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ABSTRACT In eukaryotic cells, histone lysines are frequently acetylated. However, unlike modifications
such as methylations, histone acetylation modifications are often considered redundant. As such, the func-
tional roles of distinct histone acetylations are largely unexplored. We previously developed an algorithm
RFECS to discover the most informative modifications associated with the classification or prediction of
mammalian enhancers. Here, we used this tool to identify the modifications most predictive of promoters,
enhancers, and gene bodies. Unexpectedly, we found that histone acetylation alone performs well in dis-
tinguishing these unique genomic regions. Further, we found the association of characteristic acetylation
patterns with genic regions and association of chromatin state with splicing. Taken together, our work
underscores the diverse functional roles of histone acetylation in gene regulation and provides several
testable hypotheses to dissect these roles.
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In eukaryotes, DNA is packaged into nucleosomes, each consisting of
an octamer of histone proteins that can undergo a large number of
post-translational modifications (Tan et al. 2011). Recent advances in
high-throughput technologies such as ChIP-seq have led to the dis-
coveries that various regulatory sequences are characterized by distinct
patterns of histone modifications, which have increasingly been used
as biochemical signatures for annotation of the genome (Rivera and
Ren 2013). For instance, combinations of H3K4me1 and H3K4me3

(Heintzman et al. 2007) have been exploited for the identification of
enhancers and promoters in mammalian genomes (Won et al. 2008;
Firpi et al. 2010; Fernandez and Miranda-Saavedra 2012; Rajagopal
et al. 2013). Similarly, combination patterns of H3K4me3 and
H3K36me3 were used to uncover a large number of long intergenic
noncoding (linc) genes (Guttman et al. 2009). Several machine-learn-
ing tools have been developed to annotate the histone modification
patterns characteristic of various DNA elements (Hon et al. 2008;
Ernst and Kellis 2012; Rajagopal et al. 2013), but given the large
number of histone modifications known to exist, there remains a need
for more in-depth analysis of histone combination patterns and their
relationships to functional sequences.

Histone acetylations are largely considered markers of activity at
regulatory elements such as promoters and enhancers, but because of
their tendency to co-occur they have been difficult to elucidate the
nonredundant roles of these acetylations (Zentner and Henikoff
2013). Histone acetylations are indirectly targeted in the treatment
of diseases such as cancer and HIV by the use of HDAC (histone
deacetylase) inhibitors (Dinarello et al. 2011). Understanding the
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specific role of histone acetylations at different genomic elements has
the potential to improve such therapies by increasing the specificity of
targeting. Certain lines of evidence have suggested nonredundant roles
of histone acetylation such as the fact that HDACs as well as histone
acetyl-transferases (HATs) have unique genomic distributions (Wang
et al. 2009; Ram et al. 2011). A previous study found certain acetyla-
tions such as H3K9ac to be present at promoters and H4K16ac along
gene bodies (Wang et al. 2008). However, the extent to which these
acetylations are predictive of particular elements is still unknown.

Although different histone modification patterns have been pre-
viously associated with enhancers, promoters, and gene bodies, the
discovery of co-transcriptional splicing, the finding that pre-mRNA can
be spliced during the process of transcription itself (Listerman et al.
2006; Lynch 2006), suggested that histone modification patterns could
also be indicative of alternative splicing. Subsequently, it was found that
exons are marked by well-positioned nucleosomes and elevated levels of
certain methylations, in particular H3K36me3 (Andersson et al. 2009;
Hon et al. 2009; Kolasinska-Zwierz et al. 2009; Spies et al. 2009).
Further supporting this notion, changes in acetylation levels were found
to affect alternative splicing (Gunderson et al. 2011; Hnilicova et al.
2011; Zhou et al. 2011). Here, we explore this subject on a genome-wide
scale, describing the extent of association of histone modification with
alternative splicing in two distinct mammalian cell types.

In a previous study, we developed a random forest-based method
(RFECS) that could effectively identify enhancers genome-wide and
determine the most informative set of modifications required for this
task (Rajagopal et al. 2013). Here, we expand the application of this
tool to an extended panel of histone acetylation profiles in two distinct
mammalian cell types–human embryonic stem cells, 1H, and fetal
lung fibroblasts, IMR90. Using this approach, we find distinctive pat-
terns of acetylations that are associated with promoters, enhancers,
gene bodies, and splice junctions.

MATERIALS AND METHODS

Datasets and processing
All datasets used, including 24 modifications in 1H and IMR90, var-
ious sequence-specific transcription factors, and DNase-I hypersensi-
tivity sites, were described previously (Rajagopal et al. 2013). In
addition, the histone modification datasets in H9 were generated by
the Ren laboratory and released as part of the Roadmap Epigenome
Project and can be accessed using GSE16256. Data normalization for
histone modifications, determination of binding sites of transcription
factors, training and prediction using RFECS, correlation clustering,
and visualization of chromatin patterns are also as previously de-
scribed (Rajagopal et al. 2013).

Z-score normalization for comparing enhancers
and promoters
We pooled equal numbers of distal p300 binding sites and known
UCSC TSS overlapping DNase-I hypersensitive sites, representing
active enhancers and promoters, respectively. We computed average
histone modification levels, measured as input-adjusted RPKM (reads
per kilobase per million), between21 and +1 kb around each of these
elements. The Z-score normalized profile for each element was calcu-
lated against the mean and SD of the histone modification levels of the
entire set of pooled elements. Hence, deviations of the mean z-score
profile for the TSS class would be positive for TSS-preferred modifi-
cations, whereas it would be negative for p300-preferred modifica-
tions. This would be the exact mirror image of the values of the
mean z-score values for the p300 class.

Genome-wide prediction of promoters
To perform supervised prediction of promoters, we created a training
set comprising a set of UCSC TSS overlapping DNase-I hypersensitive
sites as representative of the active promoter class, and a second class
comprising TSS-distal p300 binding sites as well as randomly selected
non-p300 regions as background. We used input-adjusted RPKM
values of histone modifications (Rajagopal et al. 2013) measured in
100-bp bins between 21 and +1 kb around the training set elements
as the input features for training this classifier. The RFECS classifier
was then used to assign every 100-bp bin in the genome “promoter” or
“nonpromoter” class based on a 50% voting percentage, after which
promoter peaks were called in a genome-wide fashion as described
previously for enhancers (Rajagopal et al. 2013). We validated our
genome-wide promoter predictions by defining gold standard true
positive (TP) and true negative (TN) sets. The former comprises
UCSC and Gencode annotated TSS overlapping DNase-I hypersensi-
tivity sites in the particular cell-type, whereas the latter (TN) com-
prises p300 binding sites, cell-type-specific TFs or DNase-I sites lying
within gene desert regions. The TN set was selected to comprise the
elements most likely to be mistaken for promoters, due to the enrich-
ment of active modifications. Training and prediction were performed
using the RFECS methodology previously applied to prediction of
enhancers.

