24.400

Proseminar in philosophy I

Fall 2003

<u>The propositional calculus</u> The language L_p contains the following symbols: Sentence letters: p, q, r, ... Logical connectives: \supset , \Leftrightarrow , &, v, \neg Brackets: (,)

The sentences of L_p are given by these rules:

(i) Any sentence letter is a sentence.

(ii) If Φ and Ψ are sentences, then so are:

 $\lceil (\Phi \supset \Psi) \rceil, \lceil (\Phi \nleftrightarrow \Psi), \lceil (\Phi \& \Psi) \rceil, \lceil (\Phi \lor \Psi) \rceil, \lceil \neg \Phi \rceil.$

(iii) Nothing else is a sentence.

An *interpretation* of L_p is an assignment of either the value true, or the value false, to every sentence letter of L_p . Such an assignment uniquely determines the truth value of any non-atomic sentence of L_p in accordance with the following truth table.

Φ	Ψ	$^{\left[\left(\Phi \supset \Psi ight) ight] }$	$\left[\left(\Phi \nleftrightarrow \Psi \right) \right]$	$\lceil (\Phi \& \Psi) \rceil$	$\left[\left(\Phi v \Psi ight) ight]$	$\lceil \neg \Phi ceil$
T	Т	Т	Т	Т	Т	 F
Т	F	F	F	F	Т	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	F	Т

<u>The first-order predicate calculus (with identity)</u> The language L_q contains the following symbols: Logical connectives: \supset , \Leftrightarrow , &, \lor , \neg (Individual) variables: x, y, z, x', y', z', x'', ... Names: a, b, c, a', ... One-place predicate letters: F₁, G₁, H₁,... Two-place predicate letters: F₂, G₂, H₂,... Three-place predicate letters, etc. A special purpose two-place predicate letter: = Brackets: (,) (We can also have function symbols, omitted for simplicity.)

The sentences of L_q are given by these rules:

(i) If Π is an n-place predicate letter, and $\alpha_1, ..., \alpha_n$ are n names, ${}^{\lceil}\Pi\alpha_1...\alpha_n{}^{\rceil}$ is a sentence. (We make an exception for our special purpose two-place predicate '='. Here we put a name on either side of it to make a sentence.) (ii) If Φ and Ψ are sentences, then so are:

 $[(\Phi \supset \Psi)], [(\Phi \leftrightarrow \Psi), [(\Phi \& \Psi)], [(\Phi \lor \Psi)], [\neg \Phi].$

(iii) If Φ is a sentence, and χ is a variable not occurring in Φ , and Φ * is the result of substituting χ for at least one occurrence of a name in Φ , then:

 $[(\forall \chi)\Phi^*]$ and $[(\exists \chi)\Phi^*]$ are both sentences.

(v) Nothing else is a sentence.

An (open) *formula* is just like a sentence except that some names have been replaced by variables.

A *model* M of L_q is an ordered pair <D, I>, where D (the *domain*) is a set and I (the *interpretation*) is a function assigning to each name a member of D, and to each n-place predicate a set of ordered n-tuples of members of D ('=' always gets assigned the same set: all ordered pairs of members of D with identical first and second members).

A model determines the truth values of all the sentences of L_q as follows:

(i) An atomic sentence $[\Pi \alpha_1 ... \alpha_n]$ is true in M iff $\langle I(\alpha_1), ..., I(\alpha_n) \rangle$ is a member of I(Π).

(ii) The connectives are treated just as in the propositional calculus: e.g. $\lceil (\Phi \& \Psi) \rceil$ is true in M iff Φ is true in M and Ψ is true in M.

Order the names of L_{qr} and let $\Phi[\alpha/\chi]$ be the result of replacing every occurrence of the variable χ in Φ by the first name α not occurring in Φ . Then: (iii) $[(\forall \chi)\Phi]$ is true in M iff $\Phi[\alpha/\chi]$ is true in M, and also in every model which is just like M apart from what gets assigned to α .

(iv) $[(\exists \chi)\Phi]$ is true in M iff $\Phi[\alpha/\chi]$ is either true in M, or true in at least one model which is just like M apart from what gets assigned to α .

(Alternatively, Tarski-style, (iii) and (iv) can be replaced by clauses using the notion of a *sequence* satisfying a *formula*.)

A *valid* sentence is one true in all models.

The second-order predicate calculus

The language L_{q^2} contains all the following symbols of L_q plus *predicate* variables:

One-place predicate variables: X, Y, Z, X', Y', ...

Two-place predicate variables: X_2 , Y_2 , Z_2 , X_2' , ...

(Three-place predicate variables, etc.)

The formation rules are just the same, except that (iii) is replaced by:

(iii†) If Φ is a sentence, and χ is an individual variable not occurring in Φ , and Φ * is the result of substituting χ for at least one occurrence of a name in Φ , then: [$(\forall \chi) \Phi$ *] and [$(\exists \chi) \Phi$ *] are both sentences.

If Φ is a sentence, and Ξ is an n-place predicate variable not occurring in Φ , and Φ * is the result of substituting Ξ for at least one occurrence of an n-place predicate in Φ , then:

 $[(\forall \Xi)\Phi *]$ and $[(\exists \Xi)\Phi *]$ are both sentences.

(We can also have function and sentence variables, omitted for simplicity.)

The definition of truth in a model is just the same, except that we add: Let $\Phi[\Pi/\Xi]$ be the result of replacing every occurrence of the n-place predicate variable Ξ in F by the first n-place predicate letter Π not occurring in Φ . Then: (iii) $[(\forall \Xi)\Phi]$ is true in M iff $\Phi[\Pi/\Xi]$ is true in M, and also in every model which is just like M apart from what gets assigned to P. (iv) $[(\exists \Xi)\Phi]$ is true in M iff $\Phi[\Pi/\Xi]$ is either true in M, or true in at least one model which is just like M apart from what gets assigned to P.

Exercise: show that $' \forall x \exists X(Xx)'$ is valid.

Various "logical" notions can be defined in second-order but not first-order logic: a is identical to b: $\forall X(Xa \leftrightarrow Xb)$ [or $\forall X(Xa \supset Xb)$] The "ancestral" of a relation R (*Grundlagen*, §79) There are exactly as many Fs as Gs (§72) There are (denumerably) infinitely many things

This greater expressive power comes at some cost: unlike first-order logic, there is no mechanical procedure that, when applied to a sentence of second-order logic, will deliver a 'yes' if the sentence is valid.

According to Quine, second-order logic is not logic at all, but rather "set theory in sheep's clothing" (*Philosophy of Logic*, 66). For the opposing view, see Boolos, *Logic*, *Logic*, *and Logic*.