24.400

Proseminar in philosophy I

Fall 2003

The propositional calculus The language L_p contains the following symbols: Sentence letters: p, q, r, ... Logical connectives: ⊃, ↔, &, ∨, ¬ Brackets: (,)

The sentences of L_p are given by these rules:

(i) Any sentence letter is a sentence.

(ii) If Φ and Ψ are sentences, then so are: $[(\Phi \supset \Psi)]$, $[(\Phi \Leftrightarrow \Psi)]$, $[(\Phi \& \Psi)]$, $[(\Phi \lor \Psi)]$, $[-\Phi]$.

(iii) Nothing else is a sentence.

An *interpretation* of L_p is an assignment of either the value true, or the value false, to every sentence letter of Lp. Such an assignment uniquely determines the truth value of any non-atomic sentence of L_p in accordance with the following truth table.

The first-order predicate calculus (with identity) The language L_q contains the following symbols: Logical connectives: \supset , \leftrightarrow , &, \vee , ¬ (Individual) variables: $x, y, z, x', y', z', x'', ...$ Names: a, b, c, a′, ... One-place predicate letters: F_1 , G_1 , H_1 ,... Two-place predicate letters: F_2 , G_2 , H_2 ,... Three-place predicate letters, etc. A special purpose two-place predicate letter: = Brackets: (,) (We can also have function symbols, omitted for simplicity.)

The sentences of L_q are given by these rules:

(i) If Π is an n-place predicate letter, and $\alpha_1, ..., \alpha_n$ are n names, $\Pi\alpha_1...\alpha_n$ ¹ is a sentence. (We make an exception for our special purpose two-place predicate '='. Here we put a name on either side of it to make a sentence.) (ii) If Φ and Ψ are sentences, then so are:

 $[(\Phi \supset \Psi)]$, $[(\Phi \Leftrightarrow \Psi)]$, $[(\Phi \& \Psi)]$, $[(\Phi \lor \Psi)]$, $[-\Phi]$.

(iii) If Φ is a sentence, and χ is a variable not occurring in Φ , and Φ^* is the result of substituting χ for at least one occurrence of a name in Φ , then:

 $\left[(\forall \chi) \Phi \ast \right]$ and $\left[(\exists \chi) \Phi \ast \right]$ are both sentences.

(v) Nothing else is a sentence.

An (open) *formula* is just like a sentence except that some names have been replaced by variables.

A *model* M of Lq is an ordered pair <D, I>, where D (the *domain*) is a set and I (the *interpretation*) is a function assigning to each name a member of D, and to each n-place predicate a set of ordered n-tuples of members of D ($=$ ' always gets assigned the same set: all ordered pairs of members of D with identical first and second members).

A model determines the truth values of all the sentences of L_q as follows:

(i) An atomic sentence $\Pi\alpha_1...\alpha_n$ ^l is true in M iff <I(α_1),...,I(α_n)> is a member of $I(\Pi)$.

(ii) The connectives are treated just as in the propositional calculus: e.g. $[(\Phi \& \Psi)]$ is true in M iff Φ is true in M and Ψ is true in M.

Order the names of L_{α} and let $\Phi[\alpha/\chi]$ be the result of replacing every occurrence of the variable χ in Φ by the first name α not occurring in Φ. Then: (iii) $\left[(\forall \chi) \Phi \right]$ is true in M iff $\Phi[\alpha/\chi]$ is true in M, and also in every model which is just like M apart from what gets assigned to α .

(iv) $[(\exists \chi) \Phi]$ is true in M iff $\Phi[\alpha/\chi]$ is either true in M, or true in at least one model which is just like M apart from what gets assigned to α .

(Alternatively, Tarski-style, (iii) and (iv) can be replaced by clauses using the notion of a *sequence* satisfying a *formula*.)

A *valid* sentence is one true in all models.

The second-order predicate calculus

The language L_q^2 contains all the following symbols of L_q plus *predicate* variables: One-place predicate variables: X, Y, Z, X′, Y′, … Two-place predicate variables: X_2 , Y_2 , Z_2 , X_2 ', ... (Three-place predicate variables, etc.)

The formation rules are just the same, except that (iii) is replaced by:

(iii†) If Φ is a sentence, and χ is an individual variable not occurring in Φ , and Φ^* is the result of substituting χ for at least one occurrence of a name in Φ , then: $\left[(\forall \chi) \Phi \ast \right]$ and $\left[(\exists \chi) \Phi \ast \right]$ are both sentences.

If Φ is a sentence, and Ξ is an n-place predicate variable not occurring in Φ , and Φ∗ is the result of substituting Ξ for at least one occurrence of an n-place predicate in Φ, then:

 $\left[(\forall \Xi) \Phi \ast \right]$ and $\left[(\exists \Xi) \Phi \ast \right]$ are both sentences.

(We can also have function and sentence variables, omitted for simplicity.)

The definition of truth in a model is just the same, except that we add: Let $\Phi[\Pi/\Xi]$ be the result of replacing every occurrence of the n-place predicate variable Ξ in F by the first n-place predicate letter Π not occurring in Φ. Then: (iii) $\left[\Psi\Xi\right]\Phi$ [|] is true in M iff $\Phi[\Pi/\Xi]$ is true in M, and also in every model which is just like M apart from what gets assigned to P. (iv) $\left[(\exists \Xi) \Phi \right]$ is true in M iff $\Phi[\Pi/\Xi]$ is either true in M, or true in at least one model which is just like M apart from what gets assigned to P.

Exercise: show that $\forall x \exists X (Xx)'$ is valid.

Various "logical" notions can be defined in second-order but not first-order logic: a is identical to b: $\forall X (Xa \leftrightarrow Xb)$ [or $\forall X (Xa \supset Xb)$] The "ancestral" of a relation R (*Grundlagen*, §79) There are exactly as many Fs as Gs (§72) There are (denumerably) infinitely many things

This greater expressive power comes at some cost: unlike first-order logic, there is no mechanical procedure that, when applied to a sentence of second-order logic, will deliver a 'yes' if the sentence is valid.

According to Quine, second-order logic is not logic at all, but rather "set theory in sheep's clothing" (*Philosophy of Logic*, 66). For the opposing view, see Boolos, *Logic, Logic, and Logic*.