Computation of variable importance
We used the out-of-bag measure for variable importance (Bylander
2002) to compute importance of either all modifications or just ace-
tylations for various classification or prediction tasks. Because not all
modifications had the same replicates, we permuted replicates of each
histone modification to create several different combinations and
assessed the variable importance for each of these.

RNA-seq data processing
We first mapped the Illumina-generated mRNA fragments (paired
end reads) to the exon trio database TXdb, which we have previously
built (Wu et al. 2011) using Bowtie version 1 (Langmead et al. 2009)
for hits with no more than two mismatches. Our sequence mapping is
based on the human genome (hg19 assembly, Genome Reference
Consortium GRCh37). The fragments are mapped to TXdb to be able
to handle transcriptomic variability that arises from alternative splic-
ing. TXdb represents every known contiguous sequence of exons in
the human transcriptome as exonic trios and duos, such that mapping
to this database allows us to quantify the splicing pattern in terms of
the relative abundance of fragments of the different isoforms in this
region, locally.

We ran the splicing analysis tool SpliceTrap version 0.90.5 with
default parameters, which uses a Bayesian model to estimate inclusion
ratios. SpliceTrap uses an inclusion ratio distribution model (estimated
from high-confidence data) to reduce noise in the RNA-Seq data
without unnecessarily throwing away evidence from real transcrip-
tomic events. Ultimately, it produces inclusion ratio estimates for all
splicing events and classifies all local splicing decisions as constitutively
spliced exon (CS), alternative donor site (AD), alternative acceptor site
(AA), intronic retention (IR), or alternatively spliced exon (CA).

We chose to use SpliceTrap instead of other RNA-Seq analysis
tools due to the fact that the SpliceTrap model is exclusively focused
on optimizing a local, exon-centric splicing model (which is also our
main focus), and that, in our experience, SpliceTrap produces one of
the most robust and consistent estimates of inclusion ratios among the
tools we compared (Wu et al. 2011).
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Splice site usage
We created a measure of splice site usage by using labels associated
with each exon–intron boundary to the various categories of splice
sites—constitutively spliced exon (CS); alternative donor site (AD);
alternative acceptor site (AA); intronic retention (IR); or alternatively
spliced exon (CA). Each assignment is accompanied by an inclusion
value of the exon with respect to the transcript under consideration.
We assigned negative weights to all the cases where inclusion values
represent increased inclusion, such as IR, AA (39 end), AD (59 end),
and we assigned positive weights to the inclusion values that represent
decreased inclusion, such as AA (59 end), AD (39 end), CA, and CS.
The splice site usage value was defined as a weighted mean of the
inclusion values, with the weights being the activity of the transcript
under consideration. That is, splice site usage for a particular exon–
intron boundary is:

SS ¼ 2
X

j2A

X

i2Tj
Incli � FPKMi þ

X

j2B

X

i2Tj
Incli � FPKMi

i is a particular assignment of an exon with respect to a transcript Tj

Incli is the inclusion value of exon–intron boundary in instance i
FPKMi is the RNA-seq FPKM value of the transcript i belonging to

set Tj

A ={IR, AA (39 end), AD(59 end)}
B={AA(59 end), AD(39 end), CA, CS}
If there was no assignment for any of the seven cases due to weak

coverage in that region, then that term was set to 0.

Identification of chromatin modification patterns at
exon–intron boundaries
Using SpliceTrap (Wu et al. 2011), we obtained annotations for
286,368 exon–intron boundaries in 1H and 246,657 such boundaries
in IMR90, of which 232,919 boundaries had annotations in both cell
types. In each cell type, we randomly selected a subset of 50,000 sites
(�25%) for unsupervised classification because larger number of sites
required many more rounds of selection of the number of clusters
to filter out the outliers. We performed fast k-means++ algorithm
(Arthur and Vassilvitskii 2007) at the exon–intron boundaries using
RPKM-normalized histone modification levels in 100-bp bins between
22 and +2 kb around the boundary as features, and we determined
the number of clusters using the minimum value of the Davies-Bouldin
measure (Davies 1979). We tested different randomly selected subsets
of the data to ensure the results were robust. Further confirmation of
the distinctiveness of each of these states was obtained by constructing
RFECS classifiers for each cluster against all exon–intron boundaries
not assigned to that cluster. We were able to show 100% out-of-bag
classification accuracy in 1H and more than 95% in IMR90 for each
cluster as compared with all others. We used these classifiers to assign
all the boundaries that had not been used in the clustering to assign
them to the appropriate state.

Significance calculations for transitions of chromatin
state at exon–intron boundaries between 1H and IMR90
For computing the significance of the transition from cluster i in 1H to
cluster j in IMR90, we used a hyper-geometric distribution. Thus, we
modeled the probability by using the following analogies to the stan-
dard hyper-geometric distribution framework:

total exon–intron boundaries, N = total population
exon–intron boundaries belonging to cluster i in 1H, m = elements

having desired characteristic

exon–intron boundaries belonging to cluster j in IMR90, n = ele-
ments drawn without replacement from the population exon–
intron boundaries common to cluster i in 1H and cluster j in
IMR90, x = number of elements drawn from the total population
with the desired characteristic

In Matlab, the p-value of transition from cluster i in 1H to cluster j
in IMR90 was calculated as:

p-value ¼ 12 hygecdfðx;N; n;mÞ
ðhypergeometric  distributionÞ

RESULTS

Differential histone acetylation patterns at promoters
and enhancers
We previously observed that H3K4me1 and H3K4me3 are the most
distinctive marks between promoters and enhancers among a limited
set of five histone modifications (Heintzman et al. 2007). To further
define the marks that distinguish these two regulatory elements in
genome-wide maps of 24 histone modifications (Rajagopal et al.
2013), we compared active TSSs (TSSs overlapping DNase-I HS sites)
with an equal number of enhancers defined by TSS-distal p300 bind-
ing. After normalization (Materials and Methods), we observe that the
mean histone modification profile of either class separates clearly into
TSS-preferred and enhancer-preferred groups (Figure 1A, positive vs.
negative axes). We confirmed that the deviation of most of the histone
modifications from a set of elements with randomly shuffled labels is
statistically significant for total normalized read counts within 21 to
+1 kb of the element (Figure 1A; p-value ,1025 using Wilcoxon test,
except for bars marked by black dots). In both 1H and IMR90 cells, we
consistently found that H3K4me1, H2BK20ac, and H2BK120ac are
significantly enhancer-preferred, whereas H3K4me3, H3K4me2,
H3K9ac, H3K56ac, H4K5ac, and H3K27ac are TSS-preferred (Figure
1B). The histone modification profiles in bin sizes of 100 bp between
21 and +1 kb along these elements are also observed to be different
from the random set (Supporting Information, Figure S1, A and B,
blue vs. red).

