24.400 Proseminar in philosophy I

Fall 2003

Tarski's Definition of Truth

Let *L* be a first-order language with identity, where the logical vocabulary is ' \forall ', '&', '~', together with an infinite supply of variables 'x1', 'x2',... The non-logical vocabulary of *L* comprises 'Bernhard', 'Clare', 'Jason', 'Johanna', 'Selim', and a two-place predicate 'L'. The quantifiers of *L* are stipulated to range over MIT graduate students, '=' is interpreted as expressing the identity relation, 'Bernhard', 'Clare',... as referring to Bernhard, Clare,... respectively, and 'L' as expressing the loving relation.

A materially adequate and formally correct definition of 'true sentence of L' is as follows:

Definition of the denotation of a term relative to a sequence

- (i) The ith variable of *L* denotes an object **o** relative to a sequence S iff **o** is the ith member of S. (So, relative to <Adina, Adam, Bernhard, Clare, Adam, Asta, ...>, 'x4' denotes Clare.)
- (ii) A name v of L denotes o relative to S iff v=' Bernhard' and o=Bernhard, or v='Clare' and o=Clare, or v='Jason' and o=Jason, or v='Johanna' and o=Johanna, or v='Selim' and o=Selim.

Definition of the truth of a formula relative to a sequence (or of a sequence satisfying a formula)

(i) An atomic formula [[](α = β)[]] is true relative to a sequence S iff the object denoted by the term α relative to S is identical to the object denoted by the term β relative to S.
[Alternatively: a sequence S *satisfies* an atomic formula [[](α = β)[]] iff the object denoted by the term α relative to S is identical to the object denoted by the term β relative to S is identical to the object denoted by the term β relative to S.

- (ii) An atomic formula $\lceil (L\alpha\beta) \rceil$ is true relative to a sequence S iff the object denoted by the term α relative to S loves the object denoted by the term β relative to S.
- (iii) A formula $\lceil (\sim \phi) \rceil$ is true relative to S iff ϕ is not true relative to S.

- (iv) A formula $\lceil (\phi \& \psi) \rceil$ is true relative to S iff ϕ is true relative to S and ψ is true relative to S.
- (v) A formula $(\forall v \phi)^{\dagger}$, where v is the ith variable, is true relative to S iff ϕ is true relative to every sequence S* that differs from S at most in the ith place.

Then, for all sentences x, x is a true sentence of L iff x is true relative to every sequence of graduate students (or: is satisfied by every sequence).

So far we only have an "inductive definition" of 'denotation relative to a sequence' and 'true relative to a sequence'. That is, we have fixed the application of these expressions without supplying other expressions to which they are equivalent. But this may be remedied as follows:

α denotes **o** relative to S iff there is a set D such that <α, **o**, S> ∈ D, and the members of D are exactly the triples <γ, **o**#, S#> such that either (i) γ is the ith variable and **o**# is the ith member of S#; or (ii) γ is a name and either γ='Bernhard' and **o**#=Bernhard, or γ='Clare' and **o**#=Clare, or γ='Jason' and **o**#=Jason, or γ='Johanna' and **o**#=Johanna, or γ='Selim' and **o**#=Selim.

 ϕ is true relative to S iff there is a set T such that $\langle \phi, S \rangle \in T$, and for all formulas x and sequences S#, the members of T are exactly the pairs $\langle x, S \rangle$ such that either (i) x is $\lceil (\alpha = \beta) \rceil$ and the object denoted by the term α relative to S# is identical to the object denoted by the term β relative to S#; or (ii) x is $\lceil (L\alpha\beta) \rceil$ and the object denoted by the term α relative to S# loves the object denoted by the term β relative to S#; or (iii) x is $\lceil (\alpha \otimes \gamma) \rceil$ and $\langle \phi, S \rangle \notin T$; or (iv) x is $\lceil (\pi \otimes \psi) \rceil$ and $\langle \pi, S \rangle \notin T$; or (v) x is $\lceil (\forall v\psi) \rceil$, where n is the ith variable, and $\langle \psi, S^* \rangle \in T$, where S* differs from S at most in the ith place.

Then the explicit definition of 'true sentence of L' is:

For all sentences x, x is a true sentence of L iff there is a set T_L such that $x \in T_L$ and for all sentences y of L, $y \in T_L$ iff there is a set T such that for all sequences S', $\langle y, S' \rangle \in T$, and the members of T are exactly the pairs $\langle x, S \rangle$ such that either

(i) x is $\lceil (\alpha = \beta) \rceil$ and there is a set D such that:

for all terms γ , objects **o**#, and sequences S#, the members of D are exactly the triples $\langle \gamma, \mathbf{o}#, S# \rangle$ such that either (a) γ is the ith variable and **o**# is the ith member of S#; or (b) γ is a name and either γ ='Bernhard' and **o**#=Bernhard, or γ ='Clare' and **o**#=Clare, or γ ='Jason' and **o**#=Jason, or γ ='Johanna' and **o**#=Johanna, or γ ='Selim' and **o**#=Selim.

and there are objects $\mathbf{o'}$, $\mathbf{o''}$ such that $\langle \alpha, \mathbf{o'}, S \rangle \in D$ and $\langle \beta, \mathbf{o''}, S \rangle \in D$, and $\mathbf{o'}$ is identical to $\mathbf{o''}$;

or:

(ii) x is $\lceil (L\alpha\beta) \rceil$ and there is a set D as above and there are objects **o'**, **o''** such that $<\alpha$, **o'**, S> \in D and $<\beta$, **o''**, S> \in D, and **o'** loves **o''**;

or: (iii) x is $\lceil (\sim \phi) \rceil$ and $\langle \phi, S \rangle \notin T$;

or:

(iv) x is $\lceil (\pi \& \psi) \rceil$ and $\langle \pi, S \rangle \in T$ and $\langle \psi, S \rangle \in T$;

or:

(v) x is $\lceil (\forall v \psi) \rceil$, where v is the ith variable, and $\langle \psi, S^* \rangle \in T$, where S* differs from S at most in the ith place.