loop provide wider measurement bandwidths21.
Furthermore, higher oscillation amplitudes (below the onset of
mechanical nonlinearity) lead to reduced frequency measurement
noise27. For oscillating a single mode, the feedback path typically
consists of a phase shift and gain, such that the resonator position
signal is delayed, amplified and then fed back to excite the
resonator11,28. This is straightforward to implement and ensures
that the loop oscillation frequency nearly instantly follows the
resonant frequency21. However, for multiple modes it does not

allow the phase shift and vibration amplitude for each mode to be
separately optimized—a critical requirement for minimizing
frequency noise. In contrast, a dedicated phase-locked loop
(PLL) in closed loop with each mode as depicted in Fig. 1a
allows for setting the phase shift and oscillation amplitude
independently.

While separate PLL feedback paths enable independent control
over each resonance, they also affect the system dynamics. The
ideal resonator-PLL system should track the corresponding
resonant frequency as closely and quickly as possible. While
direct feedback loops respond to perturbations much faster than
the resonator’s characteristic amplitude timescale (typically
t¼ 2Q/o0, where Q and o0 are the quality factor and the
angular resonant frequency of the resonator) the case of
PLL-mediated feedback29–33 and its dynamics34–36 have been
less studied. Therefore, we first developed a Laplace domain
model for the resonator-PLL system to understand and then
tailor the closed-loop system dynamics.

Controlling resonator—PLL system dynamics. To model the
resonator-PLL system, we first required the transfer function of
the resonator’s phase. We utilized the time-domain response of a
driven harmonic oscillator excited on resonance until time zero
and slightly off-resonance after time zero (see Supplementary
Note 1). The step change in excitation frequency is conceptually
equivalent to instantaneously changing the resonant frequency
(for example, by mass adsorption). Approximating the resonator
phase delay to be linear around its resonant frequency (Fig. 1b),
the first-order Taylor series approximation of the phase term
from the time-domain solution reveals that the resonator phase
can be well approximated as a first-order low-pass filter in the
Laplace domain (Fig. 1c and Supplementary Fig. 1), with a
bandwidth equal to 1/t. In the Laplace domain, the transfer
function of the resonator phase is:

FðsÞ ¼ 1
tsþ 1

ð1Þ

This is valid for frequency steps that are much smaller than 1/t.
Figure 1d shows the complete model of a generic resonator-PLL
system and suggests that the quality factor of the resonator will
substantially influence the loop dynamics especially at high
modulation frequencies, demonstrated in Fig. 1e.

For high-precision frequency tracking at high speed, we want
each mode’s closed-loop transfer function to be maximally flat up
to a desired bandwidth. Equating the resonator-PLL transfer
function to a Butterworth low-pass filter of desired order and
bandwidth yields direct expressions for the PLL parameters to
achieve the desired response (Supplementary Note 3). Increasing
the PLL order by introducing additional poles in the loop filter
(Supplementary Fig. 2b) and using the corresponding parameters
in Supplementary Table 1 sharpens the pass-band to stop-band
transition (Supplementary Fig. 3). By exploiting this useful
relationship, optimally configured resonator-PLL systems can be
designed to minimize crosstalk between closely spaced resonant
frequencies, such as those that occur in resonator arrays.

Resonator—PLL system implementation. For realization of a
multiple-mode frequency-tracking system, we implemented a
scalable array of 12 PLLs in a field-programmable gate array
(FPGA) chip, using an architecture similar to other designs (see
Methods)37. Since the mode frequencies of the SNR are not
closely spaced, here we used second order, type 2 PLLs38, which
can be simplified to first-order low-pass filters when in closed
loop with the resonator (first row of Supplementary Table 1 or
ref. 34). The implementation of each PLL includes a phase-error
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detector, a loop filter and a numerically controlled oscillator (see
Methods and Supplementary Fig. 2c). Software-programmable
parameters in the loop filter control the loop dynamics. To test
our system implementation, we measured transfer functions of a
PLL alone and a resonator-PLL system over a range of PLL
parameters. Across all parameters tested, these transfer functions
show excellent agreement with our model predictions for both
PLL-only and resonator-PLL cases (see Supplementary Fig. 4 and
Supplementary Note 4).

We then placed our PLL array in feedback with an SNR that is
200mm long, 16 mm wide and 1.3 mm thick with an integrated
channel that is 2 mm wide and 700 nm tall. The PLLs excite
the resonator modes by driving a piezoceramic actuator seated
underneath the chip and an optical lever detector measures
the resonator deflection at the tip11, which is fed back to the
PLLs. The frequencies of the first four modes were 40.48, 249.1,
693.1 and 1,351 kHz, and their quality factors were between 3,500
and 8,000 (Fig. 2a). Beyond the fourth mode, our piezoceramic
was not able to actuate the resonator with sufficient amplitude.
We configured the closed-loop frequency response of each mode
to behave as a first-order low-pass filter (Fig. 2b) by setting the
loop parameters using Supplementary Table 1. The bandwidth for
each mode was chosen to be wide enough for resolving particles
with 4100-ms-transit time and ranged from 150 to 500 Hz (see
Supplementary Fig. 5 and Supplementary Note 5).