To assess the importance of each modification in classifying
promoters and enhancers, we constructed classifiers using each mark
individually. Each classifier was composed of a 20-dimensional vector
that was the profile of the histone modification in 100-bp bins
between 21 and +1 kb around the element. H3K4me3, followed by
H3K4me2 and H3K9ac, showed the highest classification accuracy in
both 1H and IMR90 (Figure 1B, blue, red). Nearly all modifications
showed a classification accuracy of at least 55% (in 1H) and 75% (in
IMR90), which is above the classification accuracy of 50% expected at
chance (we verified that classification accuracy on randomly shuffling
labels was found to be �50%). Clearly, the most significantly TSS-
preferred modifications are H3K4me3, H3K4me2, and H3K9ac. For
enhancers, H3K4me1 is the most distinctive, followed by H2BK20ac.
In addition, we also observed cell-type-specific contributions. To ver-
ify if the modifications specific to 1H are due to the distinct biology of
stem cells, we repeated our analysis in H9 human embryonic stem
cells and observed trends resembling 1H (Figure 1B, green vs. blue).

We next classified p300 binding sites and TSSs using all 24 marks.
Interestingly, H3K4me3 alone achieved the same average accuracy as
all 24 modifications in both 1H (�94%) and IMR90 (�95%) . Next,
we examined whether histone acetylation alone could classify these
two elements (Figure 1C). The classification accuracy using all 15
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Figure 1 Classification of distal enhancers and promoters. (A) Preference of various histone modifications for either enhancer or promoter using
a Z-score normalized score of histone modification levels measured as input-subtracted RPKM (reads per kilobase per million) in 1H (blue bars) and
IMR90 (red bars).Modifications with preference for promoters, measured as enrichment on the positive y-axis, in both 1H and IMR90, are shown
indicated in red text color on the x-axis label while preference for enhancers or enrichment on the negative y-axis in both cell-types is indicated in
blue text color. (B) Classification accuracy achieved using each of the 24 histone modifications individually to separate enhancers from promoters
using RFECS in three distinct cell-lines: 1H (blue line), IMR90 (red line), and H9 (green line). H9 is another embryonic stem cell line that was used in

2054 | N. Rajagopal et al.



acetylations is within 1% of that achieved using all 24 marks. Clearly,
acetylations are quite distinctive between the enhancers and promoters.

To identify the specific histone acetylation marks contributing
most to the accurate classification of promoters and enhancers, we com-
puted the out-of-bag variable importance (Bylander 2002; Rajagopal
et al. 2013) for each acetylation. For both 1H and IMR90, the top
acetylation mark was H3K9ac (Figure 1D, Figure S1C), achieving 85%
and 89% classification accuracy, respectively (Figure 1, C and D). The
next mark in ordering of variable importance of 1H was H2BK120ac,
whereas in the case of IMR90 several marks including H2BK20ac
shared the same position (Figure 1D, Figure S1C). However, correla-
tion clustering indicates that H2BK20ac and H2BK120ac are highly
correlated in both 1H and IMR90 (Figure 1, E and F), suggesting that
these are redundant modifications. Hence, we selected the top two marks
as H3K9ac and H2BK120ac and found that this combination achieved
a classification accuracy of within 1% of using all 15 acetylations in
IMR90, whereas in 1H, this fell short by �3%. Including the next
mark in the ordering of 1H, H3K14ac improved this accuracy by
�2% (Figure 1C).

In summary, we observed that using acetylation marks alone we
could accurately separate these promoters from enhancers nearly as
well as using all 24 modifications. Our results indicate differential
enrichment of specific acetylations at enhancers and TSS. In par-
ticular, H3K9ac, H2BK120ac, and H3K14ac appear to be most in-
formative in combination, of which H2BK120ac is enhancer-preferred
whereas the other two are TSS-preferred (Figure 1, A and B).

Histone acetylation patterns accurately predict
enhancers and promoters
Our analysis suggests that histone acetylation patterns are distinct at
promoters and enhancers (Figure 1, C and D). Next, we wondered if
these acetylations could predict promoters and enhancers genome-
wide. As a first step, we applied the RFECS methodology, previously
used to predict enhancers (Rajagopal et al. 2013), to the prediction of
promoters genome-wide (Materials and Methods).

Using all 24 histone modifications, our approach can accurately
predict promoters with �92% true-positive (TP) rate and �1.6% false-
positive (FP) rate in 1H, whereas in IMR90 we observed even better
performance (TP �95%, FP �0.3%) (Figure 2, A and B). Using the
out-of-bag variable measure, we identified H3K4me3 as the most
informative mark required to predict promoters, followed by H3K4me2
and H3K4me1 (Figure S2, A and B). In terms of the area under the
curve (AUC), this minimal set performs comparably with the set of all
24 modifications in both 1H and IMR90 (AUCmin/AUCall = 0.99)
(Figure 2A, red vs. blue). While in 1H, this set is comparable with
using just H3K4me3 (Figure 2A, black vs. red); in IMR90, the addition
of the two marks leads to an improvement of �10% in TP rate as
compared with H3K4me3 (Figure 2B, black vs. red).

Next, to assess if acetylation can accurately predict promoters,
we repeated our analysis on all 15 histone acetylation marks. For
IMR90, overall performance was comparable with using all 24
modifications (AUCac/AUCall =0.99) (Figure 2B, green vs. blue);
for 1H, the TP rate was the same for FP rates beyond 1.3% (Figure

2A, green vs. blue). To determine which acetylations are the most
informative and whether these are robust across cell types, we
computed out-of-bag variable importance for acetylations (Figure
2, C and D). H3K9ac is clearly the most informative, whereas the
next few marks that are comparable across the two cell types ap-
pear to be H2BK120ac, H2AK5ac, and H3K18ac. Several other
H2BK-ac also occur among the top ranks in IMR90 (Figure 2D)
but are highly correlated with H2BK120ac (Figure 1E).

We then made predictions using just H3K9ac, the top two marks
in variable importance for 1H and IMR90, and also the predicted most
informative set of four acetylations. In 1H, there is a significant dif-
ference in the ROC (receiver operating characteristic) curve between
H3K9ac and the top two marks, H3K9ac and H2BK120ac, and an
equivalent increase on including the next two marks, H2AK5ac and
H3K18ac (�8% increase in TP rate for values of FP. 1%) (Figure 2E,
black vs. green vs. red). Even though the performance is not as accu-
rate as using all 15 acetylations, including more marks appears to
contribute incrementally to the curves, such as using the top six marks
(,2% change in TP for FP . 1%) (Figure 2E, magenta vs. red). In
IMR90, there is a significant improvement from using the top two
modifications as compared with using H3K9ac alone, with difference
in TP ranging between 5% and 20% at the same FP (Figure 2F, black
vs. cyan). Beyond this, improvements appear to be more incremental
(,2%), such as in using the predicted minimal set of four modifica-
tions (Figure 2F, red dotted) or even on including the top eight marks
(Figure 2F, magenta).

Applying the RFECS algorithm (Rajagopal et al. 2013) to
enhancers, we compared validation and misclassification rates of pre-
diction using just acetylations with that using all 24 marks or the
minimal set of H3K4me1, H3K4me2 (or H3K27ac), and H3K4me3.
In 1H, the validation rate computed based on overlap with known
true positives (Rajagopal et al. 2013) using just acetylations appears
to be comparable to the set of three marks, H3K4me1, H3K4me3,
and H3K27ac (Figure S2C), whereas the misclassification rate appears
to be within 1% of that using all 24 modifications (Figure S2E). In
IMR90, the validation rate using just acetylations is within 3% of that
using all 24 modifications (Figure S2D, green vs. blue) and a misclas-
sification rate that is within 1% using all 24 modifications (Figure S2F,
green vs. blue).

Hence, enhancers can also be accurately predicted using just
histone acetylation patterns. We computed variable importance for
the prediction of genome-wide enhancers using acetylations and dis-
covered H3K9ac, H2BK120/20ac, and H3K14/23ac as the minimal set
of acetylations for the prediction of enhancers and confirmed this by
comparisons of validation and misclassification rates with performance
using all acetylations (data not shown).

In summary, we found acetylations alone to predict genome-wide
enhancers as well as promoters quite accurately, indicating that acet-
ylations are not only distinct between the two elements but also pre-
dictive. The most informative acetylations in the prediction of promoters
were H3K9ac, H2BK120ac, H3K18ac, and H2AK5ac, whereas in the
case of enhancers this set was composed of H3K9ac, H2BK120/20ac,
and H3K14/23ac.

this case to see if 1H-specific trends were in fact embryonic stem cell–specific. Modifications with the topmost classification accuracy in both 1H
and IMR90 are shown in either red or blue text color, depending on whether they have preference for promoters or enhancers in both cell types.
(C) Comparison of classification accuracy of acetylations with that of all 24 modifications. (D) Ordering of histone acetylations by their out-of-bag
variable importance in classification of enhancers against promoters in 1H. Correlation clustering of histone acetylations at promoters and
enhancers in (E) IMR90 and (F) 1H. Acetylations that show similar patterns of co-occurrence in both cell types are indicated in red text color
along the axes.
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Minimal set of modifications to identify active genes
Several histone modifications have been identified as being enriched in
the body of active genes (Barski et al. 2007). However, the minimum
number of modifications required to achieve an accurate prediction of
the active gene body is still an unsolved problem. To this end, we
identified active RefSeq genes in the 1H and IMR90 genomes based
on the overlap of their TSS with DNase-I HS sites and RNA-seq above
log-value of 2 FPKM. Further, we only considered genic regions lying

2.5 kb away from an annotated TSS. As a true negative set, we identified
an equal number of intergenic regions as all those regions not lying
within any annotated UCSC, GENCODE, or Refseq gene. We con-
structed a random forest-based classifier to distinguish these two sets
using all 24 histone modifications and observed high sensitivity and
specificity at the point of maximum accuracy in both 1H (sensitivity =
89.56%, specificity = 94.54%, AUC = 0.97) and IMR90 (sensitivity =
96.34%, 12specificity = 97.09%, AUC = 0.99) (Figure 3, A and B).

Figure 2 Genome-wide prediction of promoters. Receiver operating characteristic (ROC) curves for prediction of promoters in (A) 1H and (B)
IMR90 using all 24 modifications (blue), H3K4me3 (black), H3K4me1/2/3 (red), or all 15 acetylations (green). Out-of-bag variable importance for
acetylations in making genome-wide prediction of promoters in (C) 1H and (D) IMR90. Modification names indicated in red are the ones that show
top-most variable importance in both cell types and are considered candidates for selection in the minimal set. ROC curves for prediction of
promoters using various minimal combinations of acetylations in (E) 1H and (F) IMR90, as compared with the prediction using all 15 acetylations
(in blue).
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In both 1H and IMR90, the top two informative marks are
H3K36me3 and H3K79me1, which rank well above all other marks
(Figure 3, C and D). By AUC analysis, the performance of these two
marks alone is equivalent to that of all 24 marks in IMR90
(AUCK36me3,K79me1/AUCall = 100%), although it is somewhat lower
in 1H (AUCK36me3,K79me1/AUCall = 96%) (Figure 3, A and B, green).
We found that the two marks ranked next that were common to both
cell types were H3K27me3 and H3K9me3 (Figure 3, C and D). These
modifications may be important because of their relative depletion in
genic regions and enrichment in larger intergenic regions (Figure 4D).
By including these marks, our classifier achieved almost the same
accuracy as all 24 marks in 1H (1H: AUCtop 4/AUCall = 99%) (Figure
3A, magenta vs. blue). Thus, we conclude that the minimal set of
modifications required to predict genes within 1% accuracy of the
set of all modifications is between 2 and 4, with H3K36me3 and
H3K79me1 being the most informative modifications.

Acetylations at the gene body
Next, to assess if gene body acetylation can distinguish genic from
nongenic regions, we constructed a supervised classifier using only
histone acetylations. Supporting this notion, acetylations show an ROC
curve that is well above the line of no discrimination in both 1H and
IMR90 (Figure 3, A and B). However, the performance of acetylations
is lower (1H:AUCac/AUCall = 0.85,IMR90: AUCac/AUCall =0.92) than
that achieved using all 24 marks or even the top four nonacetylation
marks (Figure 3, A and B, green vs. blue). For instance, in IMR90, the
sensitivity and specificity are 81.24% and 84.94%, respectively, as com-
pared with 95.27% and 97.5% for all 24 marks, at default parameters.