Nanoparticle mass distribution measurements. Next, we mea-
sured the resonant frequency signals of all four modes while a
mixture of 100 and 150 nm gold nanoparticles flowed through the
resonator (Fig. 2e). As particles typically took longer than 100 ms
to transit the resonator, we averaged and downsampled the sig-
nals to a sampling rate of 642 Hz, yielding acquisition bandwidths
between 150 and 285 Hz. We fit the resulting frequency signals to
a model of a point loading on a cantilever22 to obtain single
particle mass and trajectory information (see Methods). The
model assumed that the particle could be in any position at any
time (that is, one free parameter for each time point) and that
particle mass is constant during transit. The data systematically
deviated from the model in that the magnitudes of frequency shift
of modes two, three and four were smaller than predicted
(Fig. 3a). Empirically, adding sensitivity-adjustment parameters
for modes two through four significantly improved the fit (Fig. 3a,
blue curves) and reduced the root-mean-square (RMS) error by
25% with only three additional degrees of freedom. An example
of a best-fit particle trajectory is shown in Fig. 3b. The mean
estimated sensitivity adjustment factors obtained by fitting 31
150-nm particles are shown in Fig. 3c. We are uncertain as to the
origin of these deviations, although they are not attributable to
undesired smoothing via insufficient bandwidth.

As a first step towards obtaining mass distributions within a
microfluidic channel, we demonstrate the capability of our system
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to simultaneously extract mass and position of nanoparticle pairs
flowing through the resonator. As shown in Fig. 4a, a single mode
provides limited information about the particles. However, by
utilizing all four modes it was possible to resolve the position and

mass of both particles as they flowed through the resonator
(Fig. 4b). The first example shows two particles following each
other in the channel (illustrated in Fig. 4c). We can see that at the
tip of the resonator the heavier particle slows down because of
higher centrifugal force opposite to the direction of the flow12.
The second case shows two particles following each other very
closely in the first half of the channel. When the particles turn at
the tip of the resonator, one of them veers away from the initial
flow path to a path where the flow velocity is slower.

Noise analysis. The precision of our position and mass estimates
will depend on the noise properties of the modal measurements.
To assess this, we simultaneously recorded 1-min noise wave-
forms from each mode and found that all the modes exhibited
minimum Allan deviations at gate times between 20 and 500 ms,
ideal for fast particle measurements (Fig. 5a, coloured circles).
The measured minimum fractional Allan deviations range from
7 to 19 p.p.b., which are more than 3,000-fold lower than what
would have been achievable for thermally driven (free-running)
resonators (Fig. 5a, solid lines). However, if we could improve the
dynamic range of our detector such that all modes could be
oscillated at the onset of mechanical nonlinearity (measured here
as 94, 91, 92 and 97 dB above the thermal fluctuations), we could
improve the frequency stabilities by over an order of magnitude
(Fig. 5a, dashed lines). Calculation details for Allan deviation and
thermal noise limits are provided in Methods and in ref. 18.

As the nanoparticles are inside an opaque silicon beam, we
cannot visually observe their location for comparison against our
measurements. However, assuming a well-validated model of
how point-mass loading affects modal frequencies19,22, we can
estimate the precision using the measured frequency noise.
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To determine the precision of the position estimation due to
frequency noise alone, we fit a set of model-generated frequency
signals corrupted with the recorded waveforms of frequency
noise. We first generated the four-mode frequency modulation
signals for a 150-nm gold nanoparticle (30 fg) making a 150-ms
transit through the resonator. We then randomly sampled 250
short contiguous subsets from our noise measurements, added
each to the theoretical particle waveforms and solved for the mass
and positions to obtain their standard errors. This explicitly takes
into account the frequency spectrum of our noise. In our case of
four modes, we can determine the position of a 150-nm particle
with a typical RMS error of 152 nm along the length of the
resonator and 37 nm at the tip (Fig. 5b, black circles). While this
position precision will improve with increasing particle mass, the

uncertainty of the mass estimate (41 attograms) is independent of
particle mass. In addition, while we simulate a 150-ms particle
transit, we estimate a position for each time point, rendering the
position precision effectively independent of the transit time.