Given the lower proportion of genic regions predicted with
acetylations, we asked if this was because of the lower fractions of
gene bodies recovered by acetylations or the existence of distinct

categories of genes that are either completely acetylated or not, defined
based on their predictability using just acetylations. To this end, we
examined the distribution of fractions of genes recovered by either
case and that using all 24 marks leads to 90–100% recovery of most
genes, whereas the fractions recovered by just acetylations appear to
be more evenly distributed (Figure S3, A and B). The partial recovery
of certain genes using acetylations may indicate a bias toward certain
elements within the gene. Because previous studies have found asso-
ciations of acetylations with the splicing of certain genes (Gunderson
et al. 2011), we tested the hypothesis that acetylations might have
a preference for exonic regions or exon–intron boundaries and found
this to be true in both 1H and IMR90 (File S1, Figure S3).

Although acetylations clearly show a bias toward exonic bound-
aries, a sizeable fraction of genes (12.7% in 1H; 16.11% in IMR90) that
can be recovered up to .90% using acetylations alone still exists
(Figure S3, A and B). Distal regulatory elements lying within intronic
regions are enriched in acetylations. Because we wanted to see if the
gene bodies have a distinct acetylation pattern independent of such
intronic enhancers, we selected only those genic regions that are at
least 2.5 kb away from a known DNase-I HS or an exon–intron
boundary. Now, we calculated the classification rate of these filtered
genic vs. intergenic regions using all 24 modifications and just acety-
lations (Figure 4A, Figure S4A). It can be seen that the recovery using
just acetylations is still well above the line of no discrimination (sig-
nificance stats), with a maximum classification accuracy of �70% in
1H and �80% in IMR90 (Figure S4A, Figure 4A).

Because gene body acetylations appeared to be quite discriminative
in the case of IMR90, we further examined which acetylations are most
enriched within the gene body. H2AK5ac, H3K23ac, H3K14ac, H4K5ac,
and H2BK5ac were found to be among the top acetylations in order of
variable importance (Figure 4B), and also showed enrichment in

Figure 3 Classification of genic from
intergenic regions. ROC curves for
classification of genic regions in (A)
1H and (B) IMR90 using various combi-
nations of modifications. Out-of-bag
variable importance of all modifica-
tions in separating genic from inter-
genic regions in (C) 1H and (D) IMR90.
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a majority of genic regions on normalization to intergenic background
(Figure 4C). We selected long genes, such as TEAD1 (Figure 4D),
CHRM2 (Figure 4E), and CALD1 (Figure 4F), that could be classified
to more than 90% against an intergenic background. It can be seen that
several modifications such as H2AK5ac, H3K14ac, H3K23ac, and
H2BK5ac seem to cover a large proportion of the gene as compared
with the neighboring intergenic region. Although some of this may be
accounted for by the presence of punctate regulatory elements, there are
also regions that show diffuse enrichment of the aforementioned acety-
lations, emphasized in Figure 4E in the black boxes.

In 1H, similar analysis yielded a different set of acetylations that
were seen to be among the most enriched at gene bodies, with

H3K27ac being the top-most in terms of variable importance (Figure
S4B). On visualizing the enrichment of various histone modifications
at genic regions vs. intergenic ones, it does appear that H3K27ac has
a ubiquitous but low presence (Figure S4C). The enrichment of several
acetylations within the gene body can also be at the active gene PTPRJ,
which is in sharp contrast to a neighboring intergenic block with
H3K9me3 enrichment (Figure S4D).

Finally, we examined if acetylations have any functional signifi-
cance in gene bodies. Gene expression levels were slightly higher at
acetylated genes (Figure S4, E and F), showing a low but significant
Pearson correlation coefficient of 0.2 in 1H and 0.14 in IMR90. Fur-
ther, we examined if the genes with higher acetylation had specific

Figure 4 Acetylations within the gene
body distal to exon–intron boundaries
and DNAse-I hypersensitive sites in
IMR90. (A) ROC curves showing classi-
fication of distal genic regions using all
24 modifications (blue) or only 15 ace-
tylations (green). (B) Out-of-bag vari-
able importance of acetylations in
classification of distal genic regions
against intergenic regions. (C) Heat-
map showing enrichment of acetyla-
tions in genic regions as compared
with intergenic ones using a Z-score
normalized measure. Only certain ace-
tylations show enrichment in a majority
of genic regions as compared with
intergenic ones, as indicated by the
black box, and emphasized by red text
color. These modifications are also
shown in red in (B) and can be seen
to be among the top-most marks for
variable importance in separation of
genic from intergenic regions. UCSC
genome browser snapshot of genes
(D) TEAD1, (E) CHRM2, and (F) CALD1,
showing enrichment of acetylations as
compared with neighboring intergenic
regions.
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associations with functional annotations. In 1H as well as IMR90,
mRNA processing and RNA binding were among the significantly
enriched terms (Table 1). In addition, each cell-type showed different
categories that were enriched such as that of genes involved in regu-
lation of intracellular protein transport in IMR90 (Table S2) or genes
involved in mRNA splicing in 1H (Table S1).

Histone modification signatures at
exon–intron boundaries
Previous observations of co-transcriptional splicing suggest that spe-
cific chromatin signatures may be associated with splicing (Kolasinska-
Zwierz et al. 2009). As a preliminary investigation, we chose to analyze
the predictive power of the histone modifications under study in
predicting exon–intron boundaries from the genic background. Using
histone modification profiles (in 100-bp bins) between 22 and +2 kb
around the exon–intron boundaries, we were able to classify all known
boundaries from genic background with an accuracy of 87% in 1H
(AUCall = 0.94) or 85.5% in IMR90 (AUCall = 0.93). We then in-
vestigated the contribution of each histone modification under study
to the prediction. On computing variable importance for each of the
histone modifications with respect to the aforementioned classifica-
tion, we found H3K36me3 followed by H3K79me1 to be the most
informative and H3K36me3 alone could classify the boundaries
within 3% of the accuracy achieved using all 24 modifications
(AUCk36me3/AUCall �96%).

To further investigate the association of histone modifications at
exon–introns with function, we identified various splicing events from
paired-end RNA-seq in both 1H and IMR90 (Xie et al. 2013) using
SpliceTrap (Wu et al. 2011). The algorithm classified each local splic-
ing decision as being one of constitutively spliced exon (CS), alternative
donor site (AD), alternative acceptor site (AA), intronic retention (IR),
or alternatively spliced exon (CA) with respect to its flanking exons.
Based on the diversity of isoforms of a particular gene, this can cause
one exon to be part of multiple alternative splicing events. In each such
splicing event, we may characterize the splicing decision in terms of the
inclusion ratio, defined as the ratio of quantified expression level of the
inclusion isoform divided by the sum of quantified expression levels of
both inclusion and exon-skipped isoforms. Further, each exon can also
be quantified in terms of the exonic activity measured as FPKM (frag-
ments per kilobase per million mapped reads). We aim to use these
two quantifications at the exonic level to tease out correlations between
histone modification signals and splicing activity.

Because there is a wide diversity of splicing activity in the
transcriptome, the multiple signals associated with an exon–intron
boundary may lead to the observation of a convoluted histone modi-
fication signal. As a first step toward deconvoluting such putative
chromatin modification signals, we discovered all possible chromatin
modification patterns at exon–intron junctions using a fast k-means++
algorithm (Arthur and Vassilvitskii 2007) (seeMaterials and Methods).
Six distinct clusters are observed in 1H (Figure 5A), with varying
levels of acetylations as well as other gene body marks such as
H3K36me3, H3K79me1, and H4K20me1. Each of these clusters were
characterized in terms of their distinctiveness from the genic back-
ground by classifying the exons assigned to the cluster against the

genic background using either all 24 modifications or just acetylations
(File S1, Figure S5, A and C). Overall, state 2 is unclassifiable against
background using just acetylations, indicating that the weak acetyla-
tion signature is comparable with the gene body, whereas other states
were found to be either overenriched (states 1, 5, 6) or underenriched
(states 3, 4) for acetylations as compared with the rest of the gene (File
S1, Figure S5, A and C). It is worth noting that only those states with
enrichment of acetylations appear to have presence of H3K79me1 as
well.

In IMR90, however, we observed four distinct chromatin modi-
fication patterns (Figure 5B). In common with 1H, there is an “en-
hancer-like” cluster, cluster 1 (cluster 1 in 1H), and “promoter-like”
cluster, cluster 2 (cluster 5 and 6, 1H), based on enrichment of
H3K4me1 and me3, respectively. As in 1H, these two are significantly
enriched in acetylations with respect to genic background, whereas
state 4 is significantly depleted (File S1, Figure S5, B and D).

The learned histone modification states in 1H cells are ranked in
decreasing order of exonic activity based on calculations of statistical
significance of the difference of mean RNA-seq FPKM (fragments per
kilobase per million) levels between clusters using a Student’s t-test
(Figure 5A, panel 2). In 1H, there appears to be a positive correlation
with the level of H3K36me3, which is apparent as clusters 2 . 3 . 4
that show significantly decreasing trends of activity also have corre-
spondingly decreasing H3K36me3 (spearman correlation for clusters
1 to 4 = 0.59; p-value , 2.2·102308). However, “TSS”-like signatures
(clusters 5 and 6) appear to be even more highly active, irrespective of
H3K36me3 enrichment. The same trend may be observed in IMR90,
where cluster 3 with the lowest enrichment of H3K36me3 also has the
lowest activity (spearman correlation for clusters 1, 3, and 4 = 0.47;
p-value, 2.2·102308), and “TSS-like” state 2 has the maximum exonic
activity (Figure 5B, panel 2).

In summary, H3K36me3 can accurately classify most exon–intron
junctions from genic background. We identified multiple distinct
chromatin states at both 1H and IMR90 that are associated with
varying levels of exonic activity. We found that there was considerable
variation in the levels of acetylations at exon–intron boundaries, many
of which were either highly enriched or highly depleted in acetylations
with respect to the rest of the gene.

Chromatin modification patterns are predictive of
splice-site usage
As described in the section above, an exon can be part of multiple
different splicing events such as constitutively spliced exon (CS),
alternative donor site (AD), alternative acceptor site (AA), intronic
retention (IR), or alternatively spliced exon (CA) with respect to its
flanking exons. A single exon–intron junction can have multiple
assignments of inclusion values based on the transcript under consid-
eration. Hence, we further developed a metric to characterize the
overall splice site usage for every exon–intron boundary based on an
expression-weighted average of its inclusion ratio in all transcripts
(Materials and Methods).

Chromatin modification clusters are ranked in decreasing order of
retention or increasing order of splice site usage in 1H using a Wil-
coxon test with a p-value cutoff of 1025 (Figure 5A, panel 3). A clear
trend is observed where the greater the enrichment of acetylations, the
stronger the tendency for retention, with clusters 6, 5, and 1 having
the maximum tendency for retention (Figure 5A, panel 3). In IMR90
as well, the highly acetylated clusters 2 and 1 showed significantly
higher retention of the boundary (Figure 5B, panel 3, ranked I and
II based on a p-value cutoff of 1025).

n Table 1 GO terms for acetylation-rich genes in 1H and IMR90

GO Term Description 1H p-value IMR90 p-value

GO:0006397 mRNA processing 5.90E209 7.19E204
GO:0010467 gene expression 4.79E205 4.79E205
GO:0003723 RNA binding 3.21E204 1.03E205
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We asked to what extent we could predict retention of exon–intron
junctions based on chromatin modifications as input features. We
defined the constitutive class of exon–intron boundaries as those that
have the maximum possible value of inclusion ratio, 0.999, in all
transcripts of which they are a part. We defined two categories of
alternatively spliced exon–intron boundaries based on their contribu-
tion to splice-site usage: group I class of boundaries comprising IR,
AD (59 end), and AA (39 end) contribute negatively to splice-site
usage, whereas group II class of boundaries comprising CA con-
tributes positively to splice-site usage, as defined above. Using all
24 modifications, we obtained a maximal classification accuracy of
�70% and AUC of 0.75 for group I exon–intron boundaries in
IMR90 (Figure S6B, black). Although this is clearly greater than
expected at random, we asked if we could further improve the clas-
sification accuracy by taking into consideration other factors. For
instance, exon–intron boundaries within close proximity of each other
may share the same chromatin signature, which would cause difficulty
in classification. To verify this, we filtered any retained exon–intron
boundary within different distances of the constitutive exon–intron
boundaries and found a steady improvement in accuracy of classifi-
cation with filtering distance (Figure S6B, black to red). Now, if we
consider filtering the group I elements for any constitutive exon–
intron boundaries, we actually observed a worsening of the performance
(Figure S6B, black vs. dotted blue). We obtained the best possible
accuracy of classification with an AUC of 0.84 and maximal accuracy
of 77.1% by using a filtering distance of 10 kb for determining the set
of distal constitutive exon–intron boundaries in IMR90 (Figure 6A,
blue). In 1H, we observed the same trend (data not shown) and
obtained a maximal accuracy of 76.5% and AUC of 0.84 for classifi-
cation of group I exon–intron junctions against distal constitutive
ones (Figure 6B, blue).