Although previous work has questioned the value of extra
higher-order modes22, we compared our position precision using
four modes against using only the first two or three modes and
found a notable improvement with each extra mode introduced
(Supplementary Fig. 6a). Similarly, achieving thermally limited
noise while driving eight modes just below the onset of
nonlinearity would improve the position precision by two
orders of magnitude (Fig. 5b). Even greater gains could be
achieved by using smaller resonators—a 10-fold shorter SNR
similar to those in ref. 11 with similar stabilities in eight modes
would enable analysing single virions or extracellular vesicles
(B100 nm) with 4-nm position precision (see Supplementary
Note 6 and Supplementary Fig. 6b). However, smaller resonators
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come at the cost of high resonant frequencies, requiring
specialized actuation and detection schemes. To operate smaller
resonators, future systems may employ optimized piezoresistor
sensors39–41 and alternate optical42–44 or electrical45–47 low noise
transduction schemes that can sustain multiple resonances at
high frequencies23.

Discussion
The ability to resolve nanoparticle pairs in close proximity in a
resonator suggests the possibility of observing bimodal mass
distributions within a population of single particles, or resolving
high-aspect-ratio shapes versus more spherical shapes in solution.
In addition, to be able to monitor the dynamic changes in the
mass distributions could be used for online monitoring of the
assembly of engineered nanoparticles such as DNA origami or
nanoparticles designed for nanomedicine. The ability of mechan-
ical resonators to study the distribution of mass in analytes will
ultimately depend on the resonator size, the number of modes
measured and the frequency measurement precision. Improve-
ments in any/all of these three areas, perhaps in parallel with
mass tagging at specific locations, could ultimately enable
analysing the structure of lighter biological particles such as
phage, viruses or exosomes in solution, or single proteins with
nanomechanical mass spectroscopy in vacuum, which are
currently difficult to resolve with optical techniques and laborious
to observe with other methods. The same approach, when applied
to larger resonators that can sustain bacteria or mammalian cells,
could ultimately be used to obtain high-throughput mass
tomography of single living cells.

We believe that the presented method will also prove useful for
large-scale integration of resonators. A carefully configured PLL
array can oscillate an array of resonators individually with
combined-detector and combined-actuator signals. The presented
ability of engineering the system responses of individually
addressable (by resonant frequency) resonators will be pivotal
to such large-scale implementations. Such an approach could
enable systems exploiting resonators ranging from very sensitive
gas sensors to artificial nose applications to high-throughput cell
analysers.

Methods
Device fabrication. The SNR used in the experiments was fabricated using a
microfabrication process12,13 that was carried out at Innovative Micro
Technologies, Santa Barbara, CA. The device includes a hollow microcantilever free
to oscillate in a vacuum-sealed cavity with an on-chip getter, enabling long-term
high-quality factor operation. The embedded fluidic channel in the SNR is accessed
from the two sides by two larger (50 mm by 20 mm) bypass channels, which have
two fluidic ports each. The top-side of the device is protected by a glass wafer,
which enables optical access to the resonator.

PLL implementation. The PLL was implemented on an Altera Cyclone IV FPGA
on a DE2–115 development board from Terasic Technologies. The board clock
signal was generated by a 100-MHz oven-controlled crystal oscillator (Abracon
AOCJY2). Analogue-to-digital and digital-to-analogue data conversion were per-
formed using a daughter board from Terasic with two A/D converters and two D/A
converters, all 14-bit and running at 100 MHz, connected to the FPGA via a high-
speed mezzanine connector. The FPGA code was written in Verilog and compiled
using Quartus II 12.1 (Altera). The code includes 12 identical PLL modules. Each
module utilizes a multiplier and a low-pass filter as a phase error detector
(Supplementary Fig. 2c). The low-pass filter is a second-order cascaded integrator-
comb-decimating filter48, with a variable rate change factor (and thus variable
bandwidth). Unfortunately, this phase detector is sensitive to both the phase and
the amplitude of the input:

fdetector ¼Lowpass xinðtÞ�xNCOðtÞ½ �
¼Lowpass Ain sinðotþfinÞ sinðotÞ½ �r

¼Lowpass Ain
cosðfinÞ� cosð2otþfinÞ

2

� �

¼Ain

2
cosðfinÞ

ð2Þ

The phase detector is therefore linear around fin¼ �p/2, where the PLL locks;
however, it has a gain that depends on the input signal amplitude. Therefore,
we calculate the input amplitude Ain and divide the phase error by it. This is
implemented by multiplying the input signal by both the sine and cosine outputs of
the numerically controlled oscillator (NCO), low-pass-filtering both and
calculating the sum of the squared values, yielding the input magnitude squared.
We then use a look-up table to calculate an appropriate fractional gain to cancel
out the input magnitude, as both square root and division operations are logic-
intensive and slow, often not meeting timing requirements. This normalized error
signal is then split into two paths, one of which is rescaled and integrated (with
some finite frequency bounds outside which the integration saturates, so that the
PLL cannot accidentally lock to other modes), and the other of which is rescaled
and then summed with the integral path. This signal is then fed into a 35-bit NCO
with a frequency resolution of 2.9 mHz.