Histone lysine acetylations had been observed to be enriched at
clusters with greater degree of retention (Figure 5, A and B). To
further explore the relative importance of histone lysine acetylations,

we classified the group I exon–intron junctions against the distal
constitutive ones and obtained a comparable classification accuracy
as using all 24 modifications (Figure 6, A and B, blue vs. red, 1H:
AUCac/AUCall = 0.96, IMR90: AUCac/AUCall = 0.98). Previous studies
had shown H3K36me3 to be distinctive between alternatively spliced
exons and constitutively spliced ones (Hon et al. 2009). As compared
with acetylations, H3K36me3 was able to achieve a much lower ac-
curacy of classification (Figure 6, A and B, blue vs. red, 1H: AUCk36/
AUCall = 0.88, IMR90: AUCk36/AUCall = 0.94), indicating the stronger
association of group I alternatively spliced exons with acetylation
signatures, rather than H3K36me3.

On classification of group II alternatively spliced exons against
a constitutive background, we achieved a maximal accuracy of �66%
and AUC of 0.71 in IMR90 (Figure S6B, black). We considered the
case of classifying distal alternative vs. constitutive ones and found
a steady improvement of classification accuracy on increasing filtering
distance for removing nonretained exon–intron boundaries in the
vicinity of the group II alternative class (Figure S6B, solid blue to
red). At best, we achieved a maximal accuracy of 80% and AUC of
0.88 for classifying distal group II alternative exon–intron boundaries
against the constitutive background in IMR90 (Figure 6C, blue). In
1H, we achieved a similarly high level of accuracy of performance with
a maximal accuracy of 78% and AUC of 0.87 (Figure 6D, blue). In the
case of group II junctions, H3K36me3 was more effective than histone
lysine acetylations in classifying alternative boundaries against consti-
tutive ones (Figure 6, C and D, green vs. red), although neither ace-
tylations nor H3K36me3 could achieve comparable performance as
that using 24 modifications (1H: AUCk36/AUCall = 0.9, IMR90:
AUCk36/AUCall = 0.89).

Patterns in both cell types were also associated with specific splice
variants to see if there were significant associations with these (Figure S6,
C and D). Alternative donor sites or 59 splice sites were enriched in the
promoter-like clusters in both cell types as compared with any other
state. However, surprisingly, all other splice variants also have a greater

Figure 5 Chromatin modification patterns at
exon–intron junctions in 1H and IMR90. (A) Six
distinct chromatin modification patterns at
exon–intron junctions with corresponding lev-
els of exonic activity (panel 2) and splice site
retention (panel 3). (B) Four distinct chromatin
modification patterns at exon–intron junc-
tions with corresponding levels of exonic ac-
tivity (panel 2) and splice site retention (panel
3). Ranks associated with each of these
parameters are shown for the clusters, in 1H
as well as in IMR90, based on significant dif-
ferences in either exonic activity or splice site
retention between the clusters, measured us-
ing a Wilcoxon test.
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tendency to occur proximal to such promoter-like signatures. PLEKH3
is a gene that is predicted by SpliceTrap to have a series of retained
exon–intron boundaries in 1H that are constitutively spliced in IMR90.
This gene can be seen to have chromatin state changes associated with
alternative splicing and retention (Figure S7A). The reverse can be seen
in the gene VIM where certain exons that are constitutive in 1H are
retained in IMR90 (Figure S7B). In both cases, the set of exons un-
dergoing various types of retention, excluding alternative 59 site usage,
are indicated by a black box and can be seen to be covered by the
expansion of H3K4me3 signal in the cell type with alternate usage.
Another observation to note was that state 4 in 1H appeared to be
preferential for exons with both ends constitutively spliced, whereas
states 1, 5, and 6 show preference for other events such as alternative
acceptor sites or intronic retention (Figure 5A, Figure S6D).

In conclusion, using chromatin modification information, we were
able to achieve accuracy as high as 80% for the classification of
alternatively spliced exon–intron junctions from a constitutively spliced
background. We observed improvement in classification accuracy on
considering a constitutive background distal to any retained exon in
case of group I exons and by considering an alternative class distal to
constitutive exons in case of group II exons. This suggests the effect of
proximal chromatin signature on neighboring exons. Retained exon–
intron boundaries are highly enriched for histone lysine acetylations,
especially intronic retention, alternative 39 end usage, and alternative 59
end usage. “Enhancer-like” and “promoter-like” chromatin states that
appear to be associated with splice site retention are common to both
cell types, of which the latter is the most strongly associated with
a variety of splice site variants, not just alternative 59 sites.

Dynamics of chromatin modification states at
splice sites
Certain chromatin modification clusters in 1H appear to be analogous
to ones in IMR90 based on the patterns of modifications, such as the
“enhancer-like” state 1 (1H) with state 1 (IMR90), and the “promoter-
like” state 5 and state 6 (1H) with state 2 (IMR90) (Figure 5, A and B).
However, the other clusters are not so easily comparable in terms of
chromatin modifications. In this regard, we examined if particular
states in 1H have a tendency to correspond to ones in IMR90 based
on the number of exon–intron junctions that are common to the
states in the two cell types. We computed the p-value of transitions
between the six states in 1H to the four states in IMR90 using a hyper-
geometric distribution (Materials and Methods) and significant tran-
sitions, based on a p-value , 2.2·102308, are enumerated in Table 2.
It appears that the chromatin state transitions are in keeping with the
overall ranking in terms of splice site usage. For instance, state 2 in 1H
and state 4 in IMR90 show significant transitions even though their
chromatin modification patterns do not appear to be the same. How-
ever, both these clusters are ranked immediately after the “promoter-
like” and “enhancer-like” states in terms of their splice site usage. Such
a trend is in keeping with the fact that the change in splice site usage
across the two cell types is relatively small. For instance, if we assume
any exon junction with splice site usage ,0.9 to be called alternative,
then only 1.92% of the total exons undergo any change at all in their
splice site usage between 1H and IMR90.