Each PLL module is connected to a 32-bit CPU implemented on the FPGA
(Nios II, Altera). The CPU can both write to control registers inside the PLL to set
parameters such as the proportional or integral gains or the output drive
amplitude, as well as read various PLL state variables such as the current NCO
frequency. In our system, the DE2–115 board is connected to a computer via
gigabit ethernet, and C code running on the Nios II processor creates a simple
server through which the PC can connect and read/write PLL registers. Writing to
registers occurs over a TCP connection to ensure reliability; however, the NCO
frequency is transmitted from the FPGA via UDP multicast, allowing for much
lower overhead and higher bandwidth. We find that we can easily transmit
uncompressed frequency data (32-bit integers) at a rate of over 100 kHz with no
dropped packets. On the PC, we have implemented a LabView (National
Instruments) software to save this data stream, as well as let us easily set the PLL
control register values over the TCP connection.

In the current configuration, each PLL module takes up roughly 6,500 logic cells
(out of 114,480), 11 18� 18-bit multipliers (out of 266 total), and four M9K
memory blocks (out of 432 total) of an Altera Cyclone IV FPGA on a DE2–115
development board. As the CPU takes up roughly 15,000 logic cells, two
18� 18-bit multipliers, and 253 M9K memory blocks, logic cells are the limiting
factor in increasing the number of parallel PLLs running on a single FPGA. In the
current implementation, we can fit 14–15 PLLs on our FPGA though future
implementations with higher-end FPGAs could fit many more—for example,
the Altera Stratix III EP3SL340 could likely fit around 50 PLLs.

Single-particle fits. We rely on the following equation given in ref. 22 relating the
relative frequency shift ðoDm;n

on
Þ of a resonator of mass m0 operating in mode n, when

loaded with a point mass Dm at a position z:

oDm;n

on
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Dm
m0

U2
nðzÞ

q ð3Þ

where U(z) is given by

UðzÞ ¼ cosðknzÞ� coshðknzÞþ cnðsinðknzÞ� sinhðknzÞÞ ð4Þ

with kn being the nth root of cos(x) cosh(x)¼ � 1 and cn¼ (sin(kn)� sinh(kn))/
(cos(kn)þ cosh(kn)). In this case, z is parameterized such that 0 represents the base
of the cantilever and 1 is the tip of the cantilever.

To account for the reduced sensitivity in higher modes (as compared with
what is expected in (2)), we modify this model slightly by including a sensitivity
adjustment parameter sn, which is fit for all modes except the first (s1 is defined
as 1).

oDm;n

on
¼ snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Dm
m0

U2
nðzÞ

q ð5Þ

To fit particle trajectories, we follow ref. 22 by attempting to minimize the
residual squared error w2 of the normalized signals (fit errors are divided by the s.d.
of the signal, such that a unit residual error is equally penalized for all modes). Free
parameters in this fit are noted in red:

w2ðz;Dm=m0; sÞ ¼
XT

t¼0

XN

n¼1

1
s2

n

oDm;n

on
� snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Dm
m0

U2
nðzt

q
Þ

0
@

1
A

2

ð6Þ

Here z is a vector consisting of one value per time point t, and is not constrained
based on expected flow path. T is the number of timepoints, t indexes the
timepoints, N is the number of modes, n indexes the modes and sn is the RMS
noise in mode n.

Two-particle fits. We proceed in a very similar manner for the two-particle fits,
minimizing the following objective function19:

w2ðz;Dm=m0; sÞ ¼
X

t

XN

n¼1

1
s2

n

oDm;n

on
� snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Dm1
m0

U2
nðz1;tÞþ Dm2

m0
U2

nðz2;t

q
Þ

0
@

1
A

2

ð7Þ
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Noise analysis calculations. The fractional Allan deviation, sA(tA), of the
frequency of an oscillator in a time period of tA is defined as in ref. 49:

sAðtAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

AðtAÞ
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðN � 1Þ
XN

k¼2

�fk ��fk� 1

f0

� �2
vuut ð8Þ

where �fk is the time average of the frequency measurement in the kth time interval
of length tA within a total of N intervals, and f0 is the mean oscillation frequency
calculated over the entire duration of the noise measurement. The fractional Allan
deviation of a resonator due to thermal noise is given as18:

sth
A ðtAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2

thermali
hx2

driveni
1

o0QtA

s
ð9Þ

where hx2
thermali is the mean squared displacement because of thermal vibration,

and hx2
driveni is the mean squared displacement when driven. For a purely thermally

driven cantilever, the ratio of these quantities is one.
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