We observed that we could obtain a considerably higher accuracy
of classification of group II alternatively spliced exons in 1H if we

Figure 6 Associations of chromatin modifica-
tion patterns with splicing. (A–D) ROC curves
for the classification of alternatively spliced
exon–intron junctions against constitutively
spliced ones using all 24 modifications (blue),
15 acetylations (red), or H3K36me3 (green)
for classification of (A, B) group I exon–intron
junctions comprising intronic retention (IR),
alternative 59 end usage (AD), and alternative
39 end usage (AA) in (A) IMR90 and (B) 1H.
Group II exon–intron junctions comprising al-
ternatively spliced exon (CA) in (C) IMR90 and
(D) 1H. Negative logarithm of the p-value of
enrichment of alternatively spliced exons ex-
clusive to 1H (blue) or IMR90 (red) in (E) IMR90
and (F) 1H.
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considered a negative set that was composed of constitutive exons in
both 1H and IMR90, rather than just 1H with an improvement in
maximal accuracy of approximately 4% (Figure 6D, magenta vs. blue).
However, there is not much difference in accuracy of classification on
using this constitutive background in IMR90 (Figure 6C, magenta vs.
blue). This suggests that certain constitutive exons in 1H may be “pre-
marked” for alternative splicing in IMR90. To validate this, we created
two sets of junctions based on splice site usage—one that is alterna-
tively spliced in 1H but not IMR90 and another that is alternatively
spliced in IMR90 but not 1H (Figure 6F,blue vs. red). Both the acet-
ylation-rich clusters 1 and 6 in 1H (Figure 5A) are significantly
enriched for cell-type-specific retained junctions whether it is in 1H
or IMR90 (Figure 6F). However, in IMR90, the corresponding acety-
lation-rich clusters 1 and 2 are not significantly enriched for 1H-
exclusive retention events (Figure 6E). Hence, it may be that the states
in 1H are pre-marked for alternative splicing in IMR90 because they
are undifferentiated cells that contain the tendency for alternative
splicing in future differentiated cells as well. Because IMR90 is a fully
differentiated cell type, it does not show similar tendencies.

Overall, it appears that only a small proportion (,2%) of exons
undergo alternative splicing changes between 1H and IMR90. The
chromatin modification patterns at exon–intron boundaries changes
across 1H and IMR90 in such a manner to correspond to the splice
site usage corresponding to the cluster, rather than the actual enrich-
ment of various modifications. Also, constitutive exon–intron bound-
aries in 1H may be pre-marked by an alternative splice site signature
for use in later differentiated cell types such as IMR90.

DISCUSSION
Chromatin modifications distinguishing promoters and enhancers
have previously been identified as H3K4me1 and H3K4me3 (Heintz-
man et al. 2007). Besides these two, we find that several additional
histone modifications, especially histone acetylations, can also re-
liably distinguish these regulatory elements. In particular, H3K9ac,
H3K23ac, and H3K14ac are promoter-preferred, whereas H2BK120ac
and H2BK20ac are enhancer-preferred. Overall, histone acetylation
is not only distinctive between the two regulatory elements but also
informative enough to predict promoters and enhancers genome-
wide. These observations potentially lead to several hypotheses re-
garding differences in mechanisms of functioning of these two
regulatory elements. H2BK120 has been shown to have a ubiquitination
modification that is present at active promoters and exclusive of
H2BK120ac (Gatta et al. 2011). This exclusivity may explain the pres-
ence of H2BK120ac at enhancers, and may suggest the lack of
H2BK120Ub at these elements. Understanding the dynamics of the
H2BK120 acetylase, KAT3 (Gatta et al. 2011), and the H2BK120
ubiquitin ligase, RNF20 (Hwang et al. 2003; Zhu et al. 2005), may
lead to further understanding of differences between enhancers and
promoters.

In addition to enhancers and promoters, acetylations were
found to be quite informative in delineating gene bodies. It was
previously observed that certain acetylations showed elevated
levels at the promoter region as well as the transcribed regions
of active genes in CD4+ T-cells (Wang et al. 2008). We wanted to
investigate if specific patterns of acetylations were distinctive of the
gene body alone by investigating the predictive power of these
acetylations in 1H and IMR90 cell types. We found extensive en-
richment of H2AK5ac, H2BK120ac, H3K14ac, and H3K23ac along
gene bodies, and acetylations alone can achieve 80% accuracy in
predicting gene bodies. Some studies have shown PCAF to be
regulating H3K14ac (Lau et al. 2000), also known to be part of
an elongation-competent form of RNA-polymerase II (Cho et al.
1998). This factor may be involved in the maintenance of gene
body acetylations in IMR90. Tip60 and HDAC6 have also been
characterized as being within gene bodies (Wang et al. 2009), the
former of which is known to acetylate H2AK5 (Jeong et al. 2011).
Hence, given the patterns of acetylations within gene bodies and
prediction of genes enriched in these, there is a potential to gen-
erate hypotheses regarding the combinatorial localization of HATs
and HDACs within specific genes.

Acetylations within the gene body are especially enriched near
exon–intron junctions of retained exons. We described two groups of
such exon–intron junctions—one that comprised events contributing
to negative splice site usage such as intronic retention (IR), alternative
39 end (AA), and alternative 59 end (AD) usage, and another that
contributed to positive splice site usage comprising alternatively
spliced exons (CA). We found that both these groups showed signif-
icant association with proximal chromatin state but had differential
associations with histone lysine acetylations. Histone lysine acetyla-
tions were found to be highly discriminative in classifying group I
exons against a set of distal constitutive exon. However, H3K36me3
depletion appeared to be more distinctive of the class of group II
exons. We observed improvement in classification accuracy on con-
sidering a constitutive background distal to any retained exon in case
of group I exons and by considering an alternative class distal to
constitutive exons in case of group II exons. Possibly, the chromatin
signature of these group I exons may be more permissive for allowing
constitutive splicing in neighboring exons, whereas the chromatin
signature of group II exons may not be as permissive for allowing
constitutive splicing and may be more strictly restricted to distal group
II exons. In case of constitutive and alternative exons within close
proximity to each other, factors other than the chromatin state may
play an important role in regulating the splicing. One of these could be
the effect of distal regulatory elements interacting with the splice-site
junctions (Mercer et al. 2013). The role of such elements in splicing
can be further studied using a chromosomal conformation captures
technique such as 4C (Zhao et al. 2006). It was also observed that
many acetylation-rich, constitutive exons in 1H are alternatively
spliced in IMR90. Such a hypothesis may be further tested by includ-
ing detailed splicing and chromatin formation across many human
cell lines, both from early and late lineages.

Hence, we observed patterns of histone acetylations that are
specific to promoters, enhancers, and genic regions. Such observations
are in keeping with many previous studies regarding the localization
of chromatin modifiers at these elements and suggest further test-
able hypotheses regarding the combinatorial enrichment of potential
chromatin modifiers at these regions, which could lead to a better un-
derstanding of the mechanism of functioning of enhancers, promoters,
and genes.

n Table 2 Significant chromatin state transitions at exon–intron
junctions between 1H and IMR90

Cluster
IMR90

Cluster 1
IMR90

Cluster 2
IMR90

Cluster 3
IMR90

Cluster 4
1H cluster 1 Yes No No Yes
1H cluster 2 No No No Yes
1H cluster 3 No No Yes No
1H cluster 4 Yes No Yes No
1H cluster 5 Yes Yes No No
1H cluster 6 No Yes No No